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Abstract
Background: Oxidative stress is supposed to increase lipid accumulation by stimulation of hepatic lipogenesis at 
transcriptional level. This study was performed to investigate the role of glutathione in the regulation of this process. 
For that purpose, male rats were treated with buthionine sulfoximine (BSO), a specific inhibitor of γ-glutamylcysteine 
synthetase, for 7 days and compared with untreated control rats.

Results: BSO treatment caused a significant reduction of total glutathione in liver (-70%), which was attributable to 
diminished levels of reduced glutathione (GSH, -71%). Glutathione-deficient rats had lower triglyceride concentrations 
in their livers than the control rats (-23%), whereas the circulating triglycerides and the cholesterol concentrations in 
plasma and liver were not different between the two groups of rats. Livers of glutathione-deficient rats had lower 
mRNA abundance of sterol regulatory element-binding protein (SREBP)-1c (-47%), Spot (S)14 (-29%) and diacylglycerol 
acyltransferase 2 (DGAT-2, -27%) and a lower enzyme activity of fatty acid synthase (FAS, -26%) than livers of the control 
rats. Glutathione-deficient rats had also a lower hepatic activity of the redox-sensitive protein-tyrosine phosphatase 
(PTP)1B, and a higher concentration of irreversible oxidized PTP1B than control rats. No differences were observed in 
protein expression of total PTP1B and the mature mRNA encoding active XBP1s, a key regulator of unfolded protein 
and ER stress response.

Conclusion: This study shows that glutathione deficiency lowers hepatic triglyceride concentrations via influencing 
lipogenesis. The reduced activity of PTP1B and the higher concentration of irreversible oxidized PTP1B could be, at 
least in part, responsible for this effect.

Background
Non-alcoholic fatty liver disease (NAFLD) affects approx-
imately 20-30% of the population in developed countries
and is a common finding in patients with metabolic syn-
drome [1,2]. Besides enhanced lipolysis and decreased β-
oxidation, NAFLD is supposed to be caused also by stim-
ulated lipogenesis [3]. Sterol regulatory element-binding
protein (SREBP)-1c is a key transcription factor in con-
trolling the mRNA expression of genes which determine
lipogenesis [4]. Since oxidative stress is generally partici-
pating in the development and progression of diabetes
and its complications [5-7], it was assumed that triglycer-
ide accumulation in the liver might be, at least in part,
induced by oxidative stress [8]. Actually, recent findings
showed that human hepatoma HepG2 cells which were

treated with H2O2 accumulated triglycerides through up-
regulation of genes encoding SREBP-1c and other genes
involved in fatty acid metabolism [8], and experiments
from our research group revealed a higher mRNA expres-
sion of fatty acid synthase (FAS), glucose-6-phosphate
dehydrogenase (G6PDH) and stearoyl-CoA desaturase
(SCD)-1 in HepG2 cells treated with pro-oxidant CuSO4
compared to untreated cells [9]. Data from both studies
indicate oxidative stress as a stimulator of lipid synthesis
in liver. However, in contrast to these findings, low levels
of glutathione induced by administration of buthionine
sulfoximine (BSO), a specific inhibitor of γ-glutamyl-
cysteine synthetase [10], have been shown to attenuate
ethanol-induced steatosis as well as hepatic triglyceride
concentrations in untreated rats [11]. Glutathione is the
most abundant thiol antioxidant in mammalian cells that
is directly involved in defense of reactive oxygen species
and that functions as a cofactor of antioxidant enzymes
such as the glutathione peroxidase (GPx) [12]. Although
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pro-oxidants and many pathological conditions such as
inflammatory liver diseases, diabetes and hyperglycemia
are accompanied by reduced intracellular levels of gluta-
thione [13-15], the effect of inhibited glutathione synthe-
sis as a model for endogenously produced oxidative stress
on lipogenesis is not yet well understood.

This study investigated the effect of glutathione deple-
tion on lipid concentrations in plasma and liver, on
expression of genes and activities of enzymes involved in
lipid synthesis. Glutathione levels were reduced by
administration of BSO. Treatment of animals with BSO
has the advantage to lower tissue glutathione levels with-
out any overt toxicity [16] or any effect on the hepatic
microsomal and cytosolic enzymes [16,17]. Lipid synthe-
sis was investigated at the transcriptional level by the
analysis of the mRNA expression of SREBP-1c, the key
transcription factor involved in the stimulation of lipo-
genesis in the liver [18,19], and of related enzymes
involved in lipid synthesis and at the activity level by anal-
ysis of lipogenic enzymes FAS and G6PDH.

We assume that protein-tyrosine phosphatase (PTP)1B
could play a crucial role in the effect of glutathione deple-
tion on lipid metabolism, because PTP1B is a redox-sen-
sitive protein and it has been identified as a potent
inductor of SREBP-1 gene expression and as a novel regu-
lator of lipogenesis [20]. In active PTP1B, the catalytic
cysteine Cys215 is reduced [21,22], whereas oxidation of
Cys215 in the presence of mild oxidative conditions
causes the reversible formation of a cyclic sulfenamide
species and leads to the inhibition of enzyme activity
[23,24]. Reducing agents such as glutathione have been
shown to reduce the active site sulfenamide and fully
restore the PTP1B activity [23,24]. On the other hand, in
addition to sulfenamide bond formation, glutathionyla-
tion of the catalytic cysteine in PTP1B might also protect
the enzyme against overoxidation [25]. Based on those
findings, we addressed the question whether glutathione
depletion had modulated lipid metabolism via altered
PTP1B activity. We further investigated the activity of the
transcription factor X-box binding protein (XPB)1 that
has been identified as a key regulator of the mammalian
unfolded protein response as well as a stimulator of
hepatic lipogenesis [26] and the inositol-requiring
enzyme (IRE)-1 that transforms the XBP1 mRNA in its
active form (XBP1s) by splicing.

Results
Body and liver weights, glutathione status and activities of 
antioxidative enzymes in liver
Rats treated with BSO had lower body weights than the
control rats, although each rat received an equal amount
of food (Table 1, P < 0.05). Liver weight was not different
between the two groups of rats. In liver, glutathione was

mainly present in the reduced form (GSH), whereas con-
centrations of the oxidized form (GSSG) were very low.
The livers of rats treated with BSO had 70% lower con-
centrations of total glutathione than the livers of the con-
trol rats (Table 1, P < 0.05). The reduction in hepatic
glutathione level was mainly due to a significant reduc-
tion of GSH (P < 0.05), whereas GSSG was not altered by
the treatment. The hepatic GSH:GSSG-ratio was reduced
by 64% in the BSO-treated rats compared to the control
rats (P < 0.05). The activity of glutathione reductase in
liver was higher in rats treated with BSO compared to the
controls (Table 1, P < 0.05), whereas the enzyme activities
of GPx, superoxide dismutase (SOD) and catalase did not
differ between the two groups of rats.

Lipid concentrations in plasma, lipoproteins, and liver
Concentrations of triglycerides in plasma and very low
density lipoproteins (VLDL) were not different between
the two groups of rats (Table 2). In liver, the concentra-
tion of triglycerides was lower in rats fed BSO than in
control rats (Table 2, P < 0.05), whereas the concentra-
tions of cholesterol in plasma, low density lipoproteins
(LDL), high density lipoproteins (HDL) and liver were not
different between the two groups of rats (Table 2).

mRNA concentrations and activities of enzymes involved in 
hepatic lipogenesis
The mRNA abundance of SREBP-1c, DGAT2 and S14 in
livers of BSO treated rats was significantly lower than in
livers of the control rats, whereas the transcriptional level
of FAS did not differ between the two groups (Figure 1, P
< 0.05). Despite higher mRNA concentrations of IRE-1 in
livers of BSO treated rats compared to the controls (P <
0.05), the mRNA concentrations of XBP1 and XBP1s
were not different between the two groups (Figure 1).
Analysis of hepatic FAS activity reveals that the rats
treated with BSO had lower activities than the control
rats (P < 0.05, Figure 2). The activity of G6PDH was not
different between the two groups of rats (Figure 2).

Activity and protein concentration of PTP1B in liver
The native activity (under non-reducing conditions) and
the activity of PTP1B under reducing conditions (DTT)
were lower in livers of rats treated with BSO than in the
controls (Figure 3, P < 0.05). In the livers of control rats
the activity of PTP1B under reducing conditions was
higher than under native conditions, whereas those dif-
ferences were not seen in the livers of rats treated with
BSO (Figure 3, P < 0.05). The total protein concentration
of PTP1B in the liver was not different between the two
groups of rats, but the concentration of glutathionylated
PTP1B was markedly lower in the BSO group than in the
control group (Figure 4, P < 0.05).
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Discussion
This study investigated the effect of glutathione defi-
ciency on lipid metabolism. Cellular GSH may be
decreased by administering compounds that react with
GSH to form conjugates or that oxidize GSH to GSSG.
However, these approaches are limited by lack of specific-
ity of the reagents available. Moreover, the effects
obtained are transient, associated with major perturba-
tions of metabolism, or both. In this study we used BSO, a
relatively nontoxic inhibitor of γ-glutamylcysteine syn-
thetase, to cause a decrease in glutathione level. The
effects observed after treatment with BSO are produced
by the reactive species that are formed in normal metabo-
lism. Thus, the BSO model of oxidative stress differs sig-
nificantly from those in which oxidative stress is
produced by radiation or by giving compounds that pro-
duce oxidation. As expected, treatment with BSO for 7
days caused a significant depletion of total glutathione in

the liver of the rats. The diminished levels of total gluta-
thione were mainly attributable to a reduction of GSH,
whereby, in both groups of animals the intracellular level
of GSSG was very small. The GSH:GSSG-ratio, which is
used as an indicator of the cellular redox state [13], was
markedly reduced in response to BSO treatment. Since
glutathione functions as a cofactor of GPx [12], it appears
plausible that the livers of BSO-treated rats showed a
compensatory increase of glutathione reductase activity.

Glutathione has multiple functions ranging from anti-
oxidant defense to modulation of immune function and
many conditions are related to low glutathione levels
[12,27]. Glutathione concentration has been found to be
decreased in chemically induced diabetic animals [e.g.
28,29], and transcriptional level of γ-glutamylcysteine
synthetase has been found to be lowered in response to
insulin deficiency [30] and hyperglycemia [31]. BSO-
induced glutathione deficiency in this study actually low-

Table 1: Body weight, total, reduced and oxidized glutathione and enzyme activities in control and BSO rats.

Control group BSO group

Final body weight (g) 225 ± 13 204 ± 12*

Liver weight (g) 8.87 ± 0.62 9.17 ± 0.89

Liver

Total glutathione (μmol/g) 5.39 ± 0.69 1.61 ± 0.63*

GSHa (μmol/g) 5.28 ± 0.70 1.53 ± 0.61*

GSSG (μmol/g) 0.05 ± 0.02 0.04 ± 0.02

GSH:GSSG-ratio 108 ± 46 42 ± 16*

GPx (U/mg protein) 1.69 ± 0.67 1.48 ± 0.45

Glutathione reductase (mU/mg protein) 64.9 ± 10.8 95.2 ± 14.8*

SOD (U/mg protein) 48.6 ± 8.5 56.2 ± 10.4

Catalase (U/mg protein) 1421 ± 222 1307 ± 373

Values are means ± SD, n = 10. * Different from control rats at P < 0.05, determined by Student's t-test. a GPx, glutathione peroxidase, GSH, 
reduced glutathione; GSSG, oxidized glutathione; SOD, superoxide dismutase.

Table 2: Concentrations of triglycerides and cholesterol in plasma, lipoproteins and liver of control and BSO rats.

Control group BSO group

Triglycerides

Plasma (mmol/l) 1.66 ± 0.47 2.02 ± 0.47

VLDL (mmol/l) 0.79 ± 0.23 0.91 ± 0.38

Liver (μmol/g) 26.1 ± 2.8 20.2 ± 5.2*

Cholesterol

Plasma (mmol/l) 2.24 ± 0.40 2.09 ± 0.42

LDL (mmol/l) 0.31 ± 0.06 0.34 ± 0.12

HDL (mmol/l) 1.22 ± 0.17 1.18 ± 0.30

Liver (μmol/g) 7.82 ± 0.88 6.77 ± 1.40

Values are means ± SD, n = 10. * Different from control rats at P < 0.05, determined by Student's t-test.
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ered triglyceride concentrations in liver by 23%. These
data confirm recent results of Donohue et al. [11] who
found a BSO-induced reduction of triglyceride concen-
tration in livers of healthy rats or rats with ethanol-
induced steatosis. The reduced mRNA concentrations of
SREBP-1c, S14, DGAT2 and diminished activity of FAS
which we observed in the livers of BSO-treated rats indi-
cate that the lower hepatic triglyceride concentration was
caused by a diminished lipogenesis. Despite the lower
liver lipid concentrations, the concentrations of circulat-
ing triglycerides were not lower than those of the control
rats. Although there have been published a few studies
that used a genetic mouse model of chronic glutathione
depletion [e.g. 32-34], none of these studies had charac-
terized the lipid metabolism in those animals. A histolog-
ical survey revealed no evidence for abnormalities in

livers of such knockout mice [32], albeit hepatic triglycer-
ides were not measured in this context.

In contrast to our results, there are a couple of other
studies which observed a stimulation of lipogenesis in
response to oxidative stress or ER stress. In particular,
experiments with human hepatoma cells (HepG2)
showed that oxidative stress induced by H2O2 [8] or cop-
per [9] leads to triglyceride accumulation in these cells by
up-regulation of lipogenic transcription factors and
enzymes involved in fatty acid synthesis. In addition, Lin
et al. [35] found that oxidative ER stress which was
induced by administration of a high saturated fat diet
stimulates lipogenesis in liver of mice, whereas antioxida-
tive cysteine-containing compounds such as n-acetyl
cysteine were capable of down-regulating lipogenesis. As
previously mentioned, we assume that the BSO model
which is a model for endogenously produced oxidative
stress in normal metabolism differs significantly from
those in which oxidative stress is produced by adminis-
tered compounds that produce exogenous oxidation.
However, it would be an interesting scientific issue, how
pro-oxidants would influence lipid metabolism under
conditions of glutathione deficiency. Based on our find-
ings, we assume that the reduced activity of PTP1B could
by an explanation for the lower triglyceride concentra-
tions in livers of BSO-treated rats. As stated before,

Figure 1 Hepatic mRNA concentrations of genes involved in reg-
ulation of lipogenesis in control and BSO rats. Glyceraldehyde-3-
phosphate dehydrogenase was used for normalization, values of BSO 
rats were related to values of control rats (= 1.00). Values are means ± 
SD, n = 10; *Different from control rats at P < 0.05, determined by Stu-
dent's t-test. DGAT, diacyl glycerol acyl transferase; FAS, fatty acid syn-
thase; IRE, inositol requiring enzyme; SREBP, sterol regulatory element-
binding protein; S14, Spot 14; XBP1, X-box binding protein 1; XBP1s, 
splicing variant of XBP1.
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Figure 2 Activities of lipogenic enzymes in liver of control and 
BSO rats. Values are means ± SD, n = 10. *Different from control rats at 
P < 0.05, determined by Student's t-test. FAS, fatty acid synthase; 
G6PDH, glucose-6-phosphate dehydrogenase.
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Figure 3 Activity of PTP1B in liver of control and BSO rats. Activity 
was measured under native and under reducing conditions (DTT). Val-
ues are means ± SD, n = 10; *Different from control rats at P < 0.05, de-
termined by Student's t-test. #Different from native PTP1B at P < 0.05, 
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PTP1B is a redox-sensitive key enzyme which is capable
of stimulating the fatty acid synthesis via activation of
SREBP-1 [20]. PTP1B is regulated via peroxide-mediated
oxidation of the active-site thiol residue to a sulfonic acid
[36], followed by the reaction with glutathione to a mixed
disulfide, termed glutathionylation [37,38]. Glutathiony-
lation of cysteine in the catalytic centre (Cys 215) of
PTP1B leads to a reversible inactivation of the enzyme
[25], but glutathionylation of the catalytic cysteine in
PTP1B might also protect the enzyme against irreversible
overoxidation [25]. The addition of DTT is normally used
to ascertain the amount of reversible oxidized PTP1B
[39]. However, our analysis revealed reversible oxidized
PTP1B only in livers of untreated rats, whereas treatment
with BSO increased the amounts of irreversibly oxidized
PTP1B. We also observed considerably lower concentra-
tion of glutathionylated PTP1B in the BSO-treated rats,
which indicates a lower protection of PTP1B against irre-
versible overoxidation.

On the other hand, we assume that XBP1 has not con-
tributed to the observed alterations of lipid metabolism
in the BSO-treated rats. Despite the observed up-regula-
tion of the kinase IRE1 in livers of rats treated with BSO,
the mRNA expression of XBP1 and XBP1s was not
altered in these livers. IRE-1 is an ER-localizing proximal

sensor of ER stress, and normally induces an unconven-
tional splicing of XBP1 mRNA to generate a mature
mRNA encoding the active transcription factor XBP1s
[40,41]. XBP1s has been identified as a key regulator of
ER stress response [42] and a transcriptional activator of
lipogenesis [26]. The failing increase of mature XBP1s
mRNA expression probably contributed, that we did not
observe any triglyceride accumulation in livers of rats
treated with BSO compared to the controls.

Conclusions
This study confirmed that short-term reduction of avail-
able glutathione under conditions of a normal metabo-
lism lowers the concentration of triglycerides in liver
probably by reduction of lipid synthesis. We assume that
the reduced hepatic activity of the redox-sensitive
PTP1B, the lower concentration of glutathionylated
PTP1B and the higher concentration of irreversible oxi-
dized PTP1B in the glutathione-depleted rats could
explain, at least in part, the reduced levels of triglycerides
in the liver of these animals.

Materials and methods
Animals and treatment
Twenty male 5-wk old Sprague-Dawley rats (Charles
River, Sulzfeld, Germany) were randomly assigned to 2
groups of 10 each (initial body weight: 169 ± 12 g). All
rats were kept individually in Macrolon cages in a room
with controlled temperature (22 ± 2°C), relative humidity
(50-60%), and light (12:12-h light:dark cycle). The rats
were fed 16 g per day of a semi-synthetic diet consisting
of (g/kg) casein (200), starch (388), sucrose (200), lard
(100), cellulose (50), vitamin and mineral mixture (60),
and DL-methionine (2). Vitamins and minerals were sup-
plemented according to recommendations of the Ameri-
can Institute of Nutrition for rat diets [43]. Nipple
drinkers allowed free access to water. All experimental
procedures described followed established guidelines for
the care and use of laboratory animals and were approved
by the council of Saxony-Anhalt, Germany (42502/3-468
MLU).

One rat group received L-buthionine-(S,R)-sulfoxi-
mine (Sigma-Aldrich, Steinheim, Germany) via drinking
water at a concentration of 20 mM yielding an average
dose level of 1.77 mmol/kg body mass per day for a total
of 7 days. The rats of the control group were offered
drinking water without BSO. After 7 days, the rats were
killed by decapitation under light anesthesia with diethyl
ether. Each rat received 7 g of the diet 4 h before decapita-
tion as short-term food-deprivation significantly down-
regulates the transcriptional levels of genes encoding
enzymes of the lipid metabolism [44,45] which were to be
measured in this study. Whole blood was collected into
heparinized polyethylene tubes and plasma was sepa-

Figure 4 Protein expression of total and glutathionylated PTP1B 
in liver of control and BSO rats. (A) Densitometric analysis of protein 
abundance after Western blotting. Beta-actin was used for normaliza-
tion, values of BSO rats were related to values of control rats (= 1.00). 
Values are means ± SD, n = 10; *Different from control rats at P < 0.05, 
determined by Student's t-test. (B) Representative bands of total and 
glutathionylated PTP1B and beta-actin.
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rated by centrifugation at 1,500 × g for 10 min at 4°C. Liv-
ers were excised, washed with ice cold NaCl solution and
weighed. Aliquots of liver for RNA isolation were imme-
diately snap frozen in liquid nitrogen and stored at -80°C.
Plasma was stored at -20°C. Aliquots of liver were
homogenized in ice-cold 0.1 M phosphate buffer (pH 7.4)
(1:5, w/v) using a Potter-Elvehjem homogenizer and then
centrifuged at 700 × g for 10 min at 4°C. The supernatant
was used as crude homogenate. For analysis of enzyme
activities in cytosol fractions, aliquots of the crude homo-
genate were centrifuged at 100,000 × g for 1 h at 4°C.

Analysis of lipids in plasma and liver
Chylomicrons, VLDL, LDL and HDL were separated by
step-wise ultracentrifugation (Mikro-Ultracentrifuge,
Sorvall Products, Bad Homburg, Germany) by appropri-
ate density cuts (chylomicrons, < 0.95 kg/l; VLDL, 0.95 <p
< 1.006 kg/l; LDL, 1.006 <p < 1.040 kg/l; HDL, p > 1.063
kg/l). Plasma densities were adjusted by NaCl and KBr.
Chylomicrons were isolated by centrifugation at 100,000
× g for 10 min at 4°C and were removed. The other frac-
tions were separated at 900,000 × g for 1.5 h each at 4°C.
Lipids from liver were extracted with a mixture of n-
hexane and isopropanol (3:2, v/v) [46]. After evaporation
of the solvent, the lipids were dissolved with Triton-X
[47]. Concentrations of cholesterol and triglycerides in
plasma, lipoproteins and lipid extracts from the liver were
determined using enzymatic reagent kits (DiaSys Diag-
nostic Systems, Holzheim, Germany, Cat.-No. 1.1300 99
90 314 and 1.5760 99 90 314).

Analysis of glutathione in liver
Hepatic concentrations of total glutathione, its reduced
and oxidized form were measured by use of a spectropho-
tometric method [48]. In brief, fresh homogenates were
diluted in phosphate buffer, mixed with trichloroacetic
acid (10%), and centrifuged at 10,000 × g for 15 min at
4°C. The protein-free supernatant was used for analysis.
Calibration was performed using standard curves. For
measurement of GSSG, the tissue samples were mixed
with 2-vinylpyridin and incubated for 60 min prior to
analysis.

Analysis of enzyme activities
Enzyme activities in liver were assayed by spectrophoto-
metric methods. Catalase activity was determined at 25°C
using hydrogen peroxide as substrate [49]. One unit of
catalase activity is defined as the amount consuming one
μmol hydrogen peroxide per min. Total SOD activity was
determined according to the method of Marklund and
Marklund [50] with pyrogallol as substrate. One unit of
SOD activity is defined as the amount of enzyme required
to inhibit the autoxidation of pyrogallol by 50%. GPx
activity was determined at 25°C by use of t-butyl
hydroperoxide as substrate [51]. One unit of GPx activity

is defined as one μmol reduced β-nicotinamide adenine
dinucleotide phosphate (NADP) oxidized per min. Gluta-
thione reductase activity was measured according to a
method of Carlberg and Mannervik [52] with one unit
defined as the amount of enzyme required for the reduc-
tion of one μmol NADPH per min at 25°C. FAS activity
was measured in liver cytosol by analyzing the rate of
malonyl-CoA-dependent NADPH oxidation [53]. One
unit of FAS activity is expressed as one nmol of NADPH
oxidized per min at 25°C. G6PDH activity in liver cytosol
was assayed by analyzing the rate of NADP reduction
under conditions of inhibition of 6-phosphogluconate
dehydrogenase by maleimide [54]. One unit of G6PDH
activity is defined as one nmol of NADP reduced per min
at 25°C. The PTP1B activity in liver homogenate was
measured under reducing and non-reducing conditions
[55] with modifications [39,56] using para-nitrophenyl
phosphate (pNPP, extinction coefficient 17.8 l × M-1 ×
cm-1) as substrate. Native PTP activity was measured
under non-reducing conditions. To determine the total
PTP activity including the reversible inactive form, the
measurement was repeated under reducing conditions by
adding 2.5 mmol/l of DTT to the assay buffer. All enzyme
activities were normalized to 1 mg of protein. The protein
contents of the samples were determined according to the
method of Bradford et al. [57].

Western blot analysis of PTP1B
Total and glutathionylated PTP1B protein abundance in
liver tissue was measured by Western blot analysis
according to a recently described method [39] with modi-
fications. For analysis crude homogenates were diluted
1:10 (w/v) in RIPA lysis buffer containing 50 mM Tris-
base (pH 7.4), 150 mM NaCl, 1 mM EDTA, 1% (v/v) pro-
tease inhibitor cocktail (Sigma), 1% (w/v) sodium desoxy-
choleate, 1% (w/v) Triton X-100, 0.1% (w/v) SDS. The
homogenate was centrifuged at 10,000 × g for 30 min at 4°
C, and the supernatant was removed and stored at -80° C
until further processing. The protein content of the sam-
ples was determined by the bicinchoninic acid assay. 40
μg of protein per lane were separated on a 12.5% SDS-
polyacrylamide gel [58] under non-reducing conditions.
The separated proteins were transferred to a nitrocellu-
lose membrane (BioTrace™ NT, Pall Corporation, Pensa-
cola, FL, USA) by wet-blotting (90 min at 350 mA). After
blocking the membranes in TBST buffer (100 mM Tris-
base, pH 7.6, 150 mM NaCl, 0.05% Tween) containing 5%
(w/v) non-fat dry milk overnight at 4°C, the blots were
incubated with primary antibodies. For total PTP1B pro-
tein analysis the mouse anti-PTP1B antibody (BD Biosci-
ences, Pharmingen), and for analysis of the
glutathionylated PTP1B protein abundance the mouse
anti-GSH antibody (Virogen, Watertown, USA) was used,
both diluted 1:2,500 in TBS buffer. Incubation was car-
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ried out for 2 h at room temperature. The secondary anti-
body (goat anti-mouse alkaline phosphatase conjugated
antibody, BioFX Lab., Owings Mills, USA) was employed
at a dilution of 1:2,500 in TBS buffer for 1 h at room tem-
perature. Antibody binding was visualized with a reaction
buffer (100 mM Tris-base, 100 mM NaCl, 50 mM MgCl2)
containing 1 M nitro-blue tetrazolium and 1 M 5-bromo-
4-chloro-3-indoylphosphate. Optical densities of the
bands were evaluated. For normalization a mouse anti-
beta-actin antibody (Abcam, Cambridge, UK) was used
(1:5,000).

RNA isolation and real-time detection RT-PCR
The RNA was isolated from liver samples using TRIZOL™
reagent (Invitrogen, Karlsruhe, Germany) according to
the manufacturer's protocol. Total RNA concentration
and purity were estimated from the optical density at 260
and 280 nm, respectively. Synthesis of cDNA and deter-
mination of mRNA abundance of SREBP-1c, FAS (EC
2.3.1.85), DGAT-2 (EC 2.3.1.20), S14, PTB1B (EC
3.1.3.48), XBP1 in native and spliced form, IRE-1 and
glyceraldehyd-3-phosphat dehydrogenase (GAPDH)
were performed by real-time detection PCR as recently
described in detail [9]. The primer sequence was for
DGAT-2 For-5'-CAGCCCTTAGTGACTCAG-3', Rev-5'-
GTGTACAGGAGGCCAGG-3', for FAS For-5'-AGGGC
TAGAGGCCCTGCTA-3', Rev-5'-GTGCACAGACACC
TTCCCAT-3', for GAPDH For-5'-GCATGGCCTTCCG
TGTTCC-3', Rev-5'-GGGTGGTCCAGGGTTTCTTAC
TC-3', for IRE-1 For-5'-ACCCACACGGAGACCTTAC
C-3', Rev-5'-ACTGGTGCCAGCCTTGAGAG-3', for SR
EBP-1c For-5'-GGAGCCATGGATTGCACATT-3', Rev-
5'-AGGAAGGCTTCCAGAGAGGA-3', for S14 For-5'-
CCAGCCTCCATCACATCCTTA-3', Rev-5'-CCCCTGG
CCGCTTGCTATTAC-3', for XBP1 For-5'-ATTCT-
GACGCTGTTGCCTCT-3', Rev-5'-CTCTGGGGAAGG
ACATTTGA-3' and for XBP1s For-5'-GAG TCCGCAG-
CAGGTG-3', Rev-5'-GTGTCAGAGTCCATGGG-3'.
Relative quantification of mRNA abundance of the genes
was performed using the ΔΔCt-method with GAPDH as
reference gene [59]. Ct-values of the target genes and the
reference gene were obtained using RotorGene Software
5.0 (Corbett Research, Mortlake, Australia). Relative
mRNA abundance of the genes investigated is expressed
as fold change in the BSO group compared to the control
group.

Statistical analysis
Experimental data were analyzed using the Minitab Sta-
tistical Software (Minitab, State College, PA, USA).
Means of the two groups were compared by Student's t-
test, and means of related samples by paired t-test. Means
were considered significantly different at P < 0.05.
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