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Notable epigenetic role of
hyperhomocysteinemia in atherogenesis
Shuyu Zhou, Zhizhong Zhang and Gelin Xu*
Abstract

Atherosclerosis is associated with multiple genetic and modifiable risk factors. There is an increasing body of
evidences to indicate that epigenetic mechanisms also play an essential role in atherogenesis by influencing gene
expression. Homocysteine is a sulfur-containing amino acid formed during methionine metabolism. Elevated plasma
level of homocysteine is generally termed as hyperhomocysteinemia. As a potential risk factor for cardiovascular
diseases, hyperhomocysteinemia may initiate or motivate atherogenesis by modification of DNA methylation.
The underlying epigenetic mechanism is still unclear with controversial findings. This review focuses on epigenetic
involvement and mechanisms of hyperhomocysteinemia in atherogenesis. Considering the potential beneficial
effects of anti-homocysteinemia treatments in preventing atherosclerosis, further studies on the role of
hyperhomocysteinemia in atherogenesis are warranted.
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Introduction
Epigenetics is defined as changes in phenotype and gene
expression that occur without alterations of DNA sequence
[1]. By means of gene-environment interactions, epigenetic
mechanisms can be acquired and/or heritable throughout
lifespan. There are three major epigenetic types: (1) DNA
methylation, (2) histone modification, and (3) noncoding
RNA regulation. DNA methylation, occurred in cytosine
residues of CpG dinucleotides, is mediated by DNA meth-
yltransferases (DNMTs). During evolution, the CpG di-
nucleotides have been progressively eliminated from the
genome and are present at only 5% to 10% of its predicted
frequency. Cytosine methylation appears to play a major
role in this process because of the high susceptibility of
5-methyl cytosine to undergo spontaneous deamination to
yield thymine [2]. DNA methylation is the most well-
known epigenetic mechanism, and plays a critical role in
the regulation of global and specific gene expression [3]. In-
triguingly, recent evidences identified some allele-specific
DNA methyation (ASM) [4-6] and methlylation-associated
loci (meQTLs) [7]. These novel concepts, for the first time,
associate genetic variations with epigenetic changes. The
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interaction between genetic variants and DNA methylation
also emphasize the need for an integrated study [8].
Atherosclerosis is a chronic inflammatory disease of large

or intermediate arteries. It is pathologically characterized
by infiltration of lipid particles, endothelial activation,
macrophage infiltration and foam cell formation. The foam
cell formation, known as “fatty streak”, followed by
smooth muscle migration and proliferation, and extra-
cellular matrix deposition usually resulted in the forma-
tion of an atherosclerotic plaque, which may eventually
rupture and cause a cardiovascular event, such as stroke
or myocardial infarction.
The epigenetic impacts on cardiovascular diseases (CVD)

have garnered considerable research interests since the
initial suggestion of epigenetics in 1999 [9]. Atherogenesis
has been proposed as a result, at least partly, of diet-
induced DNA methylation. Although genome-wide asso-
ciation study (GWAS) indentified a number of single
nucleotide polymorphisms (SNPs) associated with CVD,
most of these SNPs have not been previously implicated in
the pathogenesis of atherosclerosis and have modest bio-
logical plausibility [10]. It seems that the GWAS identified
genetic discrepancies only account for a small fraction of
heritability of atherosclerosis. Hence, epigenetics is emer-
ging in the “post-GWAS” era as the next clue in probing
the mechanisms of atherogenesis. It is expected to provide
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the previously missed link among gene, environment and
disease.
Hyperhomocysteinemia (HHcy) is an established risk

factor for atherosclerosis [11-14]. HHcy can increase oxi-
dative stress, activate inflammatory, and promote vascular
smooth muscle cells (VSMCs) proliferation, all of which
may result in initiation of atherosclerosis [15,16]. Since
homocysteine (Hcy) is a key component of methionine re-
cycle system, plasma Hcy level may be associated with
DNA methylation and other epigenetic modification. Thus,
a better understanding of the role of Hcy metabolism as a
part of one-carbon metabolism is essential and may pro-
vide useful information in establishing efficacious strategies
for preventing and treating atherosclerotic diseases.
Homocysteine
Homocysteine (Hcy) is a sulfur-containing amino acid
derived from methionine after demethylation via two
intermediate compounds, S-adenosylmethionine (SAM)
and S-adenosylhomocysteine (SAH) [17]. Methionine is
an essential amino acid acquired mostly from the me-
thionine recycle system and partly from the diet (Figure 1).
It can combine with adenosine triphosphate to yield
SAM, which is the most important donor to methyl
group in human body. With the transfer of a methyl
group, SAM is converted to SAH and the SAM/SAH ratio
may serve as an indicator for intra-cellular methylation
capacity [18-20]. Most SAM-dependent methyltransfer-
ases, including DNA methyltransferases (DNMTs), can be
inhibited by SAH which has a higher affinity with methyl-
transferases than SAM [21]. SAH can be further hydro-
lyzed to Hcy and adenosine. This reaction is reversible
Figure 1 Methionine recycle system and homocysteine metabolism. B
THF: tetrahydrofolate, MTHFR: 5,10-methyltetrahydrofolate reductase, CBS: c
with a thermodynamic equilibrium that strongly favors
SAH synthesis rather than hydrolysis [15].
Hcy is metabolized in vivo via two pathways: remethyla-

tion or transsulfuration. In remethylation pathway, Hcy is
first transformed to methionine by the addition of a me-
thyl group from 5-methyltetrahydrofolate or betaine. 5-
methyltetrahydrofolate is a product of the conversion of
folic acid to 5,10-methyltetrahydrofolate and finally metab-
olized to 5-methyltetrahydrofolate by enzyme 5,10-methyl-
tetrahydrofolate reductase (MTHFR). In almost all tissue
types, the cofactor vitamin B12 participates in the remethy-
lation with 5-methyltetrahydrofolate, whereas the reaction
with betaine is restricted to liver, and is independent of
vitamin B12. In the transsulfuration pathway, Hcy is con-
verted to cystathionine by cystathionine β-synthase (CBS)
and finally to cysteine with vitamin B6 as a cofactor [22].

Hyperhomocysteinemia
Plasma Hcy levels usually vary between 5 and 15 μmol/L
in healthy adults. According to fasting plasma Hcy levels,
hyperhomocysteinemia (HHcy) may be classified as mod-
erate (15-30 μmol/L), intermediate (31-100 μmol/L) and
severe (>100 μmol/L) [14,23]. HHcy originates from a de-
viation in the methionine-homocysteine metabolism in-
cluding disturbances of enzymes, vitamin deficiencies and
other factors [14,23,24], as shown in Table 1.
Moderate HHcy (15-30 μmol/L) usually reflects impaired

pathway of remethylation. The possible causes include defi-
ciency of folic acid, vitamin B12 or dysfunction of MTHFR.
A point mutation of amino acid 677 (677 C → T) in
MTHFR gene can causes alanine-valine substitution and is
associated with reduced enzyme activity of MTHFR. This
is the commonest form of genetic HHcy [25]. Severe HHcy
HMT: Betaine-homocysteine methyltransferase, DMG: Dimethylglycine,
ystathionine β-synthase.



Table 1 Causes of hyperhomocysteinemia

Genetic defects Vitamin deficiencies Other factors

Cystathionine β-synthase deficiency; Lack of folic acid; Age;

Lack of vitamin B6; Male sex;

5,10-methyltetrahydrofolate reductase deficiency; Lack of vitamin B12 Lifestyle factors (smoking, coffee, alcohol abuse);

Methionine synthase deficiency; Chronic renal insufficiency;

Hepatic dysfunction;

Genetic defects in the vitamin B12 metabolism Systemic lupus erythematosus;

Cancers;

End stage diabetes mellitus

Hypothyroidism et al.
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(>100 μmol/L) may be caused by deficiency of homozy-
gote CBS, homozygote thermo-stable MTHFR, or en-
zymes catalyzing vitamin B12 metabolism. Abnormal
increase of plasma Hcy (>15 μmol/L) after a methionine
load (100 mg/kg) may reflect impaired Hcy transsul-
furation due to deficiency of heterozygous CBS or vita-
min B6 [22].
HHcy is observed in approximately 5% of the general

population and is associated with increased risk of CVD,
autoimmune disorders, birth defects, diabetic mellitus,
renal diseases, osteoporosis, neuropsychiatric disorders
and cancer [26]. Several studies have identified moderate
HHcy as an independent risk factor for atherosclerotic
diseases [27].

Hyperhomocysteinemia and DNA methylation
In the methionine recycle system, SAH hydrolyzes to
Hcy and adenosine. This reaction is reversible, hence,
elevated Hcy level may induce SAH synthesis. The
increased SAH can, via a negative feedback, inhibit
SAM-dependent methyltransferases, such as DNMTs.
DNMTs mediate DNA methylation by transferring me-
thyl groups from SAM to cytosine residues in a CpG di-
nucleotide context. Thus, dysfunction of Hcy metabolic
pathways may result in DNA hypomethylation. There
are increasing evidences to indicate that HHcy may be
associated with DNA methylation levels in vivo. The
pioneering work of Yi and colleagues [28] in 2000
showed that plasma total Hcy level (in healthy subjects)
were associated with plasma SAH, lymphocyte SAH and
lymphocyte DNA hypomethylation levels. In cardiovas-
cular patients with concomitant HHcy, simultaneous ele-
vation of plasma SAH [29] and disturbance of DNA
methylation [30] were observed. This association was
confirmed in animal studies [31,32].
In human somatic cells, methylated cytosine accounts

for about 1% of total DNA bases and affects 70-80% of
all CpG dinucleotides in the genome [33]. Unmethylated
CpGs are grouped in clusters called “CpG islands” that
are present in the 5′ regulatory regions of many human
genes [34]. DNA methylation may influence the transcrip-
tion of genes in two ways. The presence of methyl group
at a specific CpG dinucleotide site may directly prevent
DNA from recognizing and binding to transcription fac-
tors [35]. In other instance, methylated DNA may be
bound by proteins known as methyl-CpG-binding domain
proteins (MBDs). These MBDs can directly repress tran-
scription, prevent the binding of activating transcription
factors, or recruit enzymes that catalyze histone posttrans-
lational modifications and chromatin-remodeling com-
plexes that alter the structure of chromatin and actively
promote transcriptional repression [36]. In general, DNA
methylation is associated with low gene activity. Global or
specific DNA methylation may contribute to altered gene
expression, and may lead to vascular damage.

Hyperhomocysteinemia, DNA methylation and
atherogenesis
Atherosclerosis is a dynamic process involving several cell
types such as monocytes, endothelial cells, and smooth
muscle cells (SMCs). A chronic inflammatory response
with infiltration of macrophages and T-cells along with
endothelial dysfunction is also prominent in the pathogen-
esis of plaque formation. In response to inflammation or
injury, production of ROS is enhanced in vascular cells.
These changes all contribute to the initiation and progress
of atherosclerosis. There has been a variety of evidences
to indicate that epigenetic changes play an important
role in atherogenesis beside genetic and environment
factors [37-41].
SMCs play a unique role in the development of ath-

erosclerosis. Hypomethylation has been observed in pro-
liferated VSMCs from advanced human atherosclerotic
plaques, and from atherosclerotic lesions in mouse and
rabbits [31,42,43]. Hypomethylation is correlated with
increased transcriptional activity that may affect cellular
proliferation and gene expression. Using VSMCs in cul-
ture, Yideng et al. [44] observed hypomethylation of
LINE-1 and Alu elements in medium with high Hcy
concentration. Their results indicated that HHcy may
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increase SAH and decrease SAM concentrations, change
SAH hydrolase expression in RNA and protein levels, and
enhance activity of DNA methyltransferase [45]. Re-
searchers concluded that the dissimilar detrimental effects
of Hcy in various concentrations may be functioned by
different mechanisms. Mild or moderate HHcy may influ-
ence gene expression mainly through the interference of
transferring methyl-group metabolism. However, severe
HHcy may educe more injurious effects by increasing oxi-
dative stress, promoting apoptosis and inflammation.
HHcy induced SAH elevation can promote VSMC pro-
liferation and migration through an oxidative stress-
dependent activation of the ERK1/2 pathway, which in
turn can facilitate atherogenesis in apolipoprotein E
(ApoE)-deficient mice [46].
Estrogen receptors (ERs) are expressed in SMCs and

endothelial cells in coronary artery, and may play an im-
portant role in preventing atherosclerosis [47]. The pro-
tective effects of estrogens against oxidative stress may
mediate by ERα. Decreased ERα level can deteriorate
atherosclerosis in men [48]. According to the study with
VSMCs from human umbilical vein, Hcy can induce de
novo methylation in the promoter region of the ERα
gene, and subsequently down-regulate the expressions of
ERα mRNA [49]. Hypermethylation of CpG islands lo-
cated in promoter region of ERα gene is positively cor-
related with the plasma Hcy level, and facilitate the
initiation and development of atherosclerosis.
Jamaluddin et al. [50] revealed that HHcy may exert

highly specific inhibitory effects on cyclin A transcription
and endothelial cells (ECs) growth through a hypomethyla-
tion related mechanism which blocks cell cycle progression
and endothelium regeneration. Cyclin A suppression has
been proposed as a possible mechanism for inhibiting EC
growth, and therefore, may increase the risk of CVD. Fur-
thermore, HHcy-mediated dysfunction of endothelial nitric
oxide (NO) system is an important mechanism for athero-
sclerotic pathogenesis [51]. Dimethylarginine dimethyla-
minohydrolase (DDAH) is the key enzyme for degrading
asymmetric dimethylarginine (ADMA), which is an en-
dogenous inhibitor of endothelial nitric oxide synthase
(eNOS). Using human umbilical vein endothelial cells
(HUVECs), Zhang and colleagues observed that mildly in-
creased Hcy concentration (10 and 30 μmol/L) may induce
hypomethylation, while higher Hcy concentration (100
and 300 μmol/L) may induce hypermethylation in the
promoter CpG island of DDAH2 gene [52]. The mRNA
expression of DDAH2 increased in mildly increased
concentration of Hcy, and decreased in higher concentra-
tion of Hcy correspondingly. The inhibition of DDAH2 ac-
tivity, the increase of ADMA concentration, the reduction
of eNOS activity and the decrease of NO production were
all consistently relevant to the alteration of Hcy concen-
tration. HHcy may influence the methylation of DDAH2
gene, and indirectly influence the function of NO system.
This process may be an important pathway for the devel-
opment of atherosclerosis involving NO system. Moreover,
a recent study suggested that hypermethylation of DDAH2
contributes to apoptosis of ECs induced by Hcy [53].
DNA methylation inhibitor 5-azacytidine could attenuate
the effect of Hcy on ECs.
In mutant mice deficient in MTHFR, global DNA hypo-

methylation was shown in both heterozygous and homo-
zygous knockouts [54]. Abnormal lipid deposition was
observed in the proximal aorta in elder heterozygotes and
homozygotes, suggesting an atherogetic effect of HHcy.
ApoE gene has been associated with atherosclerosis. Re-
searchers found that clinically relevant Hcy level (100 mM)
may increase the total cholesterol (TC), free cholesterol
(FC), and cholesteryl ester (CE) levels, and decrease ApoE
mRNA and protein expression levels in cultured human
monocytes. All these effects may be caused by increased
DNA methylation of ApoE [55]. Peroxisome proliferators-
activated receptor α and γ (PPARα and γ), acted as lipid
sensors and bound with high affinities to ligands of anti-
atherosclerosis, were also observed concomitantly with
hypermethylation in promoter induced by Hcy in mono-
cytes [56]. Recently, Wang et al. [57] confirmed that DNA
hypomethylation in promoter region of monocyte che-
moattractant protein-1 (MCP-1) gene through NF-κB/
DNMT1 may play a key role in the formation of athero-
sclerosis under HHcy condition in ApoE–deficient mice.
Cholesterol-loaded foam cells usually form the core of

atherosclerotic lesions. ATP-binding cassette transporter
A1 (ABCA1), which mediates the efflux of cellular choles-
terol and phospholipids, is the rate-limiting step in lipid
metabolism. Acyl-coenzyme A: cholesterol acyltransferase-
1 (ACAT1) promotes accumulation of CE in macrophages,
thereby resulting in the foam cell formation, a hallmark of
early atherosclerotic plaque. In the study by Liang et al.
[58], cultured monocyte-derived foam cells were incubated
with clinical relevant concentrations of Hcy for 24 h.
Number of foam cells and cholesterol level were increased,
but the mRNA and protein expression of ABCA1 were de-
creased, while ACAT1 expression was increased in the
presence of Hcy. The DNA methylation level of ABCA1
gene was increased whereas ACAT1 DNA methylation
was decreased when Hcy concentrations were changed.
Moreover, the results showed that DNMT activity and
DNMT1 mRNA expression were increased by Hcy. It indi-
cated that DNA methylation has the function to regulate
the expression of ABCA1 and ACAT1 via DNMT. The
results manifested that ABCA1 and ACAT1 DNA methy-
lation induced by Hcy possibly play a potential role in
ABCA1 and ACAT1 expression and the accumulation of
cholesterol in foam cells.
DNA methylation may reflect altered immune or in-

flammatory responses during atherosclerosis among cell
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types [59]. Given the established roles of inflammation and
leukocytes in atherosclerosis, peripheral blood leukocytes
represent a biologically relevant cell type for cardiovascular
studies. Castro et al. demonstrated that patients with vas-
cular diseases have a disturbed global DNA methylation
status, which was associated with plasma Hcy levels [30].
High blood Hcy levels correlate with DNA hypomethyla-
tion and atherosclerosis and can lead to a 35% reduction in
the DNA methylation status of peripheral blood lympho-
cytes. In contrast to these findings, Sharma and coworkers
observed a significant positive correlation of global DNA
methylation with plasma Hcy levels in patients with coron-
ary artery diseases [60]. They concluded that alteration in
genomic DNA methylation and the association with CVD
appear to be further accentuated by higher Hcy levels.
After reviewed literatures regarding to 135 genes either
modulating or modulated by Hcy, Sharma et al. concluded
that elevated plasma Hcy may lead to atherosclerosis either
by directly affecting lipid metabolism and transportation,
or by oxidative stress and endoplasmic reticulum stress by
decreasing the bioavailability of NO and modulating the
levels of other metabolites, including SAM and SAH [61].
In conclusion, aberrant global DNA methylation is only

an index of the potential for epigenetic dysregulation. An
increasing number of factors that can modify the DNA
methylation patterns have been identified. These include
the rate of cell growth and DNA replication, chromatin ac-
cessibility, local availability of SAM, nutritional factors,
duration and degree of the hyperhomocysteinemic state,
inflammation, dyslipidemias, oxidative stress, and aging
[62]. The relationship between HHcy and DNA global hy-
pomethylation may be masked in the clinical setting owing
to the presence of these confounders, thereby possibly
explaining some contradictory and counterintuitive find-
ings reported to date. Another important aspect to con-
sider is that DNA methylation is unequally distributed
throughout chromosomes of differentiated cells [63]. Thus,
hypermethylated and hypomethylated regions can coexist
in the genome. The global DNA methylation status need
not correspond to the methylation status of specific gen-
omic regions. In the presence of HHcy, more promoter re-
gions of pro-atherogenic genes might be hypomethylated
while anti-atherogenic genes hypermethylated. Thus pro-
atherogenic genes gain more activity along with loss of
protective function of anti-atherogenic genes which accel-
erate the process of atherogenesis ultimately.

Hyperhomocysteinemia and histone modification
Nucleosomes are the basic units of chromatin and are
composed of DNA wrapped around a protein octamer
containing two molecules of each canonical histone (H2A,
H2B, H3, and H4). Nucleosomes may be irregularly
packed and fold into higher-order structures that occur in
diverse regions of the genome during cell-fate specification
or in distinct stages of the cell cycle. The arrangement of
nucleosomes can be altered by covalent modification of his-
tones, including acetylation, methylation, phosphorylation,
ubiquitination, and sumoylation [64,65]. Post-translational
modifications of histones are facilitated by different
enzymes.
Different histone modifications remodel the conform-

ation of the chromatin, affecting the accessibility of tran-
scription factors to a gene, and thereby regulating gene
expression in a specific manner. Lysine residue acetylation
and methylation are the most studied modifications. His-
tone acetylation of lysine residues in H3 and H4 tails cata-
lyzed by histone acetyltransferases (HATs) has been
consistently associated with active transcription in several
studies [66,67]. Deacetylation of histones by histone dea-
cetylases (HDACs) correlates with DNA methylation and
the inactive state of chromatin [39]. Histone methylation
is also a major dynamic covalent epigenetic modification
with more complex patterns. The lysine residue modifica-
tion can be mono-, di-, or tri-methylated. Depending on
the position in the histone chain, methylated lysines are
associated with transcriptional activation or suppression.
For example, H3K9 methylation state is strongly indicative
of transcriptional repression and gene silencing, while
H3K4 tri-methylation state is associated with gene activa-
tion [64,68]. Histone methyltransferase (HMTs) catalyzes
the transfer of a methyl group from SAM to a lysine resi-
due either on H3 or H4, while histone demethylases elim-
inate methyl groups.
There has been a number of studies demonstrated

that histone modification play a role in atherosclerosis
[39,69-71]. But limited evidence is available about the
implication of HHcy in atherogenesis via histone modifi-
cation. Since HHcy can inhibit SAM-dependent methyl-
transferases through elevated SAH, histone methylation
might be influenced due to inhibited HMTs. In a recent
study in rats, diet-induced HHcy was found to disturb glo-
bal protein arginine methylation in a tissue-specific man-
ner and affect H3 arginine 8 methylation in brain, along
with reduced ADMA [72]. Consistently, in CBS-deficient
mice, protein arginine hypomethylation was presented in
liver and brain. ADMA of arginine 3 on H4 content was
markedly decreased in liver [73]. Moreover, in the research
to elucidate the role of the extracellular superoxide dis-
mutase (EC-SOD) in the development of foam cells, accel-
erated DNA methylation of EC-SOD was induced by
HHcy, as well as increased binding of acetylated H3 and
H4 in momocytes [74]. Hcy-induced histone hyperacetyla-
tion was also observed in astrocytes [75].

Therapy of hyperhomocysteinemia
The reduction in Hcy and the increased availability of
methyl compounds provided by vitamin supplementa-
tion, such as folic acid, may not be sufficient to reverse
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epigenetic changes induced by HHcy [76]. It is possible
that individuals with HHcy have an “Hcy memory effect”
due to epigenetic alterations which continue to promote
progression of cardiovascular complications even after
Hcy levels are lowered. Deleterious effect of prior, ex-
tended exposure to elevated Hcy concentrations might
have long-lasting effects on target organs and genes, hence
underestimating the benefit of Hcy lowering therapies in
CVD patients. Therapies targeting the epigenetic machin-
ery as well as lowering circulating Hcy concentrations
may have a more efficacious effect in reducing the inci-
dence of cardiovascular complications.

Conclusion
HHcy may be regarded as a global DNA hypomethyla-
tion effecter via SAH accumulation. While it is clear that
epigenetic regulation involve in atherogenesis, it is un-
clear about the relative importance of global versus
gene-specific methylation, nor is it clear how Hcy partic-
ipates in the epigenetic modification. Global DNA hypo-
methylation may serve as a candidate mechanistic link
between HHcy and atherosclerosis.
Further studies are warranted to unravel the mecha-

nisms that select specific genes for epigenetic regulation
in the presence of HHcy during atherogenetic process.
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