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Abstract 

Background Myocardial ischemia–reperfusion injury (MIRI) is widespread in the treatment of ischemic heart disease, 
and its treatment options are currently limited. Adiponectin (APN) is an adipocytokine with cardioprotective proper-
ties; however, the mechanisms of APN in MIRI are unclear. Therefore, based on preclinical (animal model) evidence, 
the cardioprotective effects of APN and the underlying mechanisms were explored.

Methods The literature was searched for the protective effect of APN on MIRI in six databases until 16 November 
2023, and data were extracted according to selection criteria. The outcomes were the size of the myocardial necrosis 
area and hemodynamics. Markers of oxidation, apoptosis, and inflammation were secondary outcome indicators. The 
quality evaluation was performed using the animal study evaluation scale recommended by the Systematic Review 
Center for Laboratory animal Experimentation statement. Stata/MP 14.0 software was used for the summary analysis.

Results In total, 20 papers with 426 animals were included in this study. The pooled analysis revealed that APN 
significantly reduced myocardial infarct size [weighted mean difference (WMD) = 16.67 (95% confidence inter-
val (CI) = 13.18 to 20.16, P < 0.001)] and improved hemodynamics compared to the MIRI group [Left ventricular 
end-diastolic pressure: WMD = 5.96 (95% CI = 4.23 to 7.70, P < 0.001); + dP/dtmax: WMD = 1393.59 (95% CI = 972.57 
to 1814.60, P < 0.001); -dP/dtmax: WMD = 850.06 (95% CI = 541.22 to 1158.90, P < 0.001); Left ventricular ejection frac-
tion: WMD = 9.96 (95% CI = 7.29 to 12.63, P < 0.001)]. Apoptosis indicators [caspase-3: standardized mean difference 
(SMD) = 3.86 (95% CI = 2.97 to 4.76, P < 0.001); TUNEL-positive cells: WMD = 13.10 (95% CI = 8.15 to 18.05, P < 0.001)], 
inflammatory factor levels [TNF-α: SMD = 4.23 (95% CI = 2.48 to 5.98, P < 0.001)], oxidative stress indicators [Superoxide 
production: SMD = 4.53 (95% CI = 2.39 to 6.67, P < 0.001)], and lactate dehydrogenase levels [SMD = 2.82 (95% CI = 1.60 
to 4.04, P < 0.001)] were significantly reduced. However, the superoxide dismutase content was significantly increased 
[SMD = 1.91 (95% CI = 1.17 to 2.65, P < 0.001)].

Conclusion APN protects against MIRI via anti-inflammatory, antiapoptotic, and antioxidant effects, and this effect 
is achieved by activating different signaling pathways.

Keywords Adiponectin, Myocardial ischemia–reperfusion injury, Apoptosis, Oxidation, Inflammation, Animals

*Correspondence:
Wenhua Li
xzmylwh@163.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12944-024-02028-w&domain=pdf


Page 2 of 18Yue et al. Lipids in Health and Disease           (2024) 23:51 

Introduction
Ischemic heart disease (IDH) is a common cardio-
vascular disease that places substantial burdens on 
society [1]. Timely  restoration of  blood flow in the 
ischemic  area is crucial to  restore oxygen and nutri-
ent supply, which  is important  for saving the damaged 
myocardium. The most effective therapeutic strategies 
are coronary artery bypass grafting and percutaneous 
coronary intervention [2]. However, this leads to dis-
turbances in myocardial function and electrical activ-
ity, structural damage, and exacerbation of myocardial 
necrosis, a phenomenon termed myocardial ischemia–
reperfusion injury (MIRI) [3, 4]. Treatment for MIRI is 
scarce, and the pathogenesis is complex. Although the 
exact  mechanisms  are not  fully understood,  research 
has indicated a potential  link  among oxidative stress, 
apoptosis, inflammation, and  their mechanisms  of 
action [5–7].

Adiponectin (APN) is an adipokine responsible for 
regulating the metabolism of glucose and lipids [8]. APN 
also has anti-inflammatory, antithrombotic, antioxidative 
stress, and antiatherosclerotic properties [9, 10]; it may 
also be involved in myocardial protection against MIRI. 
Braun et  al. found that APN knockout mice have more 
severe myocardial infarctions after ischemia–reperfusion 
than wild-type mice [11]. Kim et  al. demonstrated that 
the high incidence of ischemic heart disease in the dia-
betic population is strongly associated with a decrease in 
APN levels [12]. These studies suggest that APN has car-
dioprotective effects against MIRI.

To date, few clinical studies have revealed the protec-
tive effect of APN on MIRI, and most of the findings are 
limited to animal studies. Animal models have limita-
tions in that they cannot reproduce the complex patho-
physiological processes in humans, and conclusions are 
generally drawn from relatively small independent sam-
ples, which can be biased. Nevertheless, animal experi-
ments are necessary, and a well-designed meta-analysis 
can provide compelling evidence while minimizing bias. 
Therefore, the present study hypothesized that APN 
may mitigate MIRI. A meta-analysis of relevant studies 
and summarizing possible mechanisms will accelerate 
the translation to clinical studies and provide a basis for 
MIRI treatment.

Methods
The present study adhered to the requirements of the 
Cochrane Handbook Systematic Reviews of Interven-
tions (version 6.2) and the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) 
2020 statement [13] (Supplementary File 1). This study 
was registered in the Prospective Registry for Systematic 

Reviews platform (PROSPERO), where any modifications 
can be found (ID: CRD42023433357).

Literature search
A search of Web of Science, EmBase, SinoMed, Pub-
Med, CNKI, and WanFang databases was used to col-
lect the relevant literature on the beneficial effect of APN 
on MIRI without limitation of the year, language, type 
of article, or research object. The search time was from 
the creation of the database to 16 November 2023. The 
following search terms were utilized: [(adiponectin) OR 
(acrp30) OR (adipokines) OR (apM1 protein)] AND 
[(myocardial ischemia–reperfusion injury) OR (ischemic 
heart disease) OR (myocardial ischemia) OR (myocar-
dial reperfusion)]. Citations from relevant literature were 
tracked to ensure the integrity of the included studies as 
much as possible.

Eligibility criteria
The inclusion criteria were as follows: (1) the MIRI model 
was established by using appropriate methods; (2) the 
treatment group was injected with exogenous recombi-
nant APN (proteolytic cleavage product of APN), and the 
MIRI group was given normal saline or a carrier with-
out the drug (there were no requirements for the mode 
of administration, drug action time, or the dose of the 
two groups); (3) the object of study was animals; (4) the 
outcomes were the size of the myocardial necrosis area 
and hemodynamic monitoring indicators; and (5) mark-
ers of oxidation, apoptosis, and inflammation were used 
as secondary outcome indicators. The exclusion criteria 
were as follows: (1) duplicate publications; (2) editorials, 
conferences, abstracts, case reports, meta-analysis, and 
technical reports; (3) in vitro and clinical studies; (4) lack 
of intervention or control group modeling; (5) use of the 
same set of research data; (6) APN was not the only inter-
vention; and (7) incomplete data.

Data extraction
Two authors (HY and QZ) examined each study based 
on selection criteria and extracted relevant data. The fol-
lowing information was extracted: (1) author and year 
in which the article was published; (2) type, sex, weight, 
and weekly age of laboratory animals; (3) type of narcotic 
drug used; (4) methodology for the construction of the 
MIRI model; (5) APN treatment information, includ-
ing dose, time, and method of administration; (6) time 
of ischemia and reperfusion; (7) presence of comorbidi-
ties; (8) outcome indicators and corresponding p-values; 
and (9) signaling pathways involved and corresponding 
mechanisms. When the sample size given by the study 
was not a definite value, the minimum sample size was 
taken to ensure accuracy. When there were differences in 
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the dose and duration of action of APN in the interven-
tion group, the differences were combined into a single 
treatment group according to the formula recommended 
by the Cochrane Handbook [14, 15]. For articles that only 
display data graphically, the data were obtained using 
GetData graph digitizer 2.22 (http://getdata-gra ph-digi-
tizer.com/) based on the method of Chen et al. [16].

Quality evaluation
Quality evaluation of the 20 studies was performed 
by HY and QZ using the risk assessment scale recom-
mended by the Systematic Review Center for Laboratory 
animal Experimentation (SYRCLE) statement accord-
ing to the methodology of Hooijmans et al. [17]. A third 
author (WH) checked the raw data for corrections. The 
scale evaluates the following components: (A) whether 
sequence generation was described in detail; (B) whether 
animals were characterized in detail at baseline; (C) suffi-
ciency of allocation sequence hiding; (D) whether the ani-
mals were randomly captive; (E) whether the researcher 
was blinded; (F) whether the outcome measures were 
randomized; (G) whether the researcher was blinded at 
the time of outcome assessment; (H) whether incom-
pleteness of outcome data was adequately addressed; 
(I) whether the results were selectively reported; and 
(J) whether other sources of bias were described. The 
included studies were visualised using RevMan 5.4.1. 
A third author (WH) adjudicated when there was disa-
greement. At the same time, the Grading of Recom-
mendations, Assessment, Development, and Evaluations 
(GRADE) system was used to assess the quality of each 
outcome [18].

Statistical analysis
Stata/MP 14.0 software was utilized to generate the for-
est plots and analyze all data. When P < 0.05, the analy-
sis was considered meaningful. The mean ± standard 
deviation  was  used to represent the parameters of 
the forest  map. For studies expressed as the median 
and interquartile range (e.g., Kondo, 2010), data were 
extracted after calculations based on the method stated 
by Wan et al. [19, 20]. Regarding the forest plots [21], the 
standardized mean difference (SMD) was used for pooled 
analysis when the methods or units of measurement 
were inconsistent, and the value of the confidence inter-
val (CI) was set at 95%. When the measurement method 
or unit was consistent, the analysis was combined using 
the weighted mean difference (WMD). Because the num-
ber of animals in preclinical studies was generally small, 
a hedge was selected for statistical analysis of the effect 
size of SMD [22]. The I squared (I2) statistic assessed the 
variability among the studies involved. The DerSimonian 
and Laird method was used to develop a random-effects 

model, and the inverse variance method was used to 
develop a fixed-effects model. When I2 > 50% or P < 0.10, 
which indicated significant heterogeneity, the analyses 
were pooled using random-effect models. When I2 < 50% 
or P > 0.10, the choice of effect model was fixed [23]. To 
investigate potential variations in the studies, predefined 
subgroups were examined for primary outcomes display-
ing significant heterogeneity. The predefined subgroups 
mainly included various species, different methods of 
APN administration, and the presence or absence of 
comorbidities. Analyses used Begg’s test, Egger’s test 
[24], and funnel plots [25] to determine whether the 
included studies were biased. Sensitivity analyses deter-
mined whether the robustness of the included studies 
was sufficient. The approach was to exclude one study 
at a time and assess its impact on the overall outcome. 
When there were fewer than three articles on outcome 
measures, they were not analyzed.

Results
Study inclusion
According to the search strategy, 214 articles were iden-
tified from six databases, including 106 articles in Chi-
nese and 108 in English. First, 127 duplicate articles 
were removed using NoteExpress, and the abstracts and 
titles of the remaining 87 articles were read by HY and 
QZ, respectively. In total, 8 clinical studies, 2 editori-
als, 2 reviews, 15 conference abstracts, and 2 registra-
tion forms for scientific and technological achievements 
were excluded. The remaining 58 articles were read, and 
38 articles were excluded due to the following reasons: 
18 articles were excluded because APN was not the pri-
mary study subject or was mixed with other antioxidants; 
13 articles were excluded due to the lack of intervention/
MIRI group modeling; 4 articles were excluded due to 
the use of the same data set; and 3 articles were excluded 
due to incomplete data. Finally, 20 articles that met the 
requirements were included [26–45]. The process of 
searching for literature is depicted in Fig. 1.

Features of the included studies
In total, 20 papers and 27 study cohorts (seven papers 
involving two study cohorts [26, 28, 32, 33, 37, 39, 41]), 
including 10 in English and 10 in Chinese, were included, 
with 426 animals (9 studies used rats [30, 31, 34, 36, 
38, 42–45], 10 studies used mice [26–28, 32, 33, 35, 37, 
39–41], and 1 study used pigs [29]). Regarding the MIRI 
model, one model was generated by the Langendorff car-
diac perfusion system, and the remaining models were 
generated by coronary artery ligation. The duration of 
myocardial ischemia was usually 0.5/3 h; however, in five 
papers, the duration was 0.75 h. The reperfusion time was 
24 h in nine studies, 48 h in one study, and 1–3 h in the 
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remaining studies, of which 3 h accounted for the most 
significant proportion. APN pretreatment was primarily 
intravenous (IV) or intraperitoneal (IP), while pretreat-
ment ranged from 2 min before surgery to 3 days before 
surgery. Regarding the dose of administration, the doses 
differed among studies. The anesthetics were primar-
ily isoflurane and sodium pentobarbital; however, one 
study used urethane, and another used chloral hydrate. 
Fourteen studies had no disease other than MIRI [26–30, 
34–37, 40–43, 45], while six studies considered comor-
bidities [31–33, 38, 39, 44]. Other basic features  are 
shown in Table 1.

Quality assessment of research
The content of 20 articles was independently assessed 
according to the 10-item systematic review scale for ani-
mal experiments recommended by the SYRCLE state-
ment. Sequence generation was described in detail in all 
studies. Animals were randomly assigned to rearing, and 
the incompleteness of the resulting data was adequately 
addressed in all studies. None of the studies provided a 
detailed description of the blinding of researchers or 
blinding during outcome assessment. Five studies did not 
describe (rated as high risk) the baseline characteristics 
of the animals in detail [29, 32, 34, 35, 38], and six stud-
ies did not adequately describe whether or not they were 
randomized at the time of the outcome measure [30, 31, 
34, 35, 42, 43]. Moreover, nine studies adequately illus-
trated the limitations of the study [26–29, 32, 34–36, 42]. 
Overall, the risk of bias was unclear in most studies. Only 
a few studies were at high risk, and there was a relatively 

high level of confidence in the evidence for inclusion. 
Other specific details are provided in Fig. 2.

Evidence quality evaluation
Eleven outcome indicators were evaluated using the 
GRADE approach. Of these, 27.27% (3/11) were deemed 
to be of moderate quality, 36.36% (4/11) were considered 
to be of low quality, and the rest were rated as critically 
low quality (Table 2). It is important to note that incon-
sistencies and risk of bias were the main reasons for the 
downgrading of the evidence. In addition, due to signifi-
cant heterogeneity in some results, we downgraded the 
quality of these results.

Meta‑analysis results
Myocardial infarction size
Fifteen publications (22 study cohorts), including 340 ani-
mals, reported the relationship between APN and myo-
cardial infarct size [26–29, 31–33, 36–41, 43, 44]. Due 
to the heterogeneity test results (I2 = 98.50%, P = 0.000), 
the random effects model was used for analysis. The 
area of  myocardial infarction decreased by 16.67%  due 
to the application of APN (WMD = 16.67, 95% CI = 13.18 
to 20.16, P < 0.001, Fig.  3A). However, the funnel plot 
was not symmetrical (Supplementary Fig.  1A). Egger’s 
test (t = 1.16, P = 0.261 > 0.05) and Begg’s test (Z = 1.02, 
P = 0.310) showed no bias. Sensitivity analyses showed 
(Supplementary Fig.  1B) that no study significantly 
changed the total effect sizes and I2 values of the pooled 
analyses, indicating relatively stable results.

Fig. 1 PRISMA Literature Search Flowchart
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The studies were stratified according to species (mice: 
246 animals in 16 studies, heterogeneity: I2 = 98.90%, 
P = 0.000, WMD = 18.11, 95% CI = 13.90 to 22.32, 
P < 0.001; rats: 83 animals in 5 studies, heterogeneity: 
I2 = 76.60%, P = 0.002, WMD = 9.55, 95% CI = 6.25 to 
12.86, P < 0.001, Fig.  3B), different modes of adminis-
tration (IV: 7 studies with 86 animals, heterogeneity: 
I2 = 91.60%, P = 0.000, WMD = 16.82, 95% CI = 10.02 
to 23.63, P < 0.001; IP: 13 studies 230 animals, het-
erogeneity: I2 = 99.00%, P = 0.000, WMD = 16.50, 95% 
CI = 12.01 to 21.00, P < 0.001; arterial administration: 
24 animals in 2 studies, heterogeneity: I2 = 93.80%, 
P = 0.000, WMD = 17.43, 95% CI = 2.59 to 32.26, 
P < 0.05, Fig. 3C), and presence of comorbidities (non-
comorbidity: 204 animals in 13 studies, heterogeneity: 
I2 = 98.50%, P = 0.000, WMD = 19.06, 95% CI = 14.44 

to 23.67, P < 0.001; comorbidity: 136 animals in 9 stud-
ies, heterogeneity: I2 = 97.50%, P = 0.000, WMD = 13.21, 
95% CI = 8.41 to 18.00, P < 0.001, Fig.  3D), to further 
explore sources of heterogeneity. APN still signifi-
cantly reduced the size of the infarcted myocardium in 
different subgroups, and the heterogeneity remained 
significant.

Hemodynamics‑related indicators
Left ventricular end‑diastolic pressure (LVEDP)
Nine papers (11 study cohorts), containing 197 ani-
mals, reported the protective effect of APN on LVEDP 
[26–29, 34, 36, 37, 41, 43]. Due to the heterogeneity 
test result (I2 = 97.40%, P = 0.000), the individual effects 
model selection was randomized. The comprehensive 
analysis showed that APN had an excellent reduction 
of LVEDP by 5.96 mmHg compared to the MIRI cohort 
(WMD = 5.96, 95% CI = 4.23 to 7.70, P < 0.001, Fig.  4A). 
Egger’s test (t = 2.52, P = 0.033 < 0.05) and the funnel plot 
(Supplementary Fig.  2A) showed publication skewing. 
Begg’s test (P = 0.350, Z = 0.93) indicated bias. Sensitiv-
ity analysis indicated the results were stable and credible 
(Supplementary Fig. 2C).

The beneficial effect of APN on LVEDP was 
observed in the subgroups according to different spe-
cies (mice: 138 animals in 7 studies, heterogeneity: 
I2 = 98.00%, P = 0.000, WMD = 5.68, 95% CI = 3.66 
to 7.71, P < 0.001; rats: 45 animals in 3 studies, het-
erogeneity: I2 = 96.00%, P = 0.000, WMD = 6.38, 95% 
CI = 0.25 to 12.51, P < 0.05, Fig. 4B), different modes of 
administration (IV: 3 studies 42 animals, WMD = 3.97, 
95% CI = 2.77 to 5.16, P < 0.001; IP: 6 studies with 
128 animals, heterogeneity: I2 = 98.30%, P = 0.000, 
WMD = 5.78, 95% CI = 3.58 to 7.99, P < 0.001; arterial 
administration: 27 animals in 2 studies, heterogeneity: 
I2 = 94.90%, P = 0.000, WMD = 9.50, 95% CI = 3.86 to 
15.13, P < 0.05, Fig. 4C), and the presence of comorbid-
ities (non-comorbidity: 181 animals in 10 studies, het-
erogeneity: I2 = 97.60%, P = 0.000, WMD = 6.19, 95% 
CI = 4.37 to 8.02, P < 0.001, Fig.  4D). However, when 
stratifying the studies according to different modes 
of administration, the heterogeneity of the protective 
effect of APN on LVEDP was not significant in sub-
group IV (I2 = 00.00%, P = 0.409).

Maximum rate of left ventricular pressure rise (+ dp/
dtmax)
Nine publications (12 study cohorts), containing 214 
animals, reported the protective effect of APN on + dp/
dtmax [26–29, 31, 32, 36, 37, 41]. The heterogeneity 
test result (I2 = 99.20%, P = 0.000) indicated that a ran-
dom effects model was required for analysis. Pooled 
analysis showed a significant increase in + dp/dtmax due 

Fig. 2 Quality evaluation of 20 animal literatures (SYRCLE tool). 
A Formation of sequences; B Initial characteristics of the animal; 
C Sequence hiding; D Randomness of animal feeding; E Personnel 
blinding; F: Randomness of outcome measurement; G Outcome 
assessment bias; H Integrity of result data; I Biased results; J Other 
biases
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to  APN administration  compared to  the MIRI cohort 
(WMD = 1393.59, 95% CI = 972.57 to 1814.60, P < 0.001, 
Fig.  5A). Egger’s test (t = 2.71, P = 0.022 < 0.05) and the 
funnel plot (Supplementary Fig.  2B) indicated bias in 
the included studies. In addition, Begg’s test (P = 0.945, 
Z = 0.07) indicated bias. Sensitivity analysis indicated the 
results were stable and credible (Supplementary Fig. 2D).

The beneficial effect of APN on + dp/dtmax was 
maintained when the studies were stratified accord-
ing to different modes of administration (IV: 72 ani-
mals in 5 studies, heterogeneity: I2 = 98.20%, P = 0.000, 
WMD = 1544.90, 95% CI = 571.18 to 2518.62, P < 0.05; 
IP: 128 animals in 6 studies, heterogeneity: I2 = 98.00%, 
P = 0.000, WMD = 1457.66, 95% CI = 1061.38 to 1853.93, 
P < 0.001, Fig.  5B), and the presence of comorbidi-
ties (non-comorbidity: 168 animals in 9 studies, het-
erogeneity: I2 = 99.10%, P = 0.000, WMD = 1333.98, 95% 
CI = 901.89 to 1766.06, P < 0.001; comorbidity: 46 ani-
mals in 3 studies, heterogeneity: I2 = 99.00%, P = 0.000, 
WMD = 1536.81, 95% CI = 147.52 to 2926.09, P < 0.05, 
Fig.  5C). However, when the studies were stratified 
according to species, the protective effect of APN 
on + dp/dtmax was only statistically significant in mice 
(168 animals in 9 studies, heterogeneity: I2 = 98.30%, 
P = 0.000, WMD = 1571.83, 95% CI = 1175.41 to 1968.25, 
P < 0.001, Fig. 5D).

Maximum rate of left ventricular pressure decrease (‑dp/
dtmax)
Pooled analysis of seven publications (eight study 
cohorts) showed that the -dp/dtmax was significantly 
lower in the MIRI group compared to the APN admin-
istration group [26–29, 31, 36, 41], with a difference of 
850.06  mmHg/s (n = 136, heterogeneity: I2 = 97.70%, 
P = 0.000, WMD = 850.06, 95% CI = 541.22 to 1158.90, 
P < 0.001, Fig.  6A). Although the funnel plot (Supple-
mentary Fig.  3A) was asymmetrical, Egger’s (t = 2.23, 
P = 0.067 > 0.05) and Begg’s (P = 0.536, Z = 0.62) tests did 
not indicate bias. Sensitivity analysis indicated the results 
were robust and reliable (Supplementary Fig. 3C).

When stratifying the studies according to different spe-
cies, the protective effect of APN on -dp/dtmax was only 
statistically significant in mice (46 animals in 5 studies, 
heterogeneity: I2 = 97.90%, P = 0.000, WMD = 1055.28, 
95% CI = 566.42 to 1544.14, P < 0.001, Fig.  6B). In con-
trast, the protective effect of APN on -dp/dtmax, as 
well as the heterogeneity, remained significant when the 
studies were stratified according to the different modes 
of administration (IV: 42 animals in 3 studies, hetero-
geneity: I2 = 94.00%, P = 0.000, WMD = 927.29, 95% 
CI = 106.82 to 1747.76, P < 0.05; IP: 80 animals in 4 stud-
ies, heterogeneity: I2 = 98.20%, P = 0.000, WMD = 981.91, 
95% CI = 439.67 to 1524.14, P < 0.001, Fig.  6C), and the 

Table 2 A GRADE summary of the protective effect of APN on MIRI

 − downgrade, + not downgrade, LVEDP Left ventricular end-diastolic pressure, + dp/dtmax Maximum rate of left ventricular pressure rise, -dp/dtmax Maximum rate of 
left ventricular pressure decrease, LVEF Left ventricular ejection fraction, SOD Superoxide dismutase, LDH lactate dehydrogenase, SMD standardized mean difference, 
WMD weighted mean difference

Outcomes Summary of finding Relative effect 
(95% CI)

Limitations Inconsistency Indirectness Imprecision Publication 
bias

Quality

MIRI group APN group

Infarct size 171 animals 
in 15 studies

169 animals 
in 15 studies

WMD, 16.67 (13.18, 
20.16)

 +  −  +  +  + ⨁⨁⨁◯, Moderate

LVEDP 99 animals in 9 
studies

98 animals 
in 9 studies

WMD, 5.96 (4.23, 7.70)  −  −  +  +  − ⨁◯◯◯, Critically 
low

 + dp/dtmax 107 animals 
in 9 studies

107 animals 
in 9 studies

WMD, 1393.59 
(972.57, 1814.60)

 +  −  +  +  − ⨁⨁◯◯, Low

-dp/dtmax 68 animals in 7 
studies

68 animals 
in 7 studies

WMD, 850.06 (541.22, 
1158.90)

 +  −  +  +  + ⨁⨁⨁◯, Moderate

LVEF 68 animals in 5 
studies

68 animals 
in 5 studies

WMD, 9.96 (7.29, 
12.63)

 +  −  +  +  + ⨁⨁⨁◯, Moderate

Caspase-3 126 animals 
in 12 studies

126 animals 
in 12 studies

SMD, 3.86 (2.97, 4.76)  −  −  +  +  − ⨁◯◯◯, Critically 
low

Apoptotic rate 95 animals in 9 
studies

95 animals 
in 9 studies

WMD, 13.10 (8.15, 
18.05)

 −  −  +  +  + ⨁⨁◯◯, Low

SOD 24 animals in 3 
studies

24 animals 
in 3 studies

SMD, 1.91 (1.17, 2.65)  −  +  +  +  − ⨁⨁◯◯, Low

LDH 70 animals in 6 
studies

70 animals 
in 6 studies

SMD, 2.82 (1.60, 4.04)  −  −  +  +  − ⨁◯◯◯, Critically 
low

TNF-α 13 animals in 2 
studies

13 animals 
in 2 studies

SMD, 4.23 (2.48, 5.98)  −  +  +  +  − ⨁⨁◯◯, Low

Superoxide 
production

43 animals in 4 
studies

43 animals 
in 4 studies

SMD, 4.53 (2.39, 6.67)  −  −  +  +  − ⨁◯◯◯, Critically 
low
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presence of comorbidities (non-comorbidity: 120 ani-
mals in 7 studies, heterogeneity: I2 = 98.10%, P = 0.000, 
WMD = 931.50, 95% CI = 586.94 to 1276.06, P < 0.001, 
Fig. 6D).

Left ventricular ejection fraction (LVEF)
A pooled analysis of five papers (eight study cohorts) 
showed that APN improved LVEF [35, 37, 39–41], 
with an increase of 9.96% compared to the MIRI 
group (n = 136, heterogeneity: I2 = 91.10%, P = 0.000, 
WMD = 9.96, 95% CI = 7.29 to 12.63, P < 0.001, Fig. 7A). 
Egger’s test (P = 0.290 > 0.05, t = 1.17) and the funnel 
plot (Supplementary Fig.  3B) showed no bias. Begg’s 
test (P = 0.266, Z = 1.11) also indicated no bias. Sensitiv-
ity analysis indicated the results were robust and reliable 
(Supplementary Fig. 3D).

When stratifying the studies according to the presence 
of comorbidities, the increasing effect of APN on LVEF 
persisted (non-comorbidity: 112 animals in 6 studies, 
heterogeneity: I2 = 93.70%, P = 0.000, WMD = 10.59, 95% 
CI = 7.19 to 13.99, P < 0.001; comorbidity: 24 animals in 

2 studies, WMD = 8.29, 95% CI = 6.18 to 10.39, Fig.  7B, 
P< 0.001). However, heterogeneity was insignificant in the 
comorbidity subgroup (I2 = 00.00%, P = 0.801). Because 
the APN administration modalities and species included 
in the study were the same, the results were not stratified.

Cardioprotective mechanisms of APN
Anti‑apoptosis
The combined analysis of 12 published studies (consisting 
of 17 study cohorts) [27, 28, 30–33, 35–39, 41] revealed 
that the APN group had a lower expression level of cas-
pase-3 (n = 252, P < 0.001, heterogeneity: I2 = 72.00%, 
P = 0.000, SMD = 3.86, 95% CI = 2.97 to 4.76, Fig.  7C). 
Egger’s test (t = 6.07, P = 0.000 < 0.05) and the funnel plot 
(Supplementary Fig. 4A) showed publication bias in the 
selected studies. Sensitivity analysis indicated the results 
were robust and reliable (Supplementary Fig. 4C).

Analysis of nine papers (15 study cohorts) [26–29, 
33, 36, 37, 39, 41] showed that the application of APN 
resulted in a significant reduction in the number of apop-
totic cells (n = 190, heterogeneity: I2 = 99.40%, P = 0.000, 

Fig. 3 A Forest plot of the effect of APN on myocardial infarct size. Subgroup analyses of the effect of APN on myocardial infarct size included 
B different species, C different modes of administration, and D presence of comorbidities
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WMD = 13.10, 95% CI = 8.15 to 18.05, P < 0.001, Fig. 7D). 
Egger’s test (P = 0.597 > 0.05, t = -0.54) and the funnel 
plot (Supplementary Fig. 4B) indicated that there was no 
bias in publishing. Sensitivity analysis indicated that the 
results were reliable (Supplementary Fig. 4D).

Anti‑oxidation
A pooled analysis of four papers (6 study cohorts) [27, 
28, 32, 37] showed that the use of APN significantly 
reduced superoxide production in the myocardium, 
and the results were meaningful (n = 86, heterogene-
ity: I2 = 82.60%, P = 0.000, SMD = 4.53, 95% CI = 2.39 to 
6.67, P < 0.001, Fig. 8A). Pooled examination of the three 
studies [31, 38, 42] showed that superoxide dismutase 
content was significantly higher in the APN cohort than 
in the MIRI cohort (n = 48, heterogeneity: I2 = 40.90%, 
P = 0.184, SMD = 1.91, 95% CI = 1.17 to 2.65, P < 0.001, 
Fig. 8C).

For studies evaluating the effect of APN on superoxide 
levels in the myocardium, Egger’s test (P = 0.003 < 0.05, 
t = 6.39) and the funnel plot (Supplementary Fig.  5A) 

showed publication bias in the selected studies. However, 
sensitivity analysis suggested that the results were reliable 
(Supplementary Fig. 5C).

Anti‑inflammatory
The combined examination of six articles  (consist-
ing of  8 study cohorts) [28, 33, 34, 36, 42, 45] revealed 
a significant decrease in lactate dehydrogenase (LDH) 
levels within the APN group (n = 140, heterogene-
ity: I2 = 82.80%, P = 0.000, SMD = 2.82, 95% CI = 1.60 to 
4.04, Fig. 8B, P < 0.001). Analysis of two papers (3 study 
cohorts) [26, 29] showed that APN application sig-
nificantly reduced TNF-α levels (n = 26, heterogeneity: 
I2 = 00.00%, P = 0.793, SMD = 4.23, 95% CI = 2.48 to 5.98, 
P < 0.001, Fig. 8D).

For the studies on the effect of APN on lactate dehy-
drogenase levels, Egger’s test (P = 0.009 < 0.05, t = 3.81) 
and the funnel plot (Supplementary Fig. 5B) showed pub-
lication bias in the selected studies. However, the reliabil-
ity of the results was supported by the sensitivity analysis 
(Supplementary Fig. 5D).

Fig. 4 A Forest plot of the protective effect of APN on LVEDP. Subgroup analyses of the protective effect of APN on LVEDP included B different 
species, C different modes of administration, and D presence of comorbidities
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Discussion
The present meta-analysis included 20 studies, containing 
426 animals, and the studies were high quality. The risk of 
bias was low, and the results were reliable. Pooled analy-
ses showed that APN significantly reduces the size of the 
infarcted myocardium, regulates cardiovascular function, 
and  suppresses  the concentration of biomarkers  associ-
ated with myocardial infarction. APN also improves myo-
cardial inflammation, oxidative stress, and apoptosis.

MIRI is unavoidable in cardiac surgery, and the inci-
dence increases yearly. Rescue from this injury remains 
a substantial challenge due to the lack of effective treat-
ments [46]. The protective effect of APN on MIRI has 
not been reported by meta-analyses, and most of the 
evidence has been derived from basic science research. 
Interestingly, the results of some studies suggest different 
mechanisms. Some researchers have suggested that APN 
benefits MIRI through its adenine monophosphate-acti-
vated protein kinase signaling pathways [43, 47, 48]. How-
ever, some scholars believe that the cardioprotective effect 
of APN is not dependent on this mechanism [28, 49]. The 

protective effect of APN on MIRI may involve several 
mechanisms. A large body of evidence suggests that APN 
exerts cardioprotective functions through multiple molec-
ular mechanisms [50, 51]. Understanding these protective 
mechanisms will help to better understand adiponectin. 
The currently reported mechanisms of action of APN in 
MIRI involve the mechanisms described below.

(1) Modulation of angiogenesis: Enhancing blood 
vessel formation and restoring blood supply is essen-
tial for clearing inflammation and repairing myocar-
dial damage. APN, a chemotactic factor, has the abil-
ity to stimulate the transformation of endothelial cells 
into structures resembling capillaries in a laboratory 
setting, thereby controlling the process of angiogen-
esis [52]. APN ameliorates vascular damage after 
ischemic stress through an AMP-activated protein 
kinase-dependent pathway (AMPK) [53].
(2) Regulating autophagy: In recent years, autophagy 
has been recognized as one of the critical mecha-
nisms underlying the cardioprotective effects of APN. 

Fig. 5 A Forest plot of the protective effect of APN on + dp/dtmax. Subgroup analyses of the protective effect of APN on + dp/dtmax included 
B different modes of administration, C presence of comorbidities, and D different species
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The ERK/mTOR/AMPK signaling pathway regulates 
autophagy in cells, thereby protecting cardiomyocytes 
from oxidative stress [54]. In addition, APN also trig-
gers autophagy in macrophages through the AMPK 
pathway and suppresses the inflammatory reac-
tion, resulting in a reduction in cardiac fibrosis [55].
(3) Controlling the metabolism of fats and sug-
ars: Numerous studies have indicated a connection 
among inflammation, oxidative stress, and disorders 
in the processing of glucose and lipids, ultimately 
affecting cardiovascular balance and damaging heart 
muscle [10, 56]. Protection of pancreatic β cells by 
APN enhances the absorption and utilization of 
monosaccharides by tissues, reduces sugar produc-
tion, and regulates glucose metabolism [50]. APN 
also promotes adipocyte differentiation and facili-
tates fatty acid oxidation and turnover, thereby pro-
tecting the myocardium from injury [57].

Several studies have reported that APN is associated 
with cardiovascular disease development. Tentolouris 

et  al. found that plasma lipoprotein levels are inversely 
proportional to the risk of developing IDH [58]. Numer-
ous epidemiologic studies have demonstrated that plasma 
APN levels are significantly lower after myocardial infarc-
tion in obese and type 2 diabetic patients [59, 60]. It has 
been demonstrated that the degree of intimal hyperpla-
sia after arterial injury is twice as high in APN knockout 
mice as in wild-type mice, whereas this process is mark-
edly inhibited by supplementation with exogenous APN 
[61]. These findings suggest that APN is an anti-MIRI 
agent. Several sensitivity analyses and subgroup analy-
ses have supported these results. In the present meta-
analysis, sensitivity testing found that no studies had an 
impact on the results of the analysis, suggesting that the 
present results were stable, significant, and of high qual-
ity. Exogenous APN showed better therapeutic effects 
than other forms of APN. Fruebis et  al. reported that 
exogenous APN releases more fatty acids and has a faster 
and more effective treatment effect in vivo after a single 
injection compared to full-length APN [62]. In addition, 
exogenous APN supplementation may be superior to 

Fig. 6 A Forest plot of the protective effect of APN on -dp/dtmax. Subgroup analyses of the protective effect of APN on -dp/dtmax included 
B different species, C different modes of administration, and D presence of comorbidities
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Fig. 7 A Forest plot of the protective effect of APN on LVEF. B Subgroup analysis of the protective effect of APN on LVEF (stratified by presence 
of comorbidities). C Forest plot of the effect of APN on caspase-3 expression. D Forest plot of the effect of APN on apoptosis

Fig. 8 A Forest plot of APN effects on superoxide production. B Forest plot of the effect of APN on LDH content. C Forest plot of the effect of APN 
on SOD content. D Forest plot of the effect of APN on TNF-α levels
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full-length APN in renal insufficiency because exogenous 
APN lacks the  NH2-terminal structural domain and does 
not bind to and inactivate cystatin C [63, 64].

Because APN has a better safety profile and lower tox-
icity than other monomers, it is necessary to continue to 
explore and support clinical trials. Moreover, the targets 
of APN for the treatment of MIRI should be explored in 
future studies to improve its molecular mechanism to 
accelerate the clinical process.

Strengths and limitations
The present meta-analysis is the first to elucidate the 
therapeutic effect of APN in MIRI based on animal 
experiments and establish a foundation for MIRI treat-
ment with APN. The sample size of this meta-analysis 
was large, and many bias and sensitivity analyses were 
performed, demonstrating highly credible conclusions. 
In addition, the relevant mechanisms were summarized 
and elaborated, and the protective role of APN in MIRI 
was demonstrated, providing a basis for future research.

Although the number of animals in the present study 
was large and the safety and validity of the results were 
adequate, there were some limitations. First, the amount 
of data obtained from the animals was relatively small and 
could not be analyzed in depth. Second, due to the paucity 
of relevant studies, we were unable to determine whether 
the cardioprotective effects of APN are enhanced with 
further dose increases based on dose–response modeling 
in animal studies. Third, the results of the pooled analyses 
using SMD values with 95% CI should be interpreted with 
caution. SMD is a relative indicator and may not reflect the 
actual event. Fourth, only animal studies were included 
because only a few pertinent clinical studies have been pub-
lished. In addition, the development of MIRI in real-world 
clinical settings is complex, thus limiting the present find-
ings. Finally, meaningful results are easier to publish, indi-
cating a likely overestimation of the efficacy of APN.

Conclusion
The present meta-analysis was based on preclinical studies 
and systematically illustrated the value of APN anti-MIRI. 
APN protects damaged myocardium by  reducing the 
size of  myocardial  infarction  and improving intracardiac 
hemodynamics. Moreover, APN has multiple mechanisms 
of action, including its ability to reduce inflammation, 
prevent cell death, and counteract oxidative stress. This 
conclusion holds despite limitations that reduce the per-
suasiveness of the evidence. APN is a promising anti-MIRI 
substance that may be incorporated into the treatment of 
MIRI and provide a strategy for MIRI treatment.
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