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Abstract
The liver is responsible for controlling cholesterol homeostasis in the body. HMG-CoA reductase
and the LDL receptor (LDL-r) are involved in this regulation and are also ubiquitously expressed
in all major tissues. We have previously shown in guinea pigs that there is a correlation in gene
expression of HMG-CoA reductase and the LDL-r between liver and mononuclear cells. The
present study evaluated human mononuclear cells as a surrogate for hepatic expression of these
genes. The purpose was to evaluate the effect of dietary carbohydrate restriction with low and high
cholesterol content on HMG-CoA reductase and LDL-r mRNA expression in mononuclear cells.
All subjects were counseled to consume a carbohydrate restricted diet with 10–15% energy from
carbohydrate, 30–35% energy from protein and 55–60% energy from fat. Subjects were randomly
assigned to either EGG (640 mg/d additional dietary cholesterol) or SUB groups [equivalent
amount of egg substitute (0 dietary cholesterol contributions) per day] for 12 weeks. At the end
of the intervention, there were no changes in plasma total or LDL cholesterol (LDL-C) compared
to baseline (P > 0.10) or differences in plasma total or LDL-C between groups. The mRNA
abundance for HMG-CoA reductase and LDL-r were measured in mononuclear cells using real
time PCR. The EGG group showed a significant decrease in HMG-CoA reductase mRNA (1.98 ±
1.26 to 1.32 ± 0.92 arbitrary units P < 0.05) while an increase was observed for the SUB group
(1.13 ± 0.52 to 1.69 ± 1.61 arbitrary units P < 0.05). Additionally, the LDL-r mRNA abundance was
decreased in the EGG group (1.72 ± 0.69 to 1.24 ± 0.55 arbitrary units P < 0.05) and significantly
increased in the SUB group (1.00 ± 0.60 to 1.67 ± 1.94 arbitrary units P < 0.05). The findings
indicate that dietary cholesterol during a weight loss intervention alters the expression of genes
regulating cholesterol homeostasis.

Background
Cholesterol is an important biological molecule that plays
a role in membrane structure and it is a precursor for the

synthesis of steroid hormones and bile acids [1,2]. It is
also a major player in the lipid rafts which have a vital role
in cell signaling and protein sorting on the membrane sur-
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face [3-5]. Mammalian cells produce their own choles-
terol and receive cholesterol by uptake from lipoproteins
[5]. Regulation of synthesis, influx and efflux keeps cellu-
lar cholesterol levels precisely controlled [5]. The synthe-
sis of cholesterol is regulated by the activity of the
microsomal enzyme 3-hydroxy-3 methylglutaryl coen-
zyme A (HMG-CoA) reductase, and this is determined by
both the amount of protein present and the degree of acti-
vation of the enzyme (dephosphorylation) [6,7]. One of
the main mechanisms of cholesterol uptake by the cells is
through the LDL receptor (LDL-r). The LDL-r synthesis is
activated by low concentrations of cellular free cholesterol
[8]. Animal data suggest that cholesterol synthesis and
cholesterol uptake by the LDL-r may work independently,
and that LDL uptake by the receptor is a secondary com-
pensatory mechanism after cholesterol synthesis [9]. Cho-
lesterol homeostasis is the mechanism of ensuring
appropriate physiological cholesterol levels [5,10]. First
demonstrated in vitro, the LDL-r gene is down regulated
by higher intracellular cholesterol [10,11] and so is HMG-
CoA reductase [12]. Dietary macronutrients have a major
impact on plasma lipids, and both LDL-r and HMG-CoA
reductase have a central role in lipid metabolism [13].
Therefore we determined the mRNA expression of these
two genes in response to two levels of dietary cholesterol
in the context of a low carbohydrate intake. We demon-
strated that increased intake of cholesterol affects mRNA
expression of both HMG-CoA reductase and LDL-r.

Methods
Diets
These were free living subjects who were not provided
with any other foods apart from either eggs or eggs substi-
tute to consume as part of a low carbohydrate diet. No
restrictions were given towards energy intake. Subjects
received individual and personalized dietary counseling
from Registered Dietitians prior to the dietary interven-
tion. Detailed dietary booklets, specific to each dietary
treatment, were provided outlining dietary goals, lists of
appropriate foods, recipes, sample meal plans, and food
record log sheets. Subjects received weekly follow-up
counseling during which body mass was measured, com-
pliance was assessed, and further dietetic education was
provided. A three-day weighed food records was obtained
at baseline to assess habitual nutrient intake, and a five-
day records were completed during weeks 1, 6, and 12 of
the intervention.

Subjects were given specific instructions on how to follow
a carbohydrate restricted diet (CRD), as previously
reported from our lab [14]. Subjects were asked to main-
tain their normal routine of physical activities during the
course of this study.

Mononuclear cell Isolation
Whole blood was used to isolate mononuclear cells fol-
lowing method by Boyum [15]. In this method 20 mL
blood was diluted with 10 mL HBSS (Sigma-Aldrich) that
did not contain either Ca2+ or Mg2+. Then this diluted
solution was carefully layered over 10 mL of Histopaque
1077 (Sigma-Aldrich), and centrifuged at 500 × g for 30
minutes (Rotanta 460 R). The mononuclear cell interface
was removed and washed with HBSS and centrifuged at
600 × g for 10 minutes twice. The cell pellet was resus-
pended in 200 µL Tris buffer (150 mmol/L NaCl, 10
mmol/L Tris, 1 mmol/L CaCl2, pH 7.4), and the sample
was stored at -80°C.

RNA extraction and purification
Total RNA was extracted from mononuclear cells using a
slightly modification of the method of Chomczynski and
Sacchi [16]. TRIzol reagents were used as per manufac-
turer's guidelines. The integrity of the extracted RNA was
checked by electrophoresis on a 1% agarose gel. The DNA-
free kit was used to remove trace contaminating genomic
DNA following the manufacturer's instruction (Bio-Rad).
RNA was extracted by precipitation using 2.5 volumes of
100% ethanol and 0.1 volume of 3 mol/L sodium acetate
at pH 5.2. The RNA pellet was washed with 70% ethanol
and dissolved in diethyl pyrocarbonate-treated water.
cDNA synthesis was done using iScript cDNA synthesis kit
as per manufacturer's instructions (Bio-Rad).

Real-time PCR
LightCyler Probe Design software 2.0 (Roche Diagnostics)
was used to design primers for the target genes, HMG-CoA
reductase, LDL-r and the reference gene glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) [17].

Using the LightCycler FastStart DNA Master plus SYBR
Greeen I (Roche Diagnostics) real-time Polymerase Chain
Reaction (PCR) was performed in duplicate using the
LightCycler 2.0. A melting curve was obtained after ampli-
fication, to determine the optimal PCR conditions. By
analyzing the fluorescence curves and detecting the cross-
ing point of samples using LightCycler software 4.0
(Roche Diagnostics) quantification of mRNA was done.

Plasma Lipids
Total cholesterol (TC) and HDL cholesterol (HDL-C) were
determined by enzymatic methods. LDL Cholesterol
(LDL-C) was calculated by the Friedwal equation after
measurement of plasma total cholesterol, triglycerides
and HDL-C as previously reported [18].

Statistical analysis
Data was analyzed using Repeated Measures ANOVA with
time being the repeated measure and EGG versus SUB the
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between subjects factor. Data are presented as means ±
SD. Differences of P < 0.05 were considered significant.

Results
Plasma TC was not affected by diet or over time. Values
were 198.3 ± 42.1 mg/dL at baseline and 202.2 ± 41.8 mg/
dL at 12 wk for the EGG group and 188.3 ± 33.7 and 187.3
± 39.5 at baseline and 12 wk respectively for the SUB
group. In spite of the greater consumption of dietary cho-
lesterol in the EGG group (877 mg/d) at wk 12 compared
to the SUB group (277 mg/d), there were no increases in
LDL-C between baseline and 12 wk or differences in LDL-
C between the EGG and the SUB groups. Values were
127.5 ± 42.2 mg/dL at baseline and 144.3 ± 45.1 mg/dL
after 12 wk for the EGG group while values for the SUB
group were 110.8 ± 34.5 mg/dL for baseline and 121.5 ±
42.2 mg/dL after 12 wk (P > 0.1). In contrast, HDL-C was
significantly increased only in the EGG group from 47.6 ±
15.1 mg/dL at baseline to 57.1 ± 15.1 mg/dL at 12 wk
while there were no changes in HDL-C in subjects from
the SUB group (50.0 ± 9.7 mg/dL at baseline and 48.8 ±
8.8 mg/dL after 12 wk).

Results for gene expression at baseline and 12 wk are indi-
cated in Figure 1 for the EGG and the SUB groups. HMG-
CoA reductase gene expression was down-regulated by

31% and the LDL-r by 29% in the EGG group (P < 0.05)
while in the SUB group the expression of both genes was
up-regulated by 53 and 66% respectively (P < 0.05).

Discussion
Mononuclear cells were used as a surrogate to reflect
hepatic cholesterol homeostasis in response to a choles-
terol challenge. The present study suggests the involve-
ment of dietary cholesterol in gene regulation. In the EGG
group there was a 298% increase in dietary cholesterol
intake compared to the SUB group. The LDL-C did not
change during the intervention for both the EGG and SUB
groups. The increase in dietary cholesterol on the EGG
group might have contributed to the increase in intracel-
lular cholesterol and significantly down regulate the
mRNA expression of LDL-r and HMG-CoA reductase.
These findings are supported by Meddings et al.,[19] and
Lin et al., [20]. High dietary cholesterol generally elevates
serum LDL-C, which might result in an increase in intrac-
ellular cholesterol via cholesterol uptake. The failure to
observe the increase in plasma LDL cholesterol in the
present study can be explained by the weight reduction,
which might have prevented an increase accumulation of
LDL-C. Studies in guinea pigs have shown that dietary
cholesterol increases hepatic tissue cholesterol [21],
which could possibly explain the down regulation of
HMG-CoA reductase in the current work.

Studies using cultured cells [10], showed that a reduction
in intracellular cholesterol levels resulted in a dual
response: 1. an increase in the production of mRNA for
HMG-CoA reductase to synthesize more cholesterol for
the depleted cell and 2. an increase in the amount of
mRNA for the LDL-r in order to increase exogenous cho-
lesterol uptake.

A previous study in our lab in pre-menopausal women
has shown that weight loss results in the increase of LDL-
r mRNA abundance [22]. A study using the fat Zucker rat
[23], showed that these rats had reduced expression of
hepatic LDL-r as compared to lean ones. A dietary choles-
terol challenge had a suppressive outcome on hepatic
LDL-r in both the Zucker and control rats. How does obes-
ity influence cholesterol status? In obesity where there is
no cholesterol challenge, the tissue might have a sufficient
supply of cholesterol as a result of stored cellular lipids,
and hence, the down regulation of the mechanism
involved in the increase of cellular cholesterol synthesis
and uptake. With weight loss where most of the weight
reduced is from adipose tissues, there is a depletion of
stored and available cellular cholesterol, and therefore,
the mechanism to increase cellular cholesterol is up-regu-
lated. This study supports these findings since the SUB
group significantly increased LDL-r mRNA as a result of
weight loss. Additionally, the findings for the EGG group

HMG-CoA reductase mRNA abundance in mononuclear cells isolated from subjects from the EGG (n = 14) and SUB (n = 11) groups (Panel A); LDL receptor mRNA abundance in mononuclear cells isolated from subjects from the EGG (n = 15) and SUB (n = 13) groupsFigure 1
HMG-CoA reductase mRNA abundance in mononuclear 
cells isolated from subjects from the EGG (n = 14) and SUB 
(n = 11) groups (Panel A); LDL receptor mRNA abundance 
in mononuclear cells isolated from subjects from the EGG (n 
= 15) and SUB (n = 13) groups. Values represent arbitrary 
unit presented as means ± standard deviation. * indicates sig-
nificantly different from baseline.
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suggests that the presence of a cholesterol challenge on a
weight loss overrides the effect of LDL-r mRNA expression
during weight loss, and this results in down regulation of
the LDL receptor.
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