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Oligofructose supplementation during pregnancy
and lactation impairs offspring development and
alters the intestinal properties of 21-d-old pups
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Abstract

Background: Previously, we showed that the intake of trans fatty acids during pregnancy and lactation triggers a
pro-inflammatory status in the offspring. On the other hand, prebiotics can alter the intestinal environment, reducing
serum lipopolysaccharides (LPS) concentrations. This study evaluated the effect of the oligofructose 10% diet
supplementation in the presence or absence of hydrogenated vegetable fat during pregnancy and lactation on
the development, endotoxemia and bacterial composition of 21-d-old offspring.

Methods: On the first day of pregnancy rats were divided into four groups: control diet (C), control diet supplemented
with 10% oligofructose (CF), diet enriched with hydrogenated vegetable fat, rich in TFA (T) or diet enriched with
hydrogenated vegetable fat supplemented with 10% oligofructose (TF). Diets were maintained during pregnancy and
lactation. At birth, 7th, 14th and 21th, pups were weighed and length was measured. Serum concentrations of LPS and
free fatty acids (FFA) were performed by specific kits. Bacterial DNA present in faeces was determined by real-time PCR.
Data were expressed as mean ± standard error of the mean and the statistical analysis was realized by ANOVA two-way
and ANOVA for repeated measures. p < 0.05 was considered significant.

Results: We observed that the oligofructose (10%) supplementation during pregnancy and lactation reduced body
weight, body weight gain, length and serum FFA in the CF and TF group compared to C and T group respectively, of
the 21-day-old offspring, accompanied by an increase in serum LPS and genomic DNA levels of lactobacillus spp. on
faeces of the CF group in relation to C group.

Conclusion: In conclusion, dam’s diet supplementation with 10% of oligofructose during pregnancy and lactation,
independent of addition with hydrogenated vegetable fat, harms the offspring development, alters the bacterial
composition and increases the serum concentrations of lipopolysaccharides in 21d-old pups.
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Background
Maternal nutrition during pregnancy and lactation plays
a crucial role in the development foetal and newborn
until adulthood, possibly influencing foetal “programming”
by epigenetic modifications that can alter gene expression
and permanently affect the structure and function of sev-
eral organs and tissues, thereby inducing phenotypic
changes [1-4]. Recently, the concept of foetal “program-
ming” has been applied to examine possible beneficial or
adverse influences of the maternal nutritional supply to
the foetus and the newborn until later life [5].
During critical periods of foetal development, inad-

equate maternal nutrition may alter the physiologic and
morphologic development of the foetus and the new-
born, increasing the individual’s susceptibility to develop
metabolic diseases in adulthood, such as cardiovascular
disease, diabetes and hypertension [1-4]. A positive cor-
relation between the development of metabolic disease
and the production of pro-inflammatory cytokines is
known [6,7].
Previous studies from our laboratory demonstrated

that the maternal intake of hydrogenated vegetable fats
that are rich in trans fatty acids (TFA) during pregnancy
and lactation triggers changes in the lipid metabolism
and decreases serum levels of adiponectin in 21-d-old
pups. These findings were accompanied by increases in
TNF-α gene expression and the protein expression of
TRAF-6 (TNF receptor-associated factor 6) in the adi-
pose tissue [8,9]. Furthermore, the authors reported that
the consumption of TFA during lactation induces the de-
velopment of metabolic disorders, including insulin resist-
ance and the increased gene expression of plasminogen
activator inhibitor type-1 (PAI-1) in the adipose tissue of
the adult offspring [10,11]. PAI-1 is a pro-inflammatory
adipokine produced mainly, in the visceral adipose tissue
and vascular endothelium under influence of TNF-α, in-
sulin, free fatty acids (FFAs) and glucocorticoids [12,13].
Elevated PAI-1 serum concentrations (eg. in obesity) are
associated with pro-thrombotic effects, which increase the
risk for cardiovascular disease [13,14].
Complementary results by Pimentel et al. showed that

the increase in hypothalamic concentrations of IL-6,
TNF-α and IL1-β contributed to the hypothalamus in-
flammation and impaired satiety control of 90-d-old
pups from dams fed a diet rich in TFA during pregnancy
and lactation [15].
On the other hand, several studies in humans and ani-

mals suggest that prebiotics and dietary fibres, such
as oligofructose (OF), fructooligosaccharides (FOS) and
inulin, can influence the glucose and lipid metabolism,
specifically by reducing the serum concentrations of glu-
cose, triacylglycerol (TG) and cholesterol [16-19]. OF,
FOS and inulin are members of the inulin-type fructans
group and are naturally present in many fruits and
vegetables, including onions, bananas, artichokes, garlic
and leeks [20-22]. Particularly, OF is a combination of
“non-digestible” oligosaccharides commonly obtained by
the partial enzymatic hydrolysis of chicory root inulin
and is linked by β (2→ 1) linkages of fructosyl units,
sometimes ending with a glucosyl unit [16,20,21]. OF
and FOS are considered synonyms for inulin-type fruc-
tans with a maximum degree of polymerisation (DP) of
less than 10 [16].
Furthermore, it is known that the human gastrointes-

tinal tract enzymes only recognise α-glycosidic bonds;
therefore OF and other inulin-type fructans that bear a β
configuration are hydrolysed and fermented by colonic
microbiota, with health benefits to the host [20,22-25].
Thus, inulin-type fructans are considered dietary fibres
and prebiotics [20,23,26].
Mammal’s intestine has a microbial community con-

sisting for approximately 1012 bacteria per g of intes-
tinal content and its composition may vary according
to some factors, such as: dietary nutrients, diseases and
antibiotics therapy [23,27,28]. The mammal’s intestinal
microbiota is composed for bacteria belonging to three
phyla: gram-negative Bacteroidetes(eg Bacteroides),
gram-positive Actinobacteria (eg Bifidobacteria) and
gram-positive Firmicutes (eg. Lactobacillus, Clostridium,
Bacillus and Mycoplasma) [27,29]. The phyla Firmicutes
and Bacteroidetes are numerically dominant in the human
intestine [27]. Kim et al. demonstrated an increase of
Firmicutes, accompanied by a decrease of Bacteroi-
detes and Bifidobacteria in mice fed high-fat diet for 8
weeks [30].
Hyperlipidic diets, especially those rich in saturated

fatty acid, increase endotoxemia through the transloca-
tion of lipopolysaccharides (LPS) found in the external
cellular membranes of gram-negative intestinal bacteria
[31]. LPS-induced TLR-4 (Toll-like receptor 4) activa-
tion contributes to systemic inflammation by inducing
the secretion of pro-inflammatory cytokines [32]. Like-
wise, elevated plasma concentrations of FFAs are capable
of utilising the TLR-4 pathway and activating the NF-kB
pathway to induce pro-inflammatory cytokine expression
[33-35]. In contrast, end products of prebiotic fermenta-
tion by the colonic bacteria, especially short chain fatty
acids (SCFA - acetate, propionate and butyrate), can
alter the intestinal environment through the decrease of
colonic pH and the alteration of the bacterial population
(mainly bifidobacteria and lactobacillus) and intestinal
permeability, thereby reducing the migration of LPS to
blood circulation [22,32,36].
Maternal intake of prebiotics and dietary fibres during

pregnancy and lactation is considered important and
beneficial for the mother and the offspring, from birth
through later life. In particular, butyrate, one of the end
products of oligosaccharide fermentation, is a histone



Table 1 Composition of the control diet, control diet
supplemented with oligofructose, diet enriched with
trans fatty acids and diet enriched with trans fatty acids
supplemented with oligofructose according to AIN-93

Diet (g/100 g)

Ingredient C CF T TF

Casein* 20.0 20.0 20.0 20.0

L-cystine† 0.3 0.3 0.3 0.3

Cornstarch† 62.0 52.0 62.0 52.0

Soybean oil‡ 8.0 8.0 1.0 1.0

Hydrogenated vegetablefat$ - - 7.0 7.0

Butylhydroquinone† 0.0014 0.0014 0.0014 0.0014

Mineral mixture§ 3.5 3.5 3.5 3.5

Vitamin mixture# 1.0 1.0 1.0 1.0

Cellulose† 5.0 5.0 5.0 5.0

Choline bitartrate† 0.25 0.25 0.25 0.25

Oligofructose£ - 10.0 - 10.0

Energy (kcal/g) 4.0 4.0 4.0 4.0

*Casein was obtained from Labsynth, São Paulo, Brazil.
†L-cystine, cornstarch, butylhydroquinone, cellulose and choline bitartrate
were obtained from Viafarma, São Paulo, Brazil.
‡Oil was supplied from soybean (Lisa/Ind. Brazil).
$Hydrogenated vegetable fat was supplied from Unilever, São Paulo, Brazil.
§Mineral mix 9 mg/kg diet): calcium, 5000; phosphorus, 1561; potassium, 3600;
sodium, 1019; chloride, 1571; sulfur, 300; magnesium, 507; iron, 35; copper,
6.0; manganese, 10.0; zinc, 30.0; chromium, 1.0; iodine 0.2; selenium, 0.15;
fluoride, 1.00; boron, 0.50; molybdenum, 0.15; silicon, 5.0; nickel, 0.5; lithium,
0.1; vanadium, 0.1 (AIN-93G, mineral mix, Rhoster, Brazil).
#Vitamin mix (mg/kg diet): thiamin HCL, 6.0, riboflavin, 6.0; pyridoxine HCL 7.0;
niacin, 30.0; calcium pantothenate, 16.0; folic acid, 2.0; biotin, 0.2; vitamin
B12,25.0; vitamin A palmitate 4000 IU; vitamin E acetate, 75; vitamin D3,
1000 IU; vitamin KI, 0.75. (AIN-93G, vitamin mix, Rhoster, Brazil).
£Oligofructose (P95) was manufactured by Orafti (Pemuco, Chile) and was
obtained by Viafarma, São Paulo, Brazil.
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deacetylase inhibitor, which can reactivate silent genes by
epigenetic modifications. These effects on gene activity
would be beneficial in the long term [37,38]. Additionally,
the authors suggest that maternal intestinal microbiota
function directly in the bacterial colonisation and intes-
tinal properties of newborns and infants because human
maternal milk presents a large variety and amount of oli-
gosaccharides at concentrations ranging from 10 to 20 g/L
[39,40]. It is also believed that some strains of bacteria
present in the maternal gut are transferred from the
mother to the newborn through the maternal milk [41].
The aim of the present study was to evaluate the effect of
a dietary supplementation of 10% OF during pregnancy
and lactation in the presence or absence of hydrogenated
vegetable fat on the development, endotoxemia and bac-
terial composition of 21-d-old offspring.

Materials and methods
Animals and treatments
The experimental research committee of the Universidade
Federal de São Paulo approved all procedures for the care
of the animals used in this study and followed inter-
national recognised guidelines (CEUA protocol n°737014).
The rats were kept under controlled conditions of light
(12-h light/12-h dark cycle with lights on at 07:00) and
temperature (24 ± 1°C), with ad libitum water and food.
Three-month-old female Wistar rats (four animals in each
group) were left overnight to mate, and copulation was
verified the following morning by the presence of sperm
in vaginal smears.
On the first day of pregnancy, the dams were isolated

in individual cages and sequentially divided into four
groups, each receiving one of four diets: a control diet
(C diet, C group), a control diet supplemented with
oligofructose (CF diet, CF group), a diet enriched with
hydrogenated vegetable fat (T diet, T group) or a diet
enriched with hydrogenated vegetable fat supplemented
with oligofructose (TF diet, TF group). The diets were
maintained throughout pregnancy and lactation. At
birth, pups remained in the same group as the mother.
The four diets were prepared according to the recom-
mendations of the American Institute of Nutrition
(AIN-93G) [42,43] and bore a similar calorific and lipid
content. The source of lipids for the C and CF diets was
soybean oil, and the principal source for the T and TF
diets was partially hydrogenated vegetable fat, which is
rich in TFAs. The CF and TF diets were prepared by
adding 100 g/kg of oligofructose to the diet (Orafti P95,
Pemuco, Chile). According to the manufacturer, the OF
used in this study is a mixture of oligosaccharides ex-
tracted from chicory root. These oligosaccharides are
composed of fructose units connected by ß (2–1) links,
and a glucose unit terminates a few of these molecules.
The DP of oligofructose in this supplement ranges
between 2 and 8. The centesimal composition of the di-
ets is presented in Table 1. Pisani et al. have previously
described the fatty acid profile of C and T diets [8].
On the day of delivery, considered day 0 of lactation,

litter sizes were adjusted to eight pups each. The pups
were weighed and measured (naso-anal length) at birth
and on postnatal days 7, 14 and 21.

Experimental procedures
The pups were euthanized by decapitation on postnatal
day 21. The animals were not fasted to avoid weaning
stress. Trunk blood was collected and then immediately
centrifuged at 2500 rpm for 15 minutes, and the serum
was separated and stored at −80°C for the determination
of lipopolysaccharides (LPS) and free fatty acids (FFA).
The retroperitoneal white adipose tissue (RET) and liver
were isolated, weighed, immediately frozen in liquid nitro-
gen and stored at −80°C. The gut and faecal content were
removed and separated into portions, the cecum and
colon, and were immediately placed in liquid nitrogen for
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the subsequent analysis of the colon bacterial DNA by
real-time PCR (RT-PCR).

Serum determination of lipopolysaccharides and free
fatty acids
The concentration of LPS in serum was analysed using
the Limulus Amebocyte Lysate (LAL) assay, a quantita-
tive chromogenic test for detecting endotoxins (LAL
QCL-1000 assay, Lonza, Walkersville, MD, USA). Serum
samples were diluted 10 times with pyrogen-free water
and incubated in pyrogen-free tubes at 75°C for 5 mi-
nutes. All the materials used in the test were initially
autoclaved to render them pyrogen-free and to avoid
interference in the test. The standard curve used in the
assay was generated with known concentrations of LPS
of the strain Escherichia coli O111:B4. The free fatty
acids in the serum were determined with a 96-well
Serum/Plasma Fatty Acid Kit Non-Esterified Fatty Acids
500 Point Detection Kit (Zenbio Inc., Research Triangle
Park, NC, USA), following a 20-fold dilution of the sam-
ples. The manufacturer’s recommendations, which are
listed in the protocols accompanying the product, were
followed for the analysis.

Genomic DNA extraction from faecal samples and real-time
polymerase chain reaction
Genomic DNA from faecal samples of colon was ex-
tracted with the QiagenQIAmp DNA Stool Minikit
(Qiagen, Valencia, CA, USA), according to the manufac-
turer’s recommendations. The DNA concentration per
microlitre was measured using a spectrophotometer, Nano-
Drop ND-1000 (NanoDrop Technologies Inc., Wilmington,
EUA), and the readings were acquired at wavelengths
of 260, 280 and 230 nm. The purity was estimated by the
260/280 nm ratio, which must range between 1.8 and 2.0
for nucleic acids. All samples were maintained at −80°C.
Lactobacillus spp. was quantified by RT-PCR. Relative

levels of lactobacillus spp. DNA were quantified in real
time, using a SYBR Green primer in an ABI Prism 7500 Se-
quence Detector (both from Applied Biosystems, Foster
City, CA, USA). Relative levels of the housekeeping gene of
all bacteria were measured. The primers used were: lactoba-
cillus spp., 5′- AGC AGT AGG GAA TCT TCC A-3′
(sense) and 5′-CAC CGC TAC ACA TGG AG-3′ (anti-
sense), and all bacteria, 5′-TCC TAC GGG AGG CAG
CAG T-3′ (sense) and 5′-GAC TAC CAG GGTATC TAA
TCC TGT T-3′ (antisense). The results were obtained
using the Sequence Detector software (Applied Biosystems)
and were expressed as the relative increase using the
method of 2-ΔΔCt, described by Livak and Schmittgen [44].

Statistical analysis
Data were submitted to quality tests, the Shapiro-Wilk
(normality), Levenne (homogeneity) and/or Mauchly
(sphericity) test, and were standardised to the Z score
if necessary. Non-spherical data were corrected using
F-values (Greenhouse-Geisser). The statistical signifi-
cance of the differences between the means of the four
group was assessed using a two-way analysis of va-
riance (ANOVA) or ANOVA for repeated measure,
followed by a Bonferroni post hoc test. All statistical
tests were performed using the PASW Statistics 18
program, except for the comparison between C and TF
groups, which was performed in the Stats Direct pro-
gram using a one-way ANOVA and a Bonferroni post
hoc test. The other functions were executed using the
Microsoft Excel 2010 program. All results are pre-
sented as the means ± standard error of the mean
(SEM), and differences were considered to be signifi-
cant when p ≤ 0.05.

Results
Body weight, body weight gain and animal length
Over the entire period of treatment, the mean body
weights (BWs) of the 21-d-old pups in the CF and TF
groups were significantly lower than those of the C group
(p ≤ 0.01 and p < 0.0001, respectively). Additionally, the TF
group presented lower BWs than the T (p < 0.001) group
during all of the experimental treatments. At birth, the
BWs of the T group were significantly higher compared to
the C (p = 0.001) group; however, by the second and third
weeks of treatment, the C group had higher BWs com-
pared to the T group (p ≤ 0.002). By postnatal days 7 and
14, the BW in the TF group was lower than the CF group
(p ≤ 0.003) (Figure 1A).
Similarly, during all of the treatments, the BW gain of

the offspring in the CF and TF groups was significantly
lower than the C group (p < 0.001 and p < 0.0001, re-
spectively). During the first and second week, the 21-d-
old pups of the TF group presented a lower BW gain
compared to the T (p < 0.02) group. By the second and
third week, body weight gain in the C group was signifi-
cantly higher compared to the T (p ≤ 0.003) group. Fur-
thermore, the TF group presented a lower BW gain than
the CF group (p < 0.001) during the first week of treat-
ment (Figure 1C).
Figure 1B shows that in the CF and TF groups, the

length of the 21-d-old pups during the entire treatment
was significantly lower than the C group (p ≤ 0.002 and
p < 0.0001, respectively). Likewise, the TF group pre-
sented lower lengths than the T group (p < 0.001) over
the entire experimental period. At birth, the T group
presented greater lengths compared to the C group
(p = 0.004); however, at postnatal day 21, the length of
the C group was significantly higher in relation to the T
group (p < 0.001). Finally, by postnatal days 7 and 14,
the TF group presented smaller lengths than the CF
group (p ≤ 0.003) (Figure 1B).



Figure 1 Body weight (A), length of the animal (B) and body weight gain (C). C –offspring of dams fed control diet; CF – offspring of dams
fed control diet supplemented with oligofructose; T – offspring of dams fed diet enriched with hydrogenated vegetable fat; TF – offspring of
dams fed diet enriched with hydrogenated vegetable fat supplemented with oligofructose. The number in parentheses refers to the sample
value. Data are means ± SEMs. *p≤ 0.05 versus C. &p≤ 0.05 versus CF. $p≤ 0.05 versus T. #p≤ 0.05 versus TF.
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Relative weight of tissues
The relative RET weight in the CF and T groups was sig-
nificantly lower than the C group (p < 0.001). Moreover, the
TF group presented a lower relative RET weight compared
to the CF (p = 0.003) and C (p < 0.0001) groups (Table 2).
The relative weight of the liver in the TF group was sig-

nificantly lower than the T (p = 0.003) and C (p = 0.041)
groups (Table 2).

Serum concentration of lipopolysaccharides and free fatty
acids
The serum concentration of LPS in the CF group was sig-
nificantly higher than the C group (p = 0.05) (Figure 2A).
Figure 2B shows that the FFA serum concentration in

the CF, T and TF groups was lower compared to the C
(p = 0.001, p = 0.03 and p < 0.0002, respectively) group.
Table 2 Relative weight of retroperitoneal adipose tissue and

Relative weight (g/100 g body weight) C (n = 13)

RET 0,376 ± 0,028

LIVER 3,562 ± 0,074

C – offspring of dams fed control diet; CF – offspring of dams fed control diet supp
hydrogenated vegetable fat; TF – offspring of dams fed diet enriched with hydroge
parentheses refers to the sample value. Data are means ± SEMs. *p ≤ 0.05 versus C.
Further, the FFA serum concentration in the TF group
was lower than the T group (p = 0.018).

Levels of lactobacillus spp. in colon
The genomic DNA levels of the lactobacillus spp. in the
faecal content of the colon of the CF group were 2.23-
fold higher than the C group (p = 0.02) in 21-d-old off-
spring (Figure 3) and also in the TF group compared
with the C group; however, this difference was not
significant.

Discussion
In the present study, supplementing the dam’s diet with
10% oligofructose during pregnancy and lactation de-
creased the body weight, body weight gain, length, rela-
tive weight of tissues and serum free fatty acids, which
liver in 21d-old pups

CF (n = 15) T (n = 9) TF (n = 13)

0,256 ± 0,028*# 0,152 ± 0,022* 0,156 ± 0,006*&

3,424 ± 0,128 3,792 ± 0,068 3,315 ± 0,088*$

lemented with oligofructose; T – offspring of dams fed diet enriched with
nated vegetable fat supplemented with oligofructose. The number in
&p ≤ 0.05 versus CF. $p ≤ 0.05 versus T. #p ≤ 0.05 versus TF.



Figure 2 Serum concentration of lipopolysaccharides (LPS) (A) and serum concentration of free fatty acids (FFA) (B). C – offspring of
dams fed control diet; CF –offspring of dams fed control diet supplemented with oligofructose; T – offspring of dams fed diet enriched with
hydrogenated vegetable fat; TF – offspring of dams fed diet enriched with hydrogenated vegetable fat supplemented with oligofructose.
The number in parentheses refers to the sample value. Data are means ± SEMs. *p ≤ 0.05 versus C. &p ≤ 0.05 versus CF. $p ≤ 0.05 versus T.
#p ≤ 0.05 versus TF.
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was accompanied by an increase in the serum concen-
tration of lipopolysaccharides and lactobacillus spp. gen-
omic DNA levels in the colon of the 21-d-old pups.
These results indicate that the supplementation of the

dam’s diet with high amounts of oligofructose (10%) dur-
ing pregnancy and lactation adversely affects the devel-
opment and increases endotoxemia, possibly by bacterial
translocation in the offspring.
The 21-d-old pups of the CF and TF groups presented

lower body weights and lengths compared to the C and T
groups (Figure 1), which were accompanied by a reduction
in the free fatty acid serum concentration (Figure 2) and
relative weights of the RET and liver (Table 2). Additionally,
Figure 3 Lactobacillus spp. genomic DNA levels on fecal content in c
fed control diet supplemented with oligofructose; T – offspring of dams fe
dams fed diet enriched with hydrogenated vegetable fat supplemented w
value. Data are means ± SEMs. Results are expressed in arbitrary units, stipu
$p≤ 0.05 versus T. #p≤ 0.05 versus TF.
a lower body weight gain was also observed in the offspring
of the CF group throughout the entire experimental period
and in the TF group during the first and second weeks of
treatment (Figure 1).
A literature review presents a limited and controversial

picture of the effects of high-fibre diets during preg-
nancy and lactation. Corroborating our results, Carabin
and Flamm reported a delay in the growth of pups from
dams fed with 20% FOS diet during pregnancy and lacta-
tion [16]. On the other hand, previous studies did not
demonstrate the negative effects of FOS supplementa-
tion during pregnancy on offspring development [16,45].
Furthermore, Pisani et al. showed that trans fatty acid
olon. C – offspring of dams fed control diet; CF – offspring of dams
d diet enriched with hydrogenated vegetable fat; TF – offspring of
ith oligofructose. The number in parentheses refers to the sample
lating 100 as the control value. *p≤ 0.05 versus C. &p≤ 0.05 versus CF.
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intake during pregnancy and lactation did not modify
the body weight of the pups during the entire period of
lactation [10]. Thus, it could be concluded that high
FOS supplementation during pregnancy and lactation
could harm offspring development.
In our study, the birth weights of the offspring were

affected by a trans fatty acid diet and 10% OF supple-
mentation during pregnancy and lactation (Figure 1). In
this regard, Hallam and Reimer reported that dietary
supplementation with 21.6% prebiotic fibres (inulin and
oligofructose mixture) during pregnancy and lactation
decreased the birth weight of female offspring, whereas
the birth weights of male offspring did not change. In
the same study, the authors also demonstrated that there
were no differences in the naso-anal length within male
or female pups; however, the percentage of body fat at 4
weeks of age was lower in the high-fibre offspring [46].
Additionally, Maurer and Reimer did not observe any
differences in the birth weight or body weight of the
pups at postnatal days 7, 14 and 21 from dams fed a
control, high-fibre (a combination of inulin and oligo-
fructose) or high-protein diet during pregnancy and lac-
tation [47]. Rodenburg et al. reported no difference in
the body weight gain of 8-week-old rats fed a diet con-
taining 6% FOS for 16 days [48]. Similarly, Parnell and
Reimer showed that a high-fibre diet (10% and 20% of inu-
lin and oligofructose) for 10 weeks did not influence the
body weight and the fat mass in 8-week-old rats; however,
the total liver weight decreased in the obese animals fed a
diet supplemented with fibre prebiotics [49].
In accordance with results of corporal composition,

we believe that the decrease in FFA serum concentration
of the pups (Figure 2) reflects the reduction in the body
weight (Figure 1) and RET-relative weight (Table 2) on
the CF, T and TF groups compared to the C group. Adi-
pose tissue is considered a major site of fatty acid stor-
age in the body. In this regard, visceral fat depots, such
as retroperitoneal adipose tissue, participate in the regu-
lation of FFAs release to systemic circulation under sev-
eral physiologic conditions [50]. Shadid and Jensen
reported that weight loss by diet and exercise is associ-
ated with a decrease in FFA flux [51]. On the other
hand, studies demonstrated that prebiotics are able to
decrease the hepatic lipogenesis by a reduction in the ac-
tivity and gene expression of hepatic lipogenic enzymes,
such as fatty acid synthase (FAS) [18,52]. Kok et al.
showed that oligofructose supplementation (100 g/kg of
diet) for 30 days decreased the activity of the FAS en-
zyme in male Wistar rats [53]. In contrast, Parnell and
Reimer demonstrated that high-fibre diets (10% and 20%
of inulin and oligofructose, respectively) for 10 weeks in-
creased FAS hepatic gene expression in JCR:La-cp rats
[49]. Furthermore, studies demonstrated that dietary
supplementation with prebiotic fibres during pregnancy
and lactation (21,6%; inulin and oligofructose mixture)
does not alter FAS gene expression in the liver and
brown adipose tissue and does not reduce the FFA
plasma concentration in the offspring [46,47].
Moreover, the changes in a pup’s body weight evolu-

tion and length of the CF and TF groups compared to
the C and T groups (Figure 1) accompanied by a reduc-
tion in the liver relative weight of the TF group com-
pared to the T group (Table 2) are consistent with the
hypothesis that the 10% oligofructose supplementation
during pregnancy and lactation contributes to offspring
malnutrition, most likely as a consequence of impaired
somatic and morphologic development. Taken together,
these results suggest that the amount and type of the
ingested prebiotic as well as the treatment period and
physiological conditions could influence the develop-
ment of the animal.
Finally, our results established that the 21-d-old off-

spring of the CF group had a higher lipopolysaccharide
serum concentration (Figure 2), accompanied by a 2.23-
fold increase in lactobacillus spp. genomic DNA levels in
the faecal content of the colon (Figure 3) compared to
the C group.
The inulin-type fructans are known to selectively

stimulate the growth and the activity of the lactobacillus
present in the colonic microbiota, thereby modulating
the intestinal environment through changes in intestinal
permeability, bacterial composition and SCFA production
and contributing to the reduction in the LPS serum con-
centration, which benefits the host’s health [32,54,55]. In
fact, Parnell and Reimer reported an increase in the lacto-
bacillus spp. levels of 8-week-old obese rats fed a high-
fibre diet (20% of inulin and oligofructose) for 10 weeks
[56]. Mangell et al. demonstrated that Lactobacillus plan-
tarum 299v can reduce Escherichia coli-induced intestinal
permeability [57]. Additionally, the authors showed a
reduction in the bacterial translocation to the liver and
mesenteric lymph node of the rats pretreated with Lac-
tobacillus plantarum 229v for one week before intra-
peritoneal injection of LPS [58]. Rodes et al. demonstrated
that the administration of Lactobacillus rhamnosus and
Lactobacillus reuteri in an in vitro human colonic micro-
biota model decreased LPS concentrations in a time-
dependent manner [59].
On the other hand, in accordance with our data, Ten

Bruggencate et al. showed that a low calcium diet sup-
plemented with FOS (60 g/kg of diet) for two weeks
stimulated the growth of lactobacilli on cecal and colonic
mucosa, accompanied by an increase in the intestinal
permeability and translocation of Salmonella enteritidis in
8-wk-old Wistar rats [60]. Similarly, Ten Bruggencate et al.
also demonstrated that the daily FOS consumption
(20 g/day) associated with lower calcium intake during
two weeks by healthy men increased the number of
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faecal lactobacillus, faecal mucin excretion and total
faecal lactic acid excretion. The authors suggested that
the mucin secretion induced by rapid production of or-
ganic acids (lactate and SCFA), in response to excessive
prebiotic fermentation, is related to the irritation and
impairment of the intestinal barrier function [61].
Another study demonstrated a dose-dependent in-

crease in the colonisation and translocation of Salmon-
ella enteritidis, accompanied by a higher lactic acid
concentration in cecal contents in the FOS supple-
mented group (6% and 3%) in 8-wk-old Wistar rats;
however, no changes were reported in the number of
faecal lactobacilli [62]. Likewise, Rodenburg et al. ob-
served an increase in the intestinal permeability and in
the mitochondrial gene expression in 8-week-old rats
submitted to a 16-day diet, low in calcium and supple-
mented with FOS (6%). In this study, the authors pro-
posed that the rapid FOS fermentation by the colonic
microbiota, resulting in acid lactic accumulation, exces-
sive organic acids production and decreased luminal
pH, leads to acidification of the cellular cytoplasm and
indirectly induces ATP-depletion, which consequently
increases the expression of colonic mitochondrial genes
that may be involved in the maintenance of the intes-
tinal barrier because disrupted energy metabolism leads
to increases in intestinal permeability [48].
Accordingly, we observed that 10% FOS supplementa-

tion triggered diarrhoea in dams during the treatment
(data not shown), which may be associated with the
calcium loss. Additionally, it is possible that the oligosac-
charides present in maternal milk [39,40] and the ma-
ternal intestinal bacteria transferred to the offspring
through the breast milk [41] may lead to excessive pro-
duction and luminal accumulation of organic acids in
the pup’s gut, altering intestinal permeability and bac-
terial composition in the 21-d-old offspring [48,60-62].
Thus, changes in the composition of the microbiota and
increases in intestinal permeability, along with damage
to the intestinal barrier integrity, can cause an increase
in bacterial translocation and LPS serum concentration,
resulting in TLR4-mediated inflammatory responses in
the offspring [32].
In fact, we previously showed that 10% oligofructose

supplementation during pregnancy and lactation in-
creased the TNF-α content in the liver of pups in the CF
group and IL-6 and TNF-α contents in RET of pups in
the TF group, accompanied by a reduction in the serum
adiponectin concentrations of the offspring in the CF, T
and TF groups [63].

Conclusion
In conclusion, supplementation with 10% oligofructose
during pregnancy and lactation, in the presence or absence
of hydrogenated vegetable fat harms offspring development
and increases endotoxemia, most likely due to damage to
the intestinal permeability, changes in colonic bacterial
population and impairment of the intestinal mucosal
barrier integrity, which promotes an increase in serum
concentrations of lipopolysaccharides in 21-d-old pups.
Further studies are needed to investigate the dose-
dependent effects of oligofructose ingestion during
gestation and lactation as well as on the development,
metabolism and endotoxemia of the pups.
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