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Abstract

Background: Despite oxidized low density lipoprotein (ox-LDL) plays important roles in the pro-inflammatory and
atherosclerotic processes, the relationships with metabolic and oxidative stress biomarkers have been only scarcely
investigated in young adult people. Thus, the aim of this study was to assess plasma ox-LDL concentrations and
the potential association with oxidative stress markers as well as with anthropometric and metabolic features in
healthy young adults.

Methods: This study enrolled 160 healthy subjects (92 women/68 men; 23 ± 4 y; 22.0 ± 2.9 kg/m2).
Anthropometry, body composition, blood pressure, lifestyle features, biochemical data, and oxidative stress markers
were assessed with validated tools. Selenium, copper, and zinc nail concentrations were measured by atomic
absorption spectrophotometry.

Results: Total cholesterol (TC), LDL-c and uric acid concentrations, TC-to-HDL-c ratio, and glutathione peroxidase
(GPx) activity were positive predictors of ox-LDL concentrations, while nail selenium level (NSL) was a negative
predictor, independently of gender, age, smoking status, physical activity. Those individuals included in the highest
tertile of GPx activity (≥611 nmol/[mL/min]) and of NSL (≥430 ng/g of nail) had higher and lower ox-LDL
concentrations, respectively, independently of the same covariates plus truncal fat or body mass index, and total
cholesterol or LDL-c concentrations.

Conclusions: Ox-LDL concentrations were significantly associated with lipid biomarkers, GPx activity, uric acid
concentration, and NSL, independently of different assayed covariates, in young healthy adults. These findings
jointly suggest the early and complex relationship between lipid profile and redox status balance.

Background
A lipid profile characterized by reduced high density lipo-
protein-cholesterol (HDL-c) concentrations and
increased low density lipoprotein-cholesterol (LDL-c)
and triglycerides concentrations as well as increased total
cholesterol-to-HDL-c ratio constitutes a high risk for
type 2 diabetes, metabolic syndrome and cardiovascular
diseases [1-3]. In turn, oxidative stress impairment or
altered antioxidant status have been suggested as pivotal
keys in the onset of certain chronic diseases [4,5].

In this sense, oxidized low-density lipoproteins (ox-
LDL), a recognized oxidative stress marker, has been
positively associated with central obesity [6], metabolic
syndrome manifestation [7] and atherosclerosis [8].
Also, uric acid has been proposed as independent risk
factor for cardiovascular diseases [9,10], in addition to
implication in LDL-c oxidation and generation of an
oxidative status in hyperuricemia conditions [11,12]. In
turn, glutathione peroxidase is an enzyme with relevant
antioxidant role in the redox balance [4], while selenium
is an essential mineral, which have been investigated by
its antioxidant and anti-inflammatory proprieties in the
preventing chronic disorders [13-15]. However, the rela-
tionship of ox-LDL with lipid and oxidative stress
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biomarkers has been only modestly investigated in
young adult people [16], while its association with nail
selenium levels has not been apparently reported.
Overall, this study aimed to assess plasma ox-LDL

concentrations and the potential associations with oxi-
dative stress markers as well as with anthropometric
and metabolic (glucose and lipid profiles) data in healthy
young adults. Thus, we measured plasma uric acid con-
centrations and glutathione peroxidase (GPx) activity in
erythrocytes, since an altered regulation of these mar-
kers has been associated with ox-LDL concentrations in
oxidative stress and chronic disorders conditions
[11,12,17,18]. Also, we also assessed nail levels of three
trace elements related to antioxidant defense mechan-
isms (selenium, zinc and cooper), whose levels have pre-
sented relevant associations with biomarkers in young
adults [13,14,19].

Subjects and methods
Subjects
In this study participated 160 subjects (92 women and
68 men) with a mean age of 23 ± 4 years old (range 18-
35) and a mean body mass index (BMI) of 22.0 ± 2.9
kg/m2 (range 18.5-34.9). Exclusion criteria were any
diagnosed organic underlying disease (gastrointestinal,
kidney, liver, respiratory or heart disease), cancer, infec-
tious and inflammatory disorders, diabetes (fasting glu-
cose level > 126 mg/dl), hypertension (systolic and
diastolic blood pressure values ≥ 140 and 90 mmHg,
respectively), pregnancy, disorders affecting body com-
position (e.g. lipodystrophy and Cushing syndrome) or
lipid-lowering treatment. Other exclusion criteria were
contraceptive use up to 2 months before participation in
this study, recent follow up of diets designed for weight
loss or unstable weight (change > 10% in habitual
weight) in the past 6 months. In accordance with the
principals of the Helsinki Declaration and after a clear
explanation of the study protocol, each participant gave
a written informed consent to participate. The study
was approved by the Committee of Ethics in Research
with Human Beings of the Federal University of Viçosa
(Of. Ref. n° 009/2006).

Anthropometric and body composition assessments
Anthropometric and body composition were determined
in all the subjects after 12 h of fasting. Body weight was
measured with an electronic microdigital scale balance
(Tanita TBF-300A model, Tokyo, Japan) to the nearest
0.1 kg, while height was assessed with a stadiometer
(Seca 206 model, Hamburg, Germany) to the nearest 0.1
cm. Thus, BMI was calculated by the ratio between
weight (kg) and the squared height (m2), which was
applied to categorize normal-weight (18.5-24.9 kg/m2),
overweight (25-29.9 kg/m2), and obese (BMI ≥30 kg/m2)

subjects, according to the World Health Organization
criteria [20]. Waist circumference was measured midway
between the lowest rib and the iliac crest and hip cir-
cumference was determined at the maximal hip circum-
ference without gluteus contraction [21], both with an
inelastic and flexible tape to the nearest 0.1 cm. The
waist-to-hip ratio was also calculated. Triceps, biceps,
subscapular and suprailiac skinfold thicknesses (ST)
were measured to the nearest 1 mm by using a skinfold
caliper (Lange caliper, Cambridge Scientific Industries
Inc., Cambridge Maryland, USA), according to a pre-
viously described protocol [22]. The sum of STs (mm)
was also calculated. Truncal fat was also calculated as
the sum of subscapular and suprailiac ST divided by the
sum of 4 ST, expressed in percentage [13,23]. Total
body fat (%, to the nearest 0.1%) and body fat mass (kg)
were measured by an impedance bioelectric device (Bio-
dynamics 310 model, Washington, USA).

Blood pressure and biological sample measurements
Systolic and diastolic blood pressure values were mea-
sured twice by a mercury sphygmomanometer (BIC, São
Paulo, Brazil) to the nearest 2 mmHg as described else-
where [24].
Blood samples were draw by vein puncture after a 12

h overnight fast. The plasma and serum samples were
separated from whole blood by centrifugation at 2465 g
× 15 min at 5°C (Eppendorf AG, 5804R model, Ham-
burg, Germany) and were immediately stored at -80°C
until assay. Serum glucose, total cholesterol, HDL-c,
triacylglycerols, and uric acid concentrations were
assessed by specific colorimetric assays (Bioclin, Qui-
basa, Minas Gerais, Brazil), using an automated analyzer
system (BS-200, Shenzhen Mindray Bio-medical Electro-
nics Co., Nanshan, China). LDL-c data were calculated
by the Friedewald equation as described elsewhere [25].
The total cholesterol-to-HDL-c ratio was also calculated
[26]. Plasma insulin concentrations (sensitivity 2 μU/
mL) were measured by an ELISA assay kit (Linco
Research, St. Charles, USA). Insulin resistance was esti-
mated by the homeostasis model assessment of insulin
resistance (HOMA-IR) calculated as fasting glucose
(mmol/L) × fasting insulin (μU/mL)/22.5 [27]. Plasma
ox-LDL concentrations (sensitivity < 6.56 U/L) were
measured by an ELISA assay kit (Mercodia, Uppsala,
Sweden). GPx activity (nmol/[mL/min]) was measured
in erythrocytes by a commercially available kit (Cayman
Chemical, Ann Arbor, USA). Of total sample, 135 parti-
cipants delivered fingernail and toenail samples as
requested. Fingernail and toenail samples were treated
with sub-boiling nitric acid in a high-pressure teflon
digestion vessel using a microwave digestion system
(Ethos Plus, Millestone, Sorisole, Italy). Selenium (ng/g
of nail), copper and zinc (μg/g of nail) concentrations
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were measured by a Perkin Elmer Analyst 800 atomic
absorption spectrometer (Norwalk, CT, USA) as pre-
viously described [28,29].

Other lifestyle measurements
As covariates, lifestyle features were also determined.
Thus, the participants were asked about smoking status
(never, former, or current smokers) and, if it was the
case, how many cigarettes they smoked per day. Also,
they were requested whether some vitamin supplement
was consumed (Yes/No). In respect to physical activity,
the participants declared about to regular physical activ-
ity practice (Yes/No), and if it was the case, the type
and the volume of activity (h/week). To quantify the
volume of activity, a metabolic equivalent (MET) index
was also computed by assigning a multiple of resting
metabolic rate (MET score) to each activity [30], fol-
lowed by the sum over all activities to obtain a value of
overall weekly MET/h as described elsewhere [31].

Statistical analysis
Results are shown as mean ± SD. The Kolmogorov-
Smirnov normality test was used to determine variable
distribution. In order to detect difference in anthropo-
metrical, lifestyle, metabolic and oxidative stress data in
respect to ox-LDL concentrations, this was taken as sui-
table variable considering its median as cutoff value
(69.4 U/L) and categorizing the subsequent population
group in “low” and “high” ox-LDL concentrations
according to this value (< or ≥ 69.4 U/L, respectively).
The median cutoff criteria have been previously applied
[13,19] and is based on a valid and reliable method to
assign two groups of risk in epidemiological studies [32].
Accordingly, statistical comparisons between groups
were performed by the parametric Student t-test,
Manny-Whitney U-test or chi-square (c2) test as appro-
priate. The Spearman correlation coefficients were used
to screen the potential associations between ox-LDL
concentrations and interest variables. In addition, multi-
variate linear regression models were also applied to
further explain the associations of ox-LDL concentra-
tions with these variables. The linear regression models
were adjusted for gender, age, smoking status, physical
activity practice. Confidence intervals (95% CIs) were
used to describe linear regression coefficient (b).
We also categorized the participants by tertiles of GPx

activity, nail selenium levels, and uric acid concentra-
tions, since these biomarkers were significantly asso-
ciated with ox-LDL in the linear regression analyses
previously described in this section. Linear trends were
assessed by assigning the median value to each tertile of
these variables and modeling these values as a continu-
ous variable. Subsequently, we performed linear regres-
sion analyses, including ox-LDL as dependent variable,

tertiles of GPx activity, nail selenium levels, and uric
acid concentrations as independent variables, and gen-
der, age, smoking status, physical activity practice, total
cholesterol or LDL-c concentrations, truncal fat or BMI,
and uric acid (in some cases) as control covariates.
Since the GPx activity and selenium nail levels were
measured in a fewer number of participants (n = 100
and n = 135, respectively), we tested a posteriori the sta-
tistical power (1-b) to trends of these markers with ox-
LDL, using effect size f2 (based in corrected R2 values),
P-value from model < 0.05, total sample size and the
number of independent predictors as input parameters,
in the G*Power version 3.0.10. A P-value < 0.05 was
considered statistically significant, and the statistical
analyses were performed using SAS system 8.0 (SAS
Institute Inc., Cary, USA).

Results
Anthropometric, clinical and biochemical data (mean ±
SD) categorized by the median value of plasma ox-
LDL concentrations are reported in Table 1. Indivi-
duals with high concentrations of ox-LDL (≥69.4 U/L)
showed significantly higher values of BMI, total choles-
terol, LDL-c, total cholesterol-to-HDL-c ratio, uric
acid, and GPx activity, while nail selenium levels were
significantly lower. Gender distribution, anthropo-
metric and body composition measurements, except
BMI, glucose profile, and blood pressure did not differ,
when classified by ox-LDL concentrations. No differ-
ences were found concerning to lifestyle features, when
categorized by the median value of ox-LDL concentra-
tions (Table 2).
To better understand the associations between ox-

LDL concentrations and some variables of interest,
Sperman’s coefficient correlations were performed.
Although all anthropometric variables presented positive
trends with higher ox-LDL values (see Additional file 1:
Table S1), only truncal fat significantly correlated with
ox-LDL concentration (rS = 0.16, P = 0.043). Regarding
biochemical data and antioxidant defense system com-
ponents, the following statistical correlations were
detected: total cholesterol (rS = 0.23, P = 0.003), LDL-c
(rS = 0.22, P = 0.004), triacylglicerol (rS = 0.013, P =
0.013), total cholesterol-to-HDL-c ratio (rS = 0.41, P <
0.001), nail selenium (rS = - 0.19, P = 0.026) and copper
(rS = - 0.17, P = 0.046) concentrations, and GPx activity
(rS = 0.29, P = 0.003). In addition, systolic blood pres-
sure significantly correlated with ox-LDL concentration
(rS= 0.17, P = 0.027).
In Table 3, linear regression analysis showed that lipid

biomarkers, such as total cholesterol, LDL-c, total cho-
lesterol-to-HDL-c ratio as well as uric acid concentra-
tions and GPx activity were positive predictors of
circulating concentrations of ox-LDL, after adjusted for
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Table 1 Anthropometric, clinical, and biochemical data, categorized by the median (cutoff: 69.4 U/L) of ox-LDL
concentrations (n = 160)

Low ox-LDL
<69.4 U/L
(n = 80)

High ox-LDL
≥ 69.4 U/L
(n = 80)

P-value*

Women (%) 60.8 52.6 0.305

Age (y) 23.1 ± 3.6 23.4 ± 3.4 0.145

BMI (kg/m2) 21.6 ± 2.8 22.4 ± 3.0 0.046

Waist circumference (cm) 78.0 ± 8.7 78.3 ± 8.7 0.863

Waist-to-hip ratio 0.8 ± 0.1 0.8 ± 0.1 0.469

Sum of 4 ST (mm) 42.6 ± 16.8 45.0 ± 20.4 0.369

Truncal fat (%) 57.4 ± 7.1 59.3 ± 6.1 0.069

Total body fat (%) 23.8 ± 6.1 23.4 ± 7.0 0.735

Body fat mass (kg) 15.0 ± 5.2 14.7 ± 5.4 0.303

Systolic blood pressure (mmHg) 109 ± 9 110 ± 9 0.239

Diastolic blood pressure (mmHg) 74 ± 7 73 ± 7 0.257

Glucose (mg/dL) 90.8 ± 7.0 90.3 ± 6.3 0.394

Insulin (μU/mL)** 10.3 ± 5.0 10.2 ± 6.0 0.302

HOMA-IR** 2.3 ± 1.2 2.3 ± 1.3 0.245

Total cholesterol (mg/dL) 153.4 ± 27.8 166.5 ± 33.5 0.007

HDL-c (mg/dL) † 47.3 ± 12.4 45.7 ± 10.4 0.342

LDL-c (mg/dL) 91.0 ± 26.6 100.2 ± 26.4 0.009

Triacylglycerol (mg/dL) 96.1 ± 49.1 103.2 ± 38.5 0.059

Total cholesterol-to-HDL-c ratio† 3.3 ± 0.6 3.8 ± 0.9 <0.001

Uric acid (mg/dL) 3.4 ± 1.1 3.7 ± 1.1 0.049

GPx activity (nmol/[mL/min])‡ 487.9 ± 231.3 659.1 ± 299.2 0.002

Selenium (ng/g of nail)§ 396.2 ± 88.0 365.5 ± 76.7 0.033

Zinc (μg/g of nail)§ 124.5 ± 57.7 132.3 ± 68.7 0.212

Copper (μg/g of nail)§ 7.4 ± 5.5 7.1 ± 7.1 0.247

Data are mean ± SD.

Ox-LDL, oxidized low density lipoprotein; BMI, body mass index; ST, skinfold thickness; HOMA-IR, homeostasis model assessment of insulin resistance; HDL-c,
high-density lipoprotein cholesterol; LDL-c, low-density lipoprotein cholesterol; GPx, glutathione peroxidase.

*Student t test was performed for variables with normal distribution while remaining variables were analyzed by Mann-Whitney U test, as appropriate.

**n = 79 and n = 77, for low and high ox-LDL, respectively.
†n = 73 for high ox-LDL.
‡n = 44 and n = 56, for low and high ox-LDL, respectively.
§ n = 69 and n = 66, for low and high ox-LDL, respectively.

Table 2 Lifestyle features of the participants, categorized by the median (cutoff: 69.4 U/L) of ox-LDL concentrations*

Lifestyle features Low ox-LDL
<69.4 U/L
(n = 80)

High ox-LDL
≥ 69.4 U/L
(n = 80)

P- value†

Vitamin supplement use (%) 6.2 6.2 0.721

Smokers (%)‡ 9.6 13.4 0.105

Smoking (cigarettes/d)‡ 1.3 ± 4.9 1.6 ± 4.9 0.318

Self-reported PA practice (%)‡ 72.6 70.1 0.116

MET (h/wk)‡ 116 ± 105 135 ± 116 0.324

Ox-LDL, oxidized low density lipoprotein; PA, physical activity; MET, activity metabolic equivalent

*Data are mean ± SD or frequencies.
†P-value from c2 test and Mann-Whitney U test for dichotomous and continuous variables, respectively.
‡n = 73 and n = 67, for low and high ox-LDL, respectively.
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sex, age, smoking status, and physical activity. In turn,
nail selenium level was a negative predictive factor of
ox-LDL levels. The increase of 1 unit on nail selenium
concentration (1 ng/g of nail) was associated with a
reduction of 0.06 U/L in ox-LDL circulating levels. The
nail copper concentration had a similar effect, but no
statistical significance was found.
Interestingly, ox-LDL concentrations were higher in

the subjects included in the higher tertile of GPx activity
(Figure 1), independent from gender, age, smoking sta-
tus, physical activity, truncal fat, uric acid, and total cho-
lesterol concentrations. Also, ox-LDL concentrations
were statistically decreased across tertiles of nail sele-
nium values, independent from the same confounding
factors (Figure 2). When truncal fat was substituted by
BMI and total cholesterol was substituted by LDL-c
concentration in linear regression models, the same
trend and statistical outcomes were found concerning
tertiles of GPx activity or nail selenium levels (data not
shown). Since we measured the GPx activity and sele-
nium nail levels in fewer number of participants (n =
100 and n = 135, respectively), we a posteriori tested the
statistical power of the analyses, which was satisfactory
for both outcomes (1-b = 0.81 and 1-b = 0.96,
respectively).
Finally, the trend of ox-LDL concentrations into ter-

tiles of uric acid was also tested in linear regression
model adjusted for gender, age, smoking status, physical
activity, truncal fat, and total cholesterol concentrations.
Despite the trend was positive, it did not achieve statisti-
cal significance (P > 0.05).

Discussion
In this cross-sectional study, ox-LDL concentrations
were positively associated with GPx activity and inver-
sely associated with nail selenium levels, both recog-
nized antioxidant markers, in healthy young adults.
GPx is an important antioxidant enzyme, which has

been used as oxidative stress marker concerning to an
altered antioxidant balance [4,33]. Previous studies have

Figure 1 Plasma ox-LDL concentrations (n = 100), according to
tertiles of GPx activity. GPx activity into tertiles, 1st: <334, n = 33;
2nd: 334-611, n = 34; 3rd: ≥611 nmol/[mL/min], n = 33. Data are
means and 95% CIs. P for trend, from linear regression models
adjusted for gender, age, smoking status, physical activity, truncal
fat, uric acid and total cholesterol concentrations.

Figure 2 Plasma ox-LDL concentrations (n = 135), according to
tertiles of nail selenium levels. Nail selenium levels into tertiles,
1st: <330, n = 45; 2nd: 330-430, n = 45; 3rd: ≥430 ng/g of nail, n =
45. Data are means and 95% CIs. P for trend, from linear regression
models adjusted for gender, age, smoking status, physical activity,
truncal fat, uric acid and total cholesterol concentrations.

Table 3 Multivariate linear regression analysis with ox-
LDL concentrations (U/L) as a dependent variable
(n = 160)*

Predictors of ox-LDL b coefficient (95% CI) P R2

BMI (kg/m2) 1.206 (-0.347 to 2.760) 0.127 0.008

Truncal fat (%) 0.489 (-0.193 to 1.172) 0.158 0.006

Systolic blood pressure
(mmHg)

4.749 (-0.127 to 9.626) 0.056 0.016

Total cholesterol (mg/dL) 0.228 (0.086 to 0.370) 0.001 0.054

LDL-c (mg/dL) 0.216 (0.048 to 0.384) 0.012 0.033

Triacylglycerol (mg/dL) 0.082 (-0.021 to 0.185) 0.118 0.009

Total cholesterol-to-HDL-c
ratio**

15.787 (10.776 to 20.798) <0.001 0.198

Uric acid (mg/dL) 4.465 (0.342 to 8.588) 0.034 0.022

GPx activity (nmol/[mL/min])† 0.029 (0.008 to 0.050) 0.007 0.062

Selenium (ng/g of nail)§ -0.063 (-0.119 to -0.007) 0.025 0.029

Copper (μg/g of nail)§ -0.573 (-1.322 to 0.176) 0.132 0.009

Ox-LDL, oxidized low density lipoprotein; BMI, body mass index; ST, skinfold
thickness; LDL-c, low-density lipoprotein cholesterol; HDL-c, high-density
lipoprotein cholesterol,

*Multivariate linear regressions, adjusted for gender, age, smoking, and
physical activity.

**n = 153, † n = 100, §n = 135.
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supported the positive predictive effect of GPx activity
on circulating levels of ox-LDL [16,18]. Experimental
studies showed an increase in the activity of this enzyme
in endothelial cells or macrophages treated with ox-
LDL, as a protective mechanism against the increased
generation of reactive oxygen species induced by ox-
LDL [17,18], while other observational study reported
also a positive association between GPx activity and ox-
LDL in healthy young Spanish adults, despite it was not
statistically significant [16]. Thus, our findings are in
agreement to the hypothesis that a positive association
between GPx activity and ox-LDL might constitute a
consequence of the high ox-LDL concentrations, being
an adaptive mechanism to prevent further oxidative
imbalance.
In turn, our study demonstrated, apparently for the

first time, the negative association of nail selenium levels
and ox-LDL concentrations, whereas an increase of 1 ng
of selenium per g of nail was associated with a decrease
of 0.06 U/L in ox-LDL. Selenium is an essential antioxi-
dant mineral, whereas its increased consumption has
been inversely associated with pro-inflammatory mar-
kers [34,35] as well as with lower hypercholesterolemia
[36,37] and lower LDL susceptibility to oxidation [38].
In addition, increased nail selenium levels also have
been related to lower pro-inflammatory marker concen-
trations, such as complement C3 factor, asymmetric
dimethylarginine, and interleukin-18 in young healthy
adults [13,14,19]. According to previous and onset find-
ings, it could speculate an inverse relationship between
dietary selenium intake and the oxidation of LDL-c.
Moreover, our finding reinforces the measurement of
this mineral in the nail as a promising alternative to
assess the relationship of dietary selenium and pro-
inflammatory and oxidative stress markers, since it is a
good indicator of dietary selenium intake [39], which in
turn, has a limited assessment by the scarcity of infor-
mation in the tables of food composition and by influ-
ence of several factor on its bioavailability [40].
Furthermore, ox-LDL was positively associated with

other lipid biomarkers, such as total cholesterol and
LDL-c, in accordance to previous studies [7,8,16,41,42].
Interestingly, the participants of this study are young
adults predominantly normolipidemic (total cholesterol
<200 mg/dL and LDL-c <160 mg/dL represent 92.5 and
97.5% of the sample, respectively). Thus, it is note-
worthy that the increase of 1 mg/dL in serum total cho-
lesterol or in LDL-c as well as of one unit in the total
cholesterol-to-HDL-c ratio was predictors of an incre-
ment of 0.22; 12.21 and 15.78 U/L in ox-LDL concen-
trations, respectively. Thus, despite the cross-sectional
nature of this study, we could speculate that the positive
association between lipid profile and ox-LDL - a recog-
nized oxidative stress marker - occurs early and could

explain, at least in the part, the time-course dependent
relationships between oxidative stress and chronic disor-
ders in middle-aged and older subjects.
Other relevant outcome of this study was the relation-

ship between uric acid and ox-LDL concentrations,
independently of gender, age, smoking status, physical
activity, whereas the addition of 1 mg/dL in serum uric
acid was associated with the increase of plasma ox-LDL
in 4.4 U/L. In this sense, hyperuricemia (≥ 7 mg/dL) has
been considered a risk factor for cardiovascular diseases
[9,10,43] and a positive predictor of the occurrence of
small and dense LDL-c, more susceptible to oxidation
[12]. Moreover, uric acid concentration higher than 4
mg/dL appears to have a pro-oxidant redox effect [11],
in addition to its synthesis can lead to the generation of
superoxide anion radicals, hydroxyl and hydrogen perox-
ide [44]. The results reported by other authors suggest
the role of uric acid in the relationship between oxida-
tive stress and cardiovascular diseases, while the finding
of this study might establish a new link of uric acid with
oxidative conditions. However, the association between
uric acid and ox-LDL was attenuated after adjusting for
truncal fat and cholesterol total concentrations, indicat-
ing that this relation could be conditioned by other oxi-
dative and metabolic-related risk factors, as previously
postulated by other authors [11,43].
Regarding the association of ox-LDL concentrations

with anthropometric and body fat distribution data, BMI
was significantly higher in those individuals with high
ox-LDL, while truncal was significantly positively asso-
ciated with ox-LDL concentrations. However, both vari-
ables were not able to predict to ox-LDL
concentrations, which is not in agreement with other
studies [6-8]. In fact, the body fat distribution, charac-
terized by central fat accumulation, has been associated
with increasing in pro-inflammatory and oxidative stress
markers [6,23,45]. In this context, the lack of associa-
tions between concentrations of ox-LDL and adiposity
indicators in this study could be explained by the predo-
minance of normal-weight individuals (BMI <25.0 kg/
m2; 85% of the sample) or by relatively small size of
sample.
Moreover, ox-LDL was not related to glucose biomar-

kers in young adults. On one hand, some studies have
demonstrated the association of hyperglycemia and
hyperinsulinemia with increased circulating levels of ox-
LDL [7,41,46]. On the other hand, other authors found
no significant correlations between circulating levels of
ox-LDL and glucose biomarkers [42,47]. Likely, differ-
ences in the study sample, such as gender distribution,
age, obesity degree or body fat distribution, might influ-
ence the outcomes [4].
Our study had certain limitations. The cross-sectional

design did not clearly elucidate the cause-and-effect on
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the results. In addition, the residual confounders that
may affect the oxidization of lipoproteins, but were not
included in our present study (i.e. dietary factors),
should also be considered. Finally, further replication in
independent and larger samples would be convenient
for a future translational application at a population
level, although the sample size is adequate from the
standpoint of the initial association discovery, with a
satisfactory statistical power in the most relevant ana-
lyses of this work.

Conclusions
In summary, ox-LDL concentrations were positively
associated with specific lipid biomarkers (total choles-
terol, LDL-c and total cholesterol-to-HDL-c ratio), GPx
activity and uric acid concentration, and inversely asso-
ciated with nail selenium levels, independent of different
covariates, in young healthy adults. These findings
jointly suggest the early and complex relationships
between lipid profile and redox status balance, measured
through oxidative and antioxidant markers.

Additional material

Additional file 1: Table S1: Spearman bivariate correlation between
anthropometric data and ox-LDL concentrations (n = 160).
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