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Abstract
Background: NPC1L1 encodes a putative intestinal sterol transporter which is the likely target for
ezetimibe, a new type of lipid-lowering medication. We previously reported rare non-synonymous
mutations in NPC1L1 in an individual who had no plasma lipoprotein response to ezetimibe. We
next hypothesized that common variants in NPC1L1 would underlie less extreme inter-individual
variations in the plasma LDL cholesterol response to ezetimibe.

Results: In 101 dyslipidemic subjects, we found that NPC1L1 haplotype was significantly associated
with inter-individual variation in the response of plasma LDL cholesterol to treatment with
ezetimibe for 12 weeks. Specifically, about one subject in eight lacked the common NPC1L1
haplotype 1735C-25342A-27677T and these subjects had a significantly greater reduction in plasma
LDL cholesterol with ezetimibe than subjects with at least one copy of this haplotype (-35.9+4.0
versus -23.6+1.6 percent reduction, P = 0.0054). This was paralleled by a similar non-significant
trend of between-haplotype difference in reduction of total cholesterol.

Conclusion: These preliminary pharmacogenetic results suggest that NPC1L1 variation is
associated with inter-individual variation in response to ezetimibe treatment.

Background
Ezetimibe, the first member of a new class of medications,
primarily reduces plasma concentration of low-density
lipoprotein (LDL) cholesterol by blocking sterol absorp-
tion in enterocytes [1]. Ezetimibe probably interferes with
the normal function of the NPC1L1 gene product, which
appears to govern sterol absorption in the small intestine
[2-5]. The mean plasma LDL cholesterol reduction seen
with ezetimibe is 20 to 25%, and this has been remarkably
consistent across patient subgroups defined by age, gen-
der, ethnic background and concomitant use of other
lipid regulating agents, such as statin drugs [6-9]. But
despite the concordance in mean reductions, there is a

wide range of inter-individual variation in the LDL choles-
terol response to ezetimibe. A possible genetic basis for
this inter-individual variation was suggested by our previ-
ous observation of rare non-synonymous NPC1L1 muta-
tions in a non-responder to ezetimibe [10]. During the
course of those studies, we identified several single nucle-
otide polymorphisms (SNPs) in NPC1L1 [10]. These
SNPs have enabled assessment of common genetic varia-
tion at NPC1L1, which we hypothesized would underlie
less extreme inter-individual variations in the plasma LDL
cholesterol response to ezetimibe.
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Results
Clinical and demographic data
Descriptive baseline clinical features are shown in Table 1.
All subjects had baseline and follow-up fasting lipopro-
tein profiles measured. Mean follow-up was 84 days (12
weeks). None of the 101 subjects withdrew from treat-
ment and compliance was excellent as judged by tablet
counting. No adverse events were reported. Mean
responses to ezetimibe treatment are shown in Table 2.
The range of LDL cholesterol responses to ezetimibe treat-
ment are shown in Figure 1. There was no difference in
mean LDL cholesterol change in female versus male sub-

jects or in subjects on ezetimibe monotherapy versus sub-
jects on ezetimibe in combination with statin treatment.

Genetic descriptors of study sample
NPC1L1 genotype frequencies are shown in Table 2. Allele
frequencies were: 1) 0.75 and 0.25 for 1735C and 1735G,
respectively; 2) 0.72 and 0.28 for 25342A and 25342C,
respectively; and 3) 0.80 and 0.20 for 27677T and
27677C, respectively. Pairwise linkage disequilibrium
correlation coefficients for SNP pairs
1735C>G:25342A>C, 1735C>G:27677T>C and
25342A>C:27677T>C were 0.24 (P = 0.017), 0.30 (P <
0.0001) and 0.44 (P < 0.0001), respectively. Thus, there
was moderate but not strong linkage disequilibrium
between these pairs of SNPs. Maximal likelihood haplo-
type definitions and frequencies are shown in Table 3. The

Table 1: Baseline (mean ± standard deviation) and on-treatment 
clinical and biochemical attributes

overall males females

number 101 61 40
age (years) 55.6 ± 11.9 54.0 ± 10.7 58.0 ± 13.3
days on treatment 83.8 ± 60.6 90.1 ± 67.6 74.5 ± 47.9
percent on statin 69.3 78.7 55.0
plasma lipids and lipoproteins (mmol/L)

baseline
cholesterol
- total 6.57 ± 1.43 6.33 ± 1.54 6.93 ± 1.18
- LDL 4.51 ± 1.40 4.35 ± 1.53 4.72 ± 1.18
- HDL 1.18 ± 0.30 1.15 ± 0.29 1.22 ± 0.31
triglycerides 2.50 ± 2.36 2.63 ± 2.86 2.32 ± 1.33

on-treatment
cholesterol
- total 5.41 ± 1.32 5.10 ± 1.21 5.88 ± 1.35
- LDL 3.35 ± 1.15 3.21 ± 1.11 3.56 ± 1.19
- HDL 1.23 ± 0.45 1.16 ± 0.33 1.33 ± 0.60
triglycerides 2.25 ± 1.91 2.24 ± 2.12 2.25 ± 1.57

abbreviations: LDL, low-density lipoprotein; HDL, high-density 
lipoprotein;

Table 2: NPC1L1 genotype frequencies

SNP genotype number frequency

1735C>G C/C 56 0.55
C/G 40 0.40
G/G 5 0.05

25342A>C A/A 54 0.53
A/C 36 0.36
C/C 11 0.11

27677T>C T/T 66 0.65
T/C 30 0.30
C/C 5 0.05

abbreviation: SNP, single nucleotide polymorphism

Individual LDL-cholesterol response to ezetimibe 10 mgFigure 1
Individual LDL-cholesterol response to ezetimibe 10 
mg. Each bar represents the percent change in LDL-choles-
terol from baseline for one study subject; these data are 
arranged in rank order to show the range of responses.

Table 3: NPC1L1 haplotype definition and frequencies

designation sequence definition frequency

1 1735G-25342A-27677T 0.089
2 1735C-25342A-27677T 0.619
3 1735G-25342A-27677C 0.010
4 1735C-25342A-27677C 0.005
5 1735G-25342C-27677T 0.025
6 1735C-25342C-27677T 0.069
7 1735G-25342C-27677C 0.119
8 1735C-25342C-27677C 0.064
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most common haplotype (frequency ~0.6) was defined as
1735C-25342A-27677T and designated as "haplotype 2".
For ANOVA, NPC1L1 haplotypes were collapsed to three
groups, based on the presence or absence of haplotype 2.
Thus, participants in this study had one of three possible
diploid summary haplotypes: 2/2, 2/X or X/X, where X
refers to any non-2 haplotype. There were 37, 51 and 13
subjects with haplotypes 2/2, 2/X and X/X, respectively.

Genetic associations with plasma lipoproteins
ANOVA (Table 4) showed no significant differences
between baseline plasma lipoproteins. However, the per-
cent change in LDL cholesterol on ezetimibe from base-
line was significantly different between haplotypes (P =
0.02) and the percent change in total cholesterol from
baseline on ezetimibe tended to be different between hap-
lotypes. The significant between-haplotype differences
from ANOVA were further explored assuming a dominant
model for presence of haplotype 2, in which subjects with
haplotypes 2/2 or 2/X were scored as "A" and subjects
with haplotype X/X were scored as "B". In this model, sub-
jects with haplotype X/X had a significantly greater per-
cent reduction in plasma LDL cholesterol from baseline
on ezetimibe than did subjects with haplotypes 2/2 or 2/
X (-35.9 ± 4.0 versus -23.6 ± 1.6 percent, P = 0.0054). The
range of reduction in LDL cholesterol in subjects with
haplotype X/X was -68.2 to -19.6 percent. Furthermore,
subjects with haplotype X/X tended to have a greater per-
cent reduction in plasma total cholesterol from baseline
on ezetimibe than did subjects with haplotypes 2/2 or 2/
X (-22.8 ± 3.4 versus -15.9 ± 1.3 percent, P = 0.058).

An additional post hoc analysis of individual SNPs found
that the 11 homozygotes for the 25342C allele had a sig-
nificantly greater percent reduction in plasma LDL choles-
terol from baseline on ezetimibe than did other subjects
(P = 0.02). Furthermore, the five homozygotes for the
27677C allele had a significantly greater percent reduc-
tion in plasma LDL cholesterol from baseline on
ezetimibe than did other subjects (P = 0.013).

Discussion
In this very preliminary analysis of a small sample of sub-
jects with hypercholesterolemia, we found that genetic
variation in NPC1L1, as defined by a three-site SNP
haplotype, was significantly associated with inter-individ-
ual variation in the response of plasma LDL cholesterol to
12 weeks of treatment with ezetimibe 10 mg daily. Specif-
ically, about one subject in eight did not carry the com-
mon NPC1L1 haplotype 1735C-25342A-27677T
(designated "haplotype 2"); these subjects were found to
have a significantly greater reduction in plasma LDL cho-
lesterol with ezetimibe than subjects with at least one
copy of haplotype 2 (-35.9 ± 4.0 versus -23.6 ± 1.6 percent
reduction, P = 0.0054). This was paralleled by a similar
non-significant trend of between-haplotype differences in
reduction of total cholesterol. There were no significant
between-haplotype differences in ezetimibe-related
changes in plasma triglycerides or HDL cholesterol.

As with many association studies, the present study has
limitations [11], including: 1) a small sample size; 2) no
replication sample; 3) no demonstrated functional conse-
quences of the NPC1L1 SNPs or haplotype; 4) no interme-

Table 4: Clinical and biochemical features according to NPC1L1 haplotype

haplotype
2/2 2/X X/X P-value

number 37 51 13
age (years) 56.6 ± 13.3 53.9 ± 11.3 58.4 ± 6.9 NS
percent female 48.6 37.3 38.5 NS
percent on statin 65.8 70.6 69.8 NS
baseline plasma lipids and lipoproteins (mmol/L)

cholesterol
- total 6.88 ± 1.33 6.31 ± 1.59 6.73 ± 1.01 NS
- LDL 4.64 ± 1.39 4.41 ± 1.51 4.49 ± 1.10 NS
- HDL 1.16 ± 0.34 1.19 ± 0.29 1.20 ± 0.21 NS

triglycerides 2.58 ± 1.75 1.99 ± 1.37 3.47 ± 3.78 NS
percent change on-treatment

cholesterol
- total -16.5 ± 12.2 -15.8 ± 13.0 -22.8 ± 8.4 NS (0.07)
- LDL -23.6 ± 13.2 -23.6 ± 14.7 -35.2 ± 13.5 0.02
- HDL +10.7 ± 43.0 +1.2 ± 14.3 +0.6 ± 17.0 NS
triglycerides -4.2 ± 35.6 +2.9 ± 44.9 -0 ± 30.3 NS

abbreviations: as in Table 1.
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diate phenotype, such as cholesterol absorption; and 5)
the potential that the positive findings were related to
linkage disequilibrium with unmeasured markers at or
near the NPC1L1 locus. Also, we did not genotype all
SNPs at this locus. However, previous genomic screening
experiments [10] indicated that the remaining SNPs were
rare, and thus less likely to add information to the three
SNPs studied. Inclusion of these rare SNP genotypes in the
extended haplotype would have further subdivided the
data into very small-sized cells for statistical analysis.

Our study confirms the similarity of the mean LDL choles-
terol response to ezetimibe, namely a 20 to 25% reduc-
tion, in various study samples and across a range of
demographic features including sex and concomitant sta-
tin treatment (6–9). Figure 1 demonstrates that this con-
sistent mean LDL cholesterol reduction occurs on the
background of relatively wide inter-individual variation
in response. Our findings further indicate that subjects
who carry the most common NPC1L1 haplotype (namely
haplotype 2), have an ezetimibe-related LDL cholesterol
reduction that is within the expected 20 to 25% range.
However, a small but substantial group of subjects with-
out haplotype 2 experienced a significantly greater LDL
cholesterol reduction, on the order of 35%.

Conclusion
The current finding of NPC1L1-associated inter-individ-
ual differences in LDL-cholesterol response to ezetimibe
together with our earlier demonstration that rare missense
mutations in NPC1L1 are associated with non-response to
ezetimibe [10] support a relationship between this gene
product and the mechanism of action of ezetimibe.
Clearly, additional mechanistic and genetic studies are
required. But these pharmacogenetic results, if confirmed,
are consistent with the idea that the NPC1L1 is the
ezetimibe target.

Methods
Study subjects
Between December 2003 and May 2004, 101 patients
with primary hypercholesterolemia (defined as elevated
LDL cholesterol) were treated with ezetimibe 10 mg daily
according to national dyslipidemia guidelines [12]. Basic
demographic attributes of study subjects are shown in
Table 1. About one-third of patients were not taking any
lipid-lowering medication and the remainder were stable
on statin treatment of ≥12 weeks' duration prior to initia-
tion of ezetimibe. Concomitant statin treatment included
atorvastatin, rosuvastatin and simvastatin in 30, 28 and
12 subjects, respectively. All subjects provided informed
consent and the study was approved by the Ethics Review
panel of the University of Western Ontario (review
number 07920E).

Biochemical and genetic analyses
The lipoprotein profile after a 12 hour fasting period was
determined before initiation of ezetimibe treatment and
again after a mean follow-up of 12 weeks. Lipoprotein
determinations were performed according to the Ontario
Lipoprotein Proficiency Program standards and LDL cho-
lesterol was calculated using the Friedewald-Levy-Fre-
drickson formula [13].

Genomic DNA was extracted and three common inform-
ative NPC1L1 SNPs from across the coding sequence were
chosen for genotyping. Allele-specific genotyping meth-
ods were used [10]. For the genotype of exon 2 SNP
1735C>G (trivial name L272L, dbSNP number 2072183),
we amplified a 381 bp fragment containing exon 2 using
primers 5' GCT CAA CTT CCA GGG AGA CA and 5' AGC
TTG TCA GAG AGG CTG G. This was followed by treat-
ment with shrimp alkaline phosphatase (SAP) and ExoI to
remove primers and unincorporated dNTPs, followed by
ddNTP extension (SnaPShot, PE Applied Biosystems, Mis-
sissauga, ON) with primer 5' ATA GGC ATG AGC CAC
TGC AC and analysis on a 3730 DNA Sequencer (PE
Applied Biosystems, Mississauga, ON). For the genotype
of intron 18 SNP 25342A>C, we amplified a 766 bp frag-
ment containing intron 18 using primers 5' GCC CAG
GTA GAA GGT GGA GTC and 5' CGT TGT TTG AGA CAT
ACA TAG CTG. This was followed by treatment with SAP
and ExoI to remove primers and unincorporated dNTPs,
gel purification and ddNTP extension with primer 5' CTG
CCT GAC ACC TGG CTC TGA and fragment analysis. For
the genotype of exon 20 SNP 27677T>C (trivial name
V1296V), we amplified the 558 bp fragment containing
exon 20 using primers 5' GAA GCT TGG GCT GTG AAC A
and 5' CCA CTA TGG GAG CAG AGG AG. This was fol-
lowed by treatment with SAP and ExoI to remove primers
and unincorporated dNTPs, gel purification and ddNTP
extension (SnaPShot, PE Applied Biosystems,
Mississauga, ON) with primer 5' TCT CTC CGC AGG GCC
TGA CGT, and fragment analysis.

Statistical analysis
Analyses were performed using SAS version 8.2 (Cary,
NC), with a nominal level of significance defined as P <
0.05. Significance of the deviation of SNP genotype fre-
quencies from Hardy-Weinberg equilibrium was assessed
using chi-square analysis. Pairwise linkage disequilibrium
between NPC1L1 alleles was determined using correlation
coefficients as described [14]. Three-site maximal likeli-
hood haplotypes were constructed using PHASE version
2.0 [15]. Analysis of variance (ANOVA) was used to iden-
tify significant sources of variation for quantitative plasma
phenotypes, using F-values computed from type III sums
of squares, which is most appropriate for unbalanced
study designs. The dependent variables in ANOVA were
percent change from baseline of plasma total, LDL and
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high-density lipoprotein (HDL) cholesterol and triglycer-
ides. The independent variable in ANOVA was NPC1L1
haplotype, with age and sex as covariates within each
model.
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