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Dual functions of Insig proteins in cholesterol
homeostasis
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Abstract

The molecular mechanism of how cells maintain cholesterol homeostasis has become clearer for the understanding
of complicated association between sterol regulatory element-binding proteins (SREBPs), SREBP cleavage-activating
protein (SCAP), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) and Insuin induced-genes
(Insigs). The pioneering researches suggested that SREBP activated the transcription of genes encoding HMG-CoA
reductase and all of the other enzymes involved in the synthesis of cholesterol and lipids. However, SREBPs can not
exert their activities alone, they must form a complex with another protein, SCAP in the endoplasmic reticulum (ER)
and translocate to Golgi. Insigs are sensors and mediators that regulate cholesterol homeostasis through binding to
SCAP and HMG-CoA reductase in diverse tissues such as adipose tissue and liver, as well as the cultured cells. In this
article, we aim to review on the dual functions of Insig protein family in cholesterol homeostasis.
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Introduction
Cholesterol is a vital component of cell membranes without
which the cell can not function, and it is also the precursor
to all steroid hormones, bile acids, and oxysterols, which by
themselves are important regulatory molecules in many
metabolic pathways. However, its over-accumulation can
clog arteries and cause heart disease [1]. So, how to keep
the balance of cholesterol metabolism is very important
and it has driven many researchers to carry out compre-
hensive investigations. And the understanding of chol-
esterol regulation has come a long way from the initial
recognition of cholesterol feedback inhibition of its
rate-limiting synthetic enzyme, HMG-CoA reductase
through the role of lipoproteins in maintaining plasma
cholesterol levels, to the recent discovery of regulation
of cholesterol synthesis via SREBP pathways.
Four members of the SREBP family, SREBP-1a,

SREBP-1c, SREBP-2 and SREBP-2gc, have been identified
[2-5]. SREBPs are a family of transcription factors that have
independently been characterized as mediators of cellular
cholesterol homeostasis [6,7] and as regulators of fatty acid
biosynthesis and uptake [8-10]. It has been discovered that
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SREBP-1a and SREBP-1c control over fatty acid synthesis
[11-13], whereas SREBP-2 favors cholesterol synthesis [14].
SREBP-1a induces enzymes for fatty acid elongation and
desaturation. Therefore, over-expression of SREBP-1a in
adult rats results mainly in over-stimulation of fatty acid
synthesis [15-17]. SREBP-1c is involved in the regulation of
adipogenesis [18,19], but in vitro it does not stimulate
cholesterol synthesis [20,21]. SREBP-1c also triggers the
expression of genes of enzymes required for fatty acid
elongation [17], and of glycerol 3-phosphate acyltransferase
required for triglyceride and phospholipid synthesis [22].
SREBP-2 mainly controls the expression of genes involved
in cholesterologenesis [23,24], its over-expression can trig-
ger all 12 enzymes of the cholesterol biosynthetic pathway,
and induce the cholesterol synthesis markedly [14].
SREBP-2gc, a shortened version of the N-terminal portion
of SREBP-2, is not subject to feedback control by sterols,
and its expression remains restricted to male germ cells,
where it regulates the transcription of spermatogenic genes
in a cell- and stage-specific manner [4,5]. Considered
together, available experimental data indicate that SREBPs
especially SREBP-2 mediate cholesterol metabolism, but
additional factors are required to activate this SREBP
pathways. As mentioned firstly, SCAP is a potent activator
of SREBP pathways in cholesterol synthesis. In the presence
of high cellular sterol levels, SCAP confines SREBP to the
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ER. With low sterol concentrations, SCAP escorts SREBP
from ER to Golgi where SREBP undergoes two proteolytic
cleavage steps to release the mature, biologically active tran-
scription factor, nuclear SREBP (nSREBP). Then nSREBP
translocates to the nucleus and binds to sterol response ele-
ments (SRE) in the promoter/enhancer regions of target
genes [20].
More recently, Insigs, including Insig-1 and Insig-2, two

ER members of Insig proteins family, are discovered and
regarded as crucial roles in cholesterol metabolism [25,26].
Insigs are shown to cooperate with sterols to inhibit exit of
the SCAP/SREBP complex from the ER to the Golgi
[27-29]. Moreover, Insigs negatively regulates HMG-COA
reductase transcription by suppressing activation of the ER
membrane bound transcription factor SREBP [30,31].
Another investigation further demonstrates that in Insig-1
and Insig-2 knockout mice liver, cholesterol and trigly-
cerides are over-accumulated [32]. Thereby, Insigs appear
to mediate reaction of cholesterol synthesis through their
sterol-dependent binding to the SCAP and HMG-CoA
reductase proteins. For their binding activities, Insigs
play an important role in cholesterol homeostasis in
different tissues and in cultured animal cells, and make
the mechanism of cholesterol homeostasis more trans-
parent. We ever published a review article to discuss the
discovery, expression, structure, regulation and gene
polymorphisms of Insigs, and their deficiency with
diseases [33]. In this review, we mainly focus on how
Insigs exert their dual functions in cholesterol homeostasis
and what is the molecular mechanism in the cholesterol
regulatory system.

Insigs and their dual functions in cholesterol Homeostasis
Special regions in SCAP, HMG-CoA reductase and Insigs
Mammalian cell cholesterol levels are controlled by
coordinated regulation of the proteins SCAP and HMG-
CoA reductase [34], and these functions are activated
through the bindings to Insigs [26,28]. The results in
mutant CHO cells demonstrate an absolute requirement
for Insig proteins in the regulatory system that mediates
lipid homeostasis in animal cells [35]. Both Insig-binding
proteins have a similar organization: an N-terminal
polytopic membrane domain containing eight membrane-
spanning segments [36], and a long hydrophilic C-terminal
extension that projects into the cytosol [36,37]. In SCAP,
this extension is composed of multiple WD-repeat domains
that form propeller-like structures binding to SREBPs
[38,39] and also coat proteins clustering SCAP/SREBP
complexes into CopII vesicles that bud from the ER [40]. In
HMG-CoA reductase, the globular cytosolic domain
contains all of the catalytic activities of the enzyme [41,42].
In both cases, the polytopic membrane domain is the site
of sterol regulation [43,44], and the C terminal extensions
can be deleted without abolishing sterol-dependent binding
to Insigs [28,30]. The Insig binding to SCAP and reductase
requires the tetrapeptide sequence YIYF in the second
membrane-spanning helix of reductase and in the
sterol-sensing domain (SSD) of SCAP [45-47]. SCAP,
acting through its SSD, mediates feedback regulation of
cholesterol synthesis. Point mutations within the SSD of
SCAP and reductase prevent their association with Insigs,
thereby abrogating sterol-mediated ER retention of SCAP-
SREBP and sterol-induced ubiquitination/degradation of
reductase [45,48,49].
The sterol response elements, 380 base pairs upstream of

the transcriptional start site in Insig-1 [50] and a 350 bp re-
gion upstream of the transcription start site in human liver
Insig-2 gene were found to be regulated by transcriptionally
active SREBP [51]. Many other studies identified that
crucial amino acid residues in Insig-1 and Insig-2 were
required for their function in binding to SCAP and HMG-
CoA reductase in mammalian cells. Gong et al. (2006)
reported that the conserved Asp-205 in Insig-1 and the cor-
responding Asp-149 in Insig-2, which abuts the fourth
transmembrane helix at the cytosolic side of the ER mem-
brane, was essential for cholesterol homeostasis [52]. The
intramembrane glycine-39 localizes to the first membrane-
spanning segment of Insig-2 and Insig-1 was regarded as a
key residue for normal sterol regulation in animal cells [53].
When these amino acids were mutated, the mutant Insig
proteins lost the ability to suppress the cleavage of
SCAP and to accelerate sterol-stimulated degradation of
HMG-COA reductase.

Insigs bind to SCAP
The synthesis of cholesterol and other membrane lipids in
mammalian cells is regulated by the controlled transport of
SREBPs from the ER to the Golgi complex. SREBPs are
membrane bound transcription factors that activate more
than a score of genes encoding enzymes of lipid synthesis.
Immediately after their translation on ER membranes,
SREBPs bind to SCAP, a polytopic membrane protein that
serves both an escort for SREBPs [38,39] and a sensor of
sterols [46]. Insig proteins are essential elements of this
SREBP pathway, which not only reduce the concentra-
tion of cholesterol needed in vitro to produce the
conformational change in SCAP, but also enhance the
conformational change in SCAP that occurs upon addition
of certain cationic amphiphiles, such as chlorpromazine,
trifluoperazine, and imipramine, which mimic the effect of
cholesterol [54]. The conformational change involves
arginine-503, which resides in loop6 between membrane-
spanning helices 6 and 7. Therefore, sterols bind directly to
SCAP and alter the conformation of loop 6, thereby causing
SCAP to bind to Insig [54,55]. Insigs exert their functions
through the binding to SCAP, the results in mutant CHO
cells demonstrate it. When SCAP bears mutations, its
binding to Insig is disrupted, and ER retention does not
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occur [28,56], SREBPs cannot move to the Golgi, choles-
terol synthesis does not occur, and the cells require
exogenous cholesterol for growth [57,58].
Further studies give us a more apparent molecular

metabolism for SREBP pathway in vitro and in vivo. Co-
immunoprecipitation and native gel electrophoresis
experiments demonstrate that SCAP binds to Insigs only
in the presence of sterols, either cholesterol or 25-HC
[28,59]. As illustrated in Figure 1, when sterols over-
accumulate in cells, SCAP is retained in the ER, SREBP
cannot be processed, and the synthesis of cholesterol
declines [60,61], because Insig binds to the membrane
domain of SCAP, thereby retaining the SREBP-SCAP
complex in the ER and blocking the proteolytic activation
of SREBP [31]. In the absence of sterols, SCAP does not
interact with Insig proteins. As a result, SCAP escorts the
SREBPs into budding vesicles that reach the Golgi complex,
where it is cleaved and thus activates to transcribe genes
encoding cholesterol biosynthetic enzymes and the LDL
receptor [27,62]. Studies in tissue culture show that mutant
SCAP is resistant to inhibition by sterols. Cells that express
a single copy of this mutant gene overproduce cholesterol
[48]. To learn whether SCAP performs the same function
in liver as in cultured cells, Korn et al. (1998) used trans-
genic mice that expressed a mutant liver SCAP with a
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Figure 1 Feedback control of cholesterol synthesis through binding t
cholesterol, oxysterols and lanosterol. Cholesterol binding to SCAP causes a
cholesterol inhibits reductase activity by suppressing the activation of SREB
degradation and by suppressing the activation of SREBPs. Lanosterol down
single amino acid substitution in the SSD and found that
levels of nSREBP-1 and nSREBP-2 were elevated to induce
the increase of the expression of all SREBP target genes
thus stimulating cholesterol and fatty acid synthesis and
causing a marked accumulation of hepatic cholesterol and
triglycerides [63]. These models in vivo and in vitro
provide strong evidence that Insigs’ binding to SCAP
and SCAP activity is normally under partial inhibition by
endogenous sterols. Elucidating this mechanism will be
fundamental to understand the molecular basis of choles-
terol homeostasis.
Insigs bind to HMG-CoA reductase
HMG-CoA reductase catalyzes the rate-limiting step in
the synthesis of cholesterol [64] (Figure 2). A key
mechanism for maintaining cholesterol homeostasis in
mammalian cells involves modulating the stability
of HMG-CoA reductase [37,41,43] through a complex,
multivalent regulatory system mediated by mevalonate-
derived products [64,65]. Part of this regulatory system
involves sterol-regulated ubiquitination and degradation
[66-68], which is mediated by the reductase membrane
domain and leads to ER-associated degradation of the
enzyme [30].
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Figure 2 Dual functions of Insigs in cholesterol metabolism.
Insig proteins exert their dual functions in cholesterol metabolism
through binding to SCAP or HMG-CoA reductase. When sterols are
over-accumulation, Insigs’ binding to SCAP prevents delivery of
SCAP/SREBP complex to the Golgi. For this reason, transcriptional
genes are needed for uptake and synthesis of cholesterol, fatty acids,
phospholipids and triglycerides decline. Insigs’ binding to HMG-CoA
reductase leads to the ubiquitination/degradation of the reductase.
The degradation of HMG-CoA reductase inhibits cholesterol
synthesis.
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The ER enzyme HMG-CoA reductase produces
mevalonate, which is converted to sterols and to other
products, including geranylgeraniol groups attached to
proteins [64]. Similar to other proteins of the mevalonate
pathway [69], HMG-CoA reductase is controlled also at the
transcriptional level by SREBP-2, which binds to the
promoter of the HMG-CoA reductase gene and activates
the transcription when demands for mevalonate-derived
products increase [70]. Sever et al. also take investigations
in animal cells to demonstrate that Insig-1 and Insig-2
accelerate degradation of reductase. In mutant cells lacking
Insig-1, sterols fail to stimulate sterol-dependent ubiquitina-
tion and degradation of reductase [30,71]. Through the use
of RNA interference, the combined knockdown of Insig-1
and Insig-2 abolishes sterol-induced ubiquitination of
endogenous reductase, an obligatory reaction in accelerated
degradation of the enzyme [45]. And sterol-accelerated
degradation of reductase is inhibited when reductase is
over-expressed in CHO cells by transfection, while over-
expression of Insig-1 or Insig-2 can restore degradation of
reductase [30]. Taken the results together, in animal cells,
Insigs act as a central regulator of cellular cholesterol
homeostasis by controlling activity of HMG-CoA reductase
in cholesterol synthesis. For completing their functions,
reductase and Insigs must dislocate to the cytosol and form
a tightly bound complex. Dislocation of HMG-COA reduc-
tase and Insigs requires metabolic energy and involves the
AAA-ATPase p97/VCP [72]. Then HMG-CoA reductase
binding to Insigs leads to the ubiquitination of reductase by
an Insig-bound ubiquitin ligase, gp78 [68]. RNA
interference studies reveal that the degradation of HMG-
CoA reductase requires the Drosophila Hrd1 ubiquitin lig-
ase and several other proteins in Drosophila S2 cells [73].
Insigs accelerate the degradation of HMG-COA reductase
and suppress their transcriptions through the SREBP-SCAP
pathway [27]. However, in the fission yeast, homologs of
Insig, HMG-COA reductase, SREBP and SCAP, called ins1,
hmg1, sre1, and scp1, Ins1 is dedicated to regulation of
Hmg1, but not the Sre1-Scp1 pathway. Insig regulates
sterol synthesis by a different mechanism than in mamma-
lian cells [74].

The ratio of Insig to its two targets is a crucial requirement
for cholesterol metabolism
Studies have shown that the regulatory actions of Insigs in
cholesterol metabolism are critically dependent on the
ratios of Insig proteins to their targets SCAP and reductase
[28,30]. Over-expression of SCAP or reductase through
transfection saturates endogenous Insigs, and regulation no
longer occurs unless Insigs are also over-expressed in
mutant CHO cell line [49]. Defective regulation also occurs
when SCAP is over-expressed to such a high level that Insig
becomes saturated. Thus, a high ratio of SCAP to Insig
diminishes sterol sensitivity of SREBP processing.
Conversely, as Insig levels rise, SREBP processing is
inhibited by lower concentrations of sterols [28]. The
results above all highlight the importance of SCAP-Insig
ratios in normal sterol-regulated processing of SREBPs in
cultured cells.

Insigs are a key point in product feedback inhibition of
cholesterol synthesis
End-product feedback inhibition of cholesterol synthesis
was first demonstrated in living animals by Schoenheimer
72 years ago [75]. For 30 years, using in vitro and in vivo
assays, scientists have known that the cholesterol regulatory
system is controlled not only by the end product
cholesterol, but also by oxysterols [76,77], delta- and
gamma-tocotrienols [78], and methylated sterols such
as lanosterols [79]. While the mechanism is unknown,
the current results provide a clear understanding of
how cells coordinate this function (Figure 1). Because
Cholesterol and oxysterols both induce the SCAP Insig
interaction [59], thereby inhibiting the transport of
SREBPs from the endoplasmic reticulum to the Golgi [80],
and blocking the cholesterol synthesis [29,61]. But they do
it by two different mechanisms: 1) cholesterol acts by
binding to SCAP, thereby causing a conformational change
that induces SCAP to bind to Insig [59,81], the conform-
ational change can be monitored by a change in the tryptic
cleavage pattern of SCAP [82]; 2) oxysterols act by binding
to Insigs, causing Insigs to bind to SCAP [83]. And Insigs
are regarded as oxysterol-binding proteins, explaining the
long-known ability of oxysterols to inhibit cholesterol
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synthesis in animal cells [83]. However, Lanosterol which
has been implicated as a rate-limiting step in cholesterol
synthesis [84,85], delta- and gamma-tocotrienols [78]
accelerate ubiquitination and degradation of HMG-COA
reductase without effect on ER to Golgi transport of SCAP/
SREBP complex, which contributes to feedback inhibition
of synthesis of cholesterol and non-sterol isoprenoids, and
this activity requires Insig-1 and Insig-2 [79]. Sterols also
stimulate degradation of HMG-COA reductase in
Drosophila S2 cells, but only when mammalian Insig-1 or
Insig-2 is co-expressed [73]. We conclude that lanosterol,
delta- and gamma-tocotrienols inhibit their own synthesis
through the down-regulation of reductase, thus inhibiting
the sterol pathway and the specificity of lanosterol for re-
ductase may permit the identification of proteins selectively
recruited to the reductase-Insig complex. So, Insigs play a
critical role in regulating cholesterol concentrations
through end-product, oxysterols and lanosterols feedback
inhibition in the cells, and avoiding the toxic over-
accumulation of cholesterol.

Insigs are associated with hypercholesterolaemia
Hypercholesterolaemia is a syndrome for the over-
accumulation of cholesterol whose excessive amounts in
cells can destroy membrane function, precipitate as crystals
which will kill the cell or result in atherosclerotic damage if
spread to blood [1]. Several studies have found that Insig
genetic polymorphisms or deficiency are associated with
hypercholesterolaemia. One particularly interesting single
nucleotide polymorphism (SNP) which is consistent with
either G or C, located 10 kb upstream of INSIG-2 was
reported to have the strongest association with hyperchol-
esterolaemia [86]. Oki et al. demonstrated that the SNP
upstream of INSIG-2 was associated with the prevalence of
hypercholesterolaemia but not with obesity in Japanese
American women. So, the CC genotype of the SNP is
suggested to be a protective genetic factor against the pro-
gression of hypercholesterolaemia on a high-fat diet [86].
The deficiency in both Insig-1 and Insig-2 causes the

level of HMG-CoA reductase protein to be elevated.
Mutant hamster cells that are deficient in Insig-1 but not
Insig-2 show partial defects in regulation of reductase
degradation and SREBP processing [71]. Another finding
demonstrates that Insig deficiency is associated with con-
ditions such as hair and skin defects, facial development
and ear structure abnormalities [87], and clefting
syndrome in mice [88]. For example, Insig deficiency in
skin or an increase in HMG-CoA reductase protein causes
the accumulation of cholesterol precursors, and then the
hypercholesterolaemia impairs normal hair and skin
development. Topical treatment of Epi-Insig-DKO mice
with simvastatin or lovastatin, inhibitors of reductase,
reduces sterol precursors in skin and corrects the hair and
skin defects [87], ameliorates the clefting syndrome [88].
The advances in our understanding of the molecular
mechanism of Insigs may ultimately lead to find novel
strategies for the treatment of hypercholesterolaemia and
other diseases. The other investigations indicate that
SREBPs regulate the expression of the LDL receptor
which enables the hepatocytes to remove cholesterol
contained in LDL particles from the bloodstream. High
cholesterol prevents maturation of SREBPs and cuts off
cholesterol and LDL receptor synthesis, resulting in high
blood cholesterol and the imminent danger of atheros-
clerotic plaque formation. But drugs which block
HMGCoA reductase are the most effective way to inter-
rupt the vicious circle [64], and a new method to treat the
syndrome of hypercholesterolaemia.

Conclusions
We have investigated the functions of peptides in lipid
metabolism for many years. Our studies in adipocytes find
that peptides such as Obestatin and Ghrelin participate in
the regulation of lipometabolism, and Insigs also play an
important role in cholesterol metabolism (unpublished
data). The cholesterol regulatory system adjusts cholesterol
metabolism so as to maintain a constant level of membrane
cholesterol. By adjusting these processes, the tissues can ac-
quire additional cholesterol during periods of rapid growth,
and they can prevent toxic accumulation of cholesterol
when cholesterol is excess. The cellular mechanisms of this
cholesterol regulatory system become clearer owning to the
discovery of Insigs, but there are still many questions need
us to further answer: 1) How does cholesterol-dependent
binding of SCAP to Insigs prevent COPII binding? 2) What
are the main functional differences between Insig-1 and
Insig-2? 3) How do insulin and other factors affect differen-
tial regulation of Insigs? 4) How about the functions and
the relationship of Insig-2a and Insig-2b? Answers to these
questions should reveal new functions of Insigs and their
signal transduction mechanism in other scientific areas.
Medicinal manipulation of the Insigs-binding system is
expected to prove highly beneficial in the management of
cholesterol-related disease.
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