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Abstract
Background: The levels of retinol-binding protein 4 (RBP4) – the carrier protein for Vitamin A in
plasma – are tightly regulated under healthy circumstances. The kidney, the main site of RBP4
catabolism, contributes to an elevation of RBP4 levels during chronic kidney disease (CKD)
whereas during chronic liver disease (CLD) RBP4 levels decrease. Little is known about RBP4
isoforms including apo-RBP4, holo-RBP4 as well as RBP4 truncated at the C-terminus (RBP4-L and
RBP4-LL) except that RBP4 isoforms have been reported to be increased in hemodialysis patients.
Since it is not known whether CLD influence RBP4 isoforms, we investigated RBP4 levels, apo- and
holo-RBP4 as well as RBP4-L and RBP4-LL in plasma of 36 patients suffering from CKD, in 55 CLD
patients and in 50 control subjects. RBP4 was determined by ELISA and apo- and holo-RBP4 by
native polyacrylamide gel electrophoresis (PAGE). RBP4-L and RBP4-LL were analyzed after
immunoprecipitation by mass spectrometry (MALDI-TOF-MS).

Results: RBP4 isoforms and levels were highly increased in CKD patients compared to controls
(P < 0.05) whereas in CLD patients RBP4 isoforms were not different from controls. In addition,
in hepatic dysfunction RBP4 levels were decreased whereas the amount of isoforms was not
affected.

Conclusion: The occurrence of RBP4 isoforms is not influenced by liver function but seems to be
strongly related to kidney function and may therefore be important in investigating kidney function
and related disorders.
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Background
Retinol–binding protein 4 (RBP4) is a 21 kDa plasma pro-
tein, which is mainly secreted from the liver and adipose
tissue and is known to transport retinol (ROH) in the
blood. The binding of ROH to RBP4 guarantees the home-
ostatic regulation of plasma ROH levels, which are an
essential aspect for a variety of physiological processes [1-
3]. Recently, RBP4 levels have been reported to be ele-
vated in insulin resistant subjects as well as in subjects
with obesity and type 2 diabetes (T2DM) [4]. These dis-
eases involve liver and kidney disorders in late stages
[5,6].

In healthy individuals RBP4 is mainly synthesized in the
liver and secreted into the circulation in a 1:1:1 complex
with ROH (holo-RBP4) and transthyretin (TTR) [7,8]. The
binding with TTR increases the molecular weight of RBP4
and thus prevents its glomerular filtration and catabolism
in the kidney [9-13]. After releasing ROH into the target
cells the remaining apo-RBP4 (unbound ROH) is rapidly
filtered through the glomeruli and subsequently reab-
sorbed in the proximal tubular cells via the megalin-cubu-
lin receptor complex and catabolized [1,14,15].
Importantly, dysfunctions of both, the liver and kidneys,
are known to influence RBP4 homeostasis [13,16-18]:
chronic kidney diseases (CKD) and chronic liver diseases
(CLD) interfere with RBP4 metabolism through their
action on RBP4 synthesis and catabolism [13,19].

RBP4 has been reported to occur in different isoforms in
serum, namely holo-RBP4 (RBP4 bound to ROH) and
apo-RBP4, which remains after the release of ROH into
the target cell. In addition, little is known about RBP4 iso-
forms resulting from the truncation of RBP4: RBP4-L,
which is truncated at one C-terminal leucine molecule
(Leu-183), and RBP4-LL, which is truncated at a second

leucine molecule (Leu-182 and Leu-183). The relative
amounts of apo-RBP4 are increased in rats during acute
renal failure and RBP4-L and RBP4-LL have been shown
to be increased in hemo-dialysis patients [17,20,21]. It is
assumed that renal dysfunction is closely linked to an
increased occurrence of apo-RBP4 as well as RBP4-L and
RBP4-LL in serum. However, sufficient data in these
patients are lacking. In addition, it is unknown whether
the liver, as site of RBP4 synthesis, may also contribute to
the occurrence of RBP4 isoforms [22,23]. Thus, we exam-
ined RBP4 levels and isoforms in plasma of patients suf-
fering from various CLD, as well as in patients with CKD,
and compared the results with those obtained from
healthy controls.

Results
Anthropometric and clinical parameters
Anthropometric and clinical characteristics of controls,
CLD patients and CKD patients are shown in Table 1.
There were no differences in age and BMI. Serum C-reac-
tive protein (CRP) levels were higher in CLD and CKD
patients compared to controls (P < 0.001, both), and CRP
was elevated in CKD patients compared to CLD (P <
0.001). Serum creatinine, a parameter of kidney function,
was elevated in CKD compared to controls and CLD (P <
0.001, both).

Standard tests of liver function such as alanine ami-
notransferase (ALT), gamma-glutamyl transferase (GGT),
alkaline phosphatase (ALP) and aspartate aminotrans-
ferase (AST) concentrations showed increased levels in the
CLD group compared to the values in the controls (P <
0.001). The levels of ALT, GGT and ALP were also
increased in the CKD group compared to controls (P <
0.01). However, AST and ALT were markedly lower in the
CKD compared to the CLD group (P < 0.001).

Table 1: Clinical and biochemical characteristics of controls, patients with CLD and CKD.

Controls CLD CKD

N (m/f) 50 (27/23) 55 (30/25) 36 (26/10)
Age (years) 55.0 (48.2 – 60.0) 50.0 (44.0 – 58.0) 59.0 (45.3 – 68.8)
BMI (kg/m2) 24.4 (22.5 – 26.2) 24.0 (21.3 – 25.9) 25.3 (22.2 – 27.7)
Glucose (mmoL/L) 4.73 (4.45 – 5.17) 5.27 (4.82 – 5.94) * 5.24 (4.63 – 5.94) *
CRP (nmoL/L) 0.0 (0.0 – 0.0) 43.5 (39.3 – 52.1) * 342.9 (104.8 – 800.0) * #

Creatinine (μmoL/L) 68.8 (63.5 – 75.5) 63.3 (55.7 – 73.9) * 239.4 (180.0 – 528.4) * #

Protein (g/L) 66.5 (63.5 – 70.2) 50.7 (45.2 – 57.1) * 65.0 (59.0 – 70.0) #

AST [μkat/L] 0.35 (0.28 – 0.40) 0.89 (0.36 – 1.51) * 0.30 (0.24 – 0.43)#

ALT [μkat/L] 0.17 (0.12 – 0.24) 0.82 (0.55 – 1.39) * 0.37 (0.21 – 0.52) * #

ALP [μkat/L] 1.06 (0.79 – 1.31) 1.73 (0.99 – 2.48) * 1.32 (0.97 – 1.62) *
GGT [μkat/L] 0.30 (0.21 – 0.43) 1.03 (0.44 – 2.21) * 0.53 (0.32 – 1.41) *
Haemotocrit 0.41 (0.38 – 0.44) 0.42 (0.38 – 0.46) 0.32 (0.29 – 0.37) * #

Haemoglobin (g/L) 138.5 (130.0 – 149.8) 145.0 (126.8 – 155.3) 107.5 (97.5 – 125.0) * #

Data are expressed as median with 25th and 75th percentiles. BMI, body mass index; CRP, C-reactive protein; AST, aspartate aminotransferase; 
ALT, alanine aminotransferase; ALP, alkaline phosphatase; GGT, gamma glutamyl transferase.
* = significantly different from controls (p < 0.05). # = significantly different from CLD (p < 0.05).
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Biochemical variables of the RBP4-complex
Compared to controls, RBP4 levels were lower in CLD (P
< 0.001), but highly elevated in patients with CKD (P <
0.001, Table 2). Among CLD patients those with c2-cir-
rhosis (ethanol-induced) showed lowest RBP4 values
compared to CLD patients with fibrosis or hepatic cancer
(P < 0.001, Table 3). Serum ROH levels were increased in
CKD patients compared to CLD patients (P < 0.001) and
in controls compared to CLD (P < 0.001). In patients with
fibrosis, ROH levels were elevated compared to CLD
patients with HCC and c2-cirrhosis (P < 0.01). The high-
est TTR levels were observed in controls compared to CLD
and CKD (P < 0.001, Table 2).

The molar ratio of RBP4 to ROH was significantly
decreased in the CLD group compared to controls (P <
0.001) as well as to CKD (P < 0.001). The CKD group
showed the highest value of the RBP4 to ROH ratio com-
pared to controls as well as to the CLD group (P < 0.001).
An excess of RBP4 over ROH indicates an elevation in free
RBP4 and thus apo-RBP4 (unbound ROH). This is sup-
ported by the significant correlation of apo-RBP4 and the
RBP4-ROH ratio (Spearman Rho r = 0.565, P < 0.01). The
molar ratio of RBP4 to TTR was increased in CLD and
CKD compared to controls (P < 0.001, both, Table 2).

Relative amounts of apo- and holo-RBP4
Analysis of band area after non-denaturating PAGE
immunoblotting was used to calculate the relative
amount of apo- and holo-RBP4. The relative amount of
holo-RBP4 was higher in plasma of controls as well as in
CLD compared to CKD (P < 0.001, both). Conversely,
apo-RBP4 was detected in higher quantities in CKD com-
pared to controls and CLD patients (P < 0.001, Figure 1).

Relative amounts of RBP4-L and RBP4-LL (by MALDI-
TOF-MS)
RBP4 immunoprecipitation and subsequent MALDI-TOF-
MS analysis was used to detect RBP4-L and RBP4-LL (Fig-
ure 2). In controls, non-truncated RBP4 (nRBP4) was the
most abundant form and was set to 100%. RBP4-L and
RBP4-LL were analysed in a "valley-to-valley" procedure
and expressed as per cent of nRBP4. RBP4-L occurred in
relative amounts of nRBP4 with a median of 45% and
RBP4-LL with 0%. In CKD patients both, RBP4-L (87%)
and RBP4-LL (18%), were significantly elevated compared
to CLD and controls (P < 0.001, both, Table 2 and Figure
3).

Correlations among RBP4 levels as well as RBP4 isoforms 
and parameters of liver and kidney function
With regards to liver function, plasma RBP4 and ROH lev-
els were inversely correlated with AST (r = -0.659, r = -
0.494), ALT (r = -0.510, r = -0.314), ALP (r = -0.187, r = -
0.288) and GGT (r = -0.312, r = -0.203, respectively, P <
0.05, all). AST was correlated with holo-RBP4 (r = 0.330)
and inversely with apo-RBP4 (r = 0.317, P < 0.05, both).
In addition, AST levels were inversely correlated with
RBP4-L (r = -0.421) and RBP4-LL (r = -0.297, P < 0.01,
both). ALP was inversely correlated with RBP4-L (r = -
0.248, P < 0.01).

With regards to kidney function, there was a correlation
between serum creatinine and RBP4 levels (r = 0.633),
apo-RBP4 (r = 0.674), RBP4-L (r = 0.494) and RBP4-LL (r
= 0.438) as well as ROH (r = 0.396, P < 0.01, all). Holo-
RBP4, in contrast, was inversely correlated with serum cre-
atinine (r = -0.678, P < 0.01). In CLD, serum creatinine
was correlated with RBP4 (r = 0.535), RBP4-L (r = 0.421,
P < 0.01, both) and ROH levels (r = 0.381, P < 0.05).

Table 2: Biochemical variables of the ROH-RBP4-complex in plasma of controls, patients with CLD and CKD.

Controls CLD CKD

RBP4 (μmoL/L) 2.17 (1.78 – 2.52) 0.97 (0.61 – 1.27) * 3.75 (2.63 – 5.21) * #

ROH (μmoL/L) 1.46 (1.29 – 1.66) 0.94 (0.62 – 1.22) * 1.62 (1.03 – 2.69)#

TTR (μmoL/L) 6.14 (5.22 – 7.01) 1.16 (0.91 – 1.83) * 4.22 (2.66 – 6.02) * #

RBP4/ROH ratio1 1.39 (1.15 – 1.78) 1.04 (0.90 – 1.32) * 1.88 (1.51 – 3.04) * #

RBP4/TTR ratio 2 0.36 (0.30 – 0.41) 0.67 (0.41 – 1.13) * 0.76 (0.61 – 1.49) *
Holo-RBP4 (%) 86.4 (80.7 – 88.8) 85.0 (77.9 – 93.4) 67.0 (54.0 – 76.3) *
Apo-RBP4 (%) 13.6 (11.2 – 19.3) 15.0 (6.3 – 22.0) 32.5 (23.8 – 42.0) *
RBP4-L (%)3 45.0 (24.5 – 73.0) 33.0 (17.5 – 48.0) * 86.5 (39.0 – 143.0) *
RBP4-LL (%)3 0.0 (0.0 – 5.5) 0.0 (0.0 – 6.0) 18.0 (5.75 – 55.8) *

Data are expressed as median with 25th and 75th percentiles. RBP4, retinol binding protein 4; ROH, retinol; TTR, transthyretin.
* = significantly different from controls (p < 0.05). # = significantly different from CLD (p < 0.05).
1 The RBP4/ROH ratio is the molar ratio of serum RBP4 to serum ROH.
2 The RBP4/TTR ratio is the molar ratio of serum RBP4 to serum TTR.
3 The intensity of the non-truncated RBP4 (nRBP4) was set 100% and intensities of RBP4-L and RBP4-LL were expressed in % of nRBP4.
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Discussion
This study was designed to investigate the effect of CLD
and CKD on RBP4 isoforms and to identify factors influ-
encing and/or generating RBP4 isoforms. We were able to
show that the relative amount of RBP4 isoforms (apo-
RBP4, RBP4-L, RBP4-LL) was increased in CKD patients,
but not in CLD patients, in comparison to controls. Our
results also show that RBP4 levels were significantly ele-
vated in serum of CKD patients compared to both, CLD
patients and controls. In contrast, RBP4, TTR and ROH
levels were significantly decreased in CLD patients, as
compared to CKD patients and controls.

Jaconi et al. [20] investigated RBP4-L and RBP4-LL in the
serum of hemo-dialysis patients and regarded the occur-
rence of RBP4 isoforms to be specific for CKD [11,17]. To
date, RBP4 isoforms have been investigated exclusively in
a small number of patients ([1] and [10], respectively) suf-
fering from CKD [11,17] and not in CLD patients. Our
data show that RBP4-L and RBP4-LL, which are truncated

at the C-terminal end of the molecule, were increased in
CKD (Figure 1). In contrast to that, in CLD patients – irre-
spective of the kind of liver disease – there were no
increased amounts of RBP4-L and RBP4-LL, thus support-
ing the relation between RBP4 isoforms and kidney func-
tion. The increased survival and retention of RBP4 in the
circulation during CKD may contribute to the increased
truncation of RBP4. Although there is evidence that a spe-
cific carboxypeptidase is responsible for the truncation
[17,20], the physiological impact of RBP4-L and RBP4-LL
is not known. However, RBP4-L and RBP4-LL isolated
from CKD serum, inhibit chemotaxis and oxidative
metabolism of polymorphonuclear leucocytes. These
alterations in leucocytes activity may disturb immune
defense in these patients [24]. In addition, the C-terminal
end of RBP4 is involved in ROH binding, and therefore,
RBP4 modifications may also influence the interaction
with TTR [7,25].

Additionally, we confirmed that RBP4, TTR and ROH lev-
els in various liver diseases were markedly depressed, par-
ticularly in patients with c2-cirrhosis or hepato-cellular
carcinoma, which is in accordance with results of previ-
ously published studies [16,26-28]. This decrease is due to
a loss of functional hepatic tissue resulting in decreased
synthesis of RBP4 and TTR and decreased release of the
ROH-transport complex into the circulation [23,27].

In patients with CKD, the levels of RBP4 were markedly
elevated and therefore the molar ratio of RBP4 to TTR was
increased. In healthy states, TTR is present in a 3–5 fold
molar excess in plasma and the serum RBP4/TTR ratio is
approximately 0.4 whereas in CKD patients an increase in
the RBP4/TTR molar ratio up to 1.06 has been reported
[16,18,29,30]. This is consistent with the 3-fold elevated
RBP4/TTR ratio from 0.36 in controls to 0.96 in CKD in
our study. Due to the increase of RBP4 and the simultane-
ous fall in TTR levels in CKD, almost one molecule of TTR

Table 3: Biochemical variables of the ROH-RBP4-TTR complex in plasma of CLD patients classified for individual liver diseases.

Fibrosis1 (n = 38) HCC2 (n = 10) Cirrhosis (n = 7)

ROH (μmoL/L) 1.15 (0.87 – 1.40) 0.68 (0.55 – 0.85) * 0.51 (0.38 – 0.72) *
RBP4 (μmoL/L) 0.98 (0.64 – 1.36) 1.02 (0.76 – 1.02) 0.53 (0.41 – 0.82) *
TTR (μmoL/L) 1.44 (1.86 – 3.09) 1.02 (0.91 – 1.26) 1.00 (0.93 – 1.40)
RBP4/ROH ratio 3 0.97 (0.83 – 2.17) 1.53 (1.00 – 2.13) 1.07 (0.97 – 1.26) *
RBP4/TTR ratio 4 0.71(0.38 – 1.13) 1.05 (0.55 – 1.36) 0.51 (0.41 – 0.61) #

RBP4-L (%)5 33.00 (17.00 – 46.00) 31.00 (16.50 – 56.00) 44.00 (20.00 – 58.00)
RBP4-LL (%) 5 0.00 (0.00 – 6.00) 6.00 (0.00 – 8.00) 0.0 (0.0 – 0.0)

Data are expressed as median with 25th and 75th percentiles.
1 Fibrosis stage 0–4, 2 HCC = Hepato-cellular carcinoma;
3 The RBP4/ROH ratio is the molar ratio of serum RBP4 to serum ROH.
4 The RBP4/TTR ratio is the molar ratio of serum RBP4 to serum TTR.
5 The intensity of the non-truncated RBP4 (nRBP4) was set 100% and intensities of RBP4-L and RBP4-LL were expressed in % of nRBP4.
* = significantly different from Fibrosis patients < (p < 0.05). # = significantly different from HCC patients (p < 0.05).

Representative polyacrylamide gel electrophoresis-immunob-lotting of apo- and holo-RBP4 bands in serum of controls, patients with chronic liver disease (CLD) and chronic kidney disease (CKD)Figure 1
Representative polyacrylamide gel electrophoresis-
immunoblotting of apo- and holo-RBP4 bands in 
serum of controls, patients with chronic liver disease 
(CLD) and chronic kidney disease (CKD). Relative 
amounts were calculated by comparing the intensity of the 
apo-band to the holo-RBP4 bands of each lane and are dis-
played as percentage of total intensity per lane.
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and one molecule of RBP4 are present in the circulation
[16,18,31]. The decrease in TTR levels in CKD may be due
to malnutrition and/or infectious disease [16,29].

The kidneys play an important role in the recycling of
RBP4 since RBP4 catabolism is disturbed in CKD patients
[16,31]. According to previous studies elevated serum cre-
atinine levels, a marker for kidney dysfunction, are associ-
ated with high serum concentrations of RBP4 [16,32].
This is due to the loss of functional tissue and/or the entire
nephron in kidney failure, which leads to decreased filtra-
tion of creatinine and abnormal survival of small serum
proteins resulting in an increase of their serum levels
[10,33]. This might explain the increased RBP4 levels in
CKD (Table 2). Under physiological conditions 98% of
RBP4 is bound to ROH (holo-RBP4) and 2% circulate
ROH free as apo-RBP4 [18,34]. In this study we show that
the percentage of plasma apo-RBP4 is highly increased in
CKD patients compared to controls and CLD patients,
thus supporting early findings [20,35]. Nearly all of the
apo-RBP4 is normally glomerularly filtered and reab-
sorbed by the kidney proximal convoluted tubules. The
increase in the molar ratio of RBP4 to ROH in our CKD
patients indicates an excess of RBP4 over ROH, leading to
an increase in RBP4 unbound to ROH, which is consistent
with the increase in apo-RBP4. The altered holo- to apo-
RBP4-ratio in CKD complies also with previous results
indicating that impaired kidney function compromises
sufficient metabolisation of apo-RBP4 from serum
[14,20,31,36]. This finding is confirmed by the correla-
tion of apo-RBP4 and serum creatinine in our study.

The alterations in RBP4 metabolism during CKD are of
interest in relation to T2DM since T2DM patients are
exposed to increased oxidative stress which has been
reported to be linked to endothelial dysfunction [37]. It is
known that T2DM patients often suffer from kidney dys-
function [38] and therefore the RBP4-L and RBP4-LL may
further enhance oxidative stress through their action on
polymorphonuclear leucocytes [24].

Conclusion
The results of the study show that the disturbed catabo-
lism of RBP4 in CKD results in an increase in RBP4 iso-
forms including apo-RBP4, RBP4-L and RBP4-LL –
whereas the generation of RBP4 isoforms is not influ-
enced by liver function. However, both CKD and CLD do
influence serum RBP4 levels. Since the increase in RBP4
isoforms was not observed in patients suffering from var-
ious CLD, the important physiological function of the
kidneys in that context is emphasized and it may be sug-
gested that impaired catabolism of RBP4 in the kidneys
leads to an accumulation of RBP4 isoforms in serum.
These results support the hypothesis that the C-terminal
truncation of RBP4 may be specific during CKD.

Representative MALDI spectra of RBP4 in a healthy control, a chronic liver disease (CLD) patient and a chronic kidney disease (CKD) patientFigure 2
Representative MALDI spectra of RBP4 in a healthy 
control, a chronic liver disease (CLD) patient and a 
chronic kidney disease (CKD) patient. Control and 
CLD patient show the non-truncated RBP4 (1 = 21.065 Da) 
and the RBP4-L peak (2 = 20.950 Da) whereas the RBP4-LL 
peak (3 = 20.837 Da) is solely present in the CKD patient.
Page 5 of 9
(page number not for citation purposes)



Lipids in Health and Disease 2008, 7:29 http://www.lipidworld.com/content/7/1/29
Methods
Subjects
Sera of 50 healthy subjects were obtained from the
Department of Clinical Nutrition, German Institute of
Human Nutrition, Potsdam-Rehbrücke, Germany. The
inclusion criteria for healthy subjects were no known
diagnosis of any kidney, liver or metabolic disease, such as
obesity/adiposity, diabetes or hypertension, and no drug
intake.

Sera of 45 patients with CKD were obtained from the
Department of Medicine IV, Charité Campus Benjamin
Franklin, Berlin, Germany. Subjects were characterized
according to their estimated glomerular filtration rate
(eGFR) which was calculated according to the MDRD for-
mula [40]. In the CKD group patients with moderately
decreased (30 – 60 ml/min/1.73 m2) and severely
decreased (< 30 ml/min/1.73 m2) eGFR were included
[41].

Sera of 63 patients with CLD were obtained from the
Department of Medicine IV, Charité Campus Virchow,
Berlin, Germany. Of these patients, 10 were diagnosed
with fibrosis METAVIR stage 0 – 1.5, 12 with fibrosis
METAVIR stage 2 – 2.5, 9 with METAVIR stage 3, 7 with
fibrosis METAVIR stage 4, 10 with hepato-cellular cancer
and 7 with c2 cirrhosis. Cirrhosis diagnosis was made
depending on histopathologic, clinical and laboratory

findings. Staging was differentiated according to fibrosis:
Stage 1 = zone 3 perisinusoidal/pericellular fibrosis, focal
or diffuse; stage 2 = focal of diffuse periportal fibrosis
together with zone 3 perisinusoidal/pericellular fibrosis;
stage 3 = focal and diffuse bridging necrosis together with
perisinusoidal/pericellular fibrosis and portal fibrosis;
stage 4 = Cirrhosis. Body mass index (BMI) was calculated
by the formula: weight (kg)/height(m2).

Laboratory analyses
Blood samples were collected by the attending physician
after an overnight fast. Serum was stored at -80°C until
processing. The study protocol was approved by the Ethics
Committees of the Universities of Charité Berlin and Pots-
dam. Informed consent was obtained from each subject.
AST, ALT, GGT, ALP, total protein, albumin, serum creati-
nine, serum albumin, bilirubin, glucose levels were meas-
ured by routine laboratory methods.

Determination of ROH, RBP4, TTR and CRP
For separation and quantification of ROH a gradient
reversed-phase HPLC system was used as previously
described [39]. Briefly, 200 μl of ethanol were added to
100 μl plasma (1:1 diluted with water). Afterwards,
plasma was extracted twice with n-hexane, stabilized with
0.05% butylated hydroxyluene (BHT), vortexed and cen-
trifuged for 10 min at 1500 g. The supernatants were
removed and evaporated under nitrogen and reconsti-

Relative amounts of RBP4-L and RBP4-LL in controls, patients with chronic liver disease (CLD) and chronic kidney disease (CKD)Figure 3
Relative amounts of RBP4-L and RBP4-LL in controls, patients with chronic liver disease (CLD) and chronic 
kidney disease (CKD). The intensities of RBP4-L and RBP4-LL in the sera of the CLD group, the CKD and the control group 
were calculated in relation to the peak height of the non-truncated RBP4 peak (21.065 Da), which was set 100%. The peak 
heights of RBP4-L and RBP4-LL are expressed as percentage of the non-truncated RBP4. All peak heights were determined in a 
"valley-to-valley" procedure. Boxes represent interquartile range with median (white bar); black dots represent single values of 
each subject.
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tuted in 200 μl isopropanol and injected into the HPLC
system (C30 carotenoid columm, 5 μm, 250 × 4,6 mm, in
line with C18 pre-columm, solvent A methanol:water
(90:10 v:v, with 0,4 g/l ammonium acetate in water), sol-
vent B methanol:methyl-tert-butyl-ether:water (8:90:2
v:v:v, with 0,1 g/l ammonium acetate in water).

Serum levels of RBP4 and TTR were measured by ELISA
using polyclonal rabbit anti-human antibodies for RBP4
and Prealbumin (Dako, Hamburg, Germany) as previ-
ously described [40,41]. Determination of CRP was per-
formed by ABX Pentra CRP CP, a latex-enhanced
immunoturbidimetric assay (ABX Diagnostics, Monpel-
lier, France).

Immunoprecipitation of RBP4 and subsequent analysis by 
MALDI-TOF-MS
For immunoprecipitation 10 μl of serum sample was
incubated with an equal amount of Sephadex G 15 and 5
μl polyclonal rabbit anti-human RBP4 (Dako, Hamburg,
Germany) at room temperature for 18 hours, centrifuged
at 13,000 rpm for 20 min at room temperature. After
removing the supernatant, the protein-antibody complex
was washed twice with PBS and once with HEPES. The
samples were then applied on the MALDI target using 2 μl
of sample. Afterwards, 2 μl saturated sinapinic acid solu-
tion was placed on a serum drop and dried. The matrix
solution contained 1 mg sinapinic acid and an equal
amount of 1% trifluoroacetic acid and acetonitrile.
MALDI mass spectra were obtained using a Reflex II
MALDI-TOF mass spectrometer (Bruker-Daltronik,
Bremen, Germany) which was performed in a linear mode
at 20 k acceleration voltage. For ionisation, a nitrogen
laser (337 nm, 3 ns pulse width, 3 Hz) was used. For opti-
misation of the mass spectra, the laser was aimed either at
the central area of the sample or at the outmost edge of the
crystal rim. All spectra were measured using external cali-
bration. As the ionization efficiencies of non-truncated
RBP4, RBP4-L and RBP4-LL are similar, the peaks in the
mass spectra reflect the relative amounts of RBP4-L and
RBP4-LL [17]. Therefore peaks were analysed "valley-to-
valley" and are expressed as percentage of non-truncated
RBP4 (nRBP4).

Determination of relative amounts of apo- and holo-RBP4
Relative amounts of holo-RBP4 and apo-RBP4 in serum
were assessed by using nondenaturating polyacrylamide
gel electrophoresis (PAGE) with subsequent immunob-
lotting analysis. Under these conditions retinol remains
bound to RBP4 and due to the higher molecular weight of
holo-RBP4 (+ 286 Da), two bands may be detected. The
PAGE was performed according to Siegenthaler and Sau-
rat with slight modifications [17]. Briefly, the resolving gel
was prepared using 12% acrylamide/bisacrylamide and
0.05% ammoniumpersulfate (APS) and 0.075%

N,N,N',N'-tetramethylethylenediamine (TEMED) as
crosslinker in 0.375 Tris/HCl, pH 8.8. The stacking gel
(4% acrylamide/bisacrylamide, 0.05% APS, 0.1%
TEMED) was prepared in 0.125 M Tris/HCl, pH 6.8. 10 μl
of serum diluted 1:20 in sample buffer (0.125 Tris/HCl,
2.74 M glycerol, 0.1 mM bromphenol blue, pH 6.8) was
applied to each slot, with 12 samples per gel. The electro-
phoresis conditions were 25 mA per gel for 30 to 45 min
at room temperature. The proteins were separated accord-
ing to their electrophoretic mobilities and subsequently
transferred onto a polyvinyl difluoride (PVDF) sheet.
Immunoreactive bands were visualized by using rabbit
anti-human RBP4 (Dako) and peroxidase-coupled swine
anti-rabbit immunoglobulins (Dako). Antibody binding
was visualized using the Luminol reaction (BM Chemilu-
minescence Blotting Substrate, Roche Diagnostics, Man-
nheim, Germany). Since the binding of ROH persists
under nondenaturating conditions two bands are
obtained per lane, apo- and holo-RBP4. Band intensity of
both RBP4 isoforms was read with an imager (Bio-Rad,
Munich, Germany) and with the Quantity One® software
(Bio-Rad). The relative amounts of apo- and holo-RBP4
per lane are expressed as per cent of total intensity of each
lane. However, since apo- and holo-RBP4 are the only vis-
ible bands, the sum of the relative quantities of both iso-
forms equals 100% per lane.

Statistical procedures
Results are shown as medians and interquartile ranges.
Statistic calculations were performed using SPSS 14.0
(SPSS statistical package, SPSS Inc., Chicago, USA). The
Kruskal-Wallis test was used to test for significant differ-
ences in continuous variables between the groups. If there
was a significant effect, Mann-Whitney U-rank test was
performed to describe differences in proportions between
cases and controls. Spearman rank correlation coefficients
were used to test the association between laboratory
parameters and variables of ROH-RBP4 transport com-
plex. Values of P < 0.05 were regarded as significant.

Abbreviations
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