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Abstract

Background: B-oxidation of long and very long chain fatty acyl-CoA derivatives occurs in
peroxisomes, which are ubiquitous subcellular organelles of eukaryotic cells. This pathway releases
acetyl-CoA as precursor for several key molecules such as cholesterol. Numerous enzymes
participating to cholesterol and fatty acids biosynthesis pathways are co-localized in peroxisomes
and some of their encoding genes are known as targets of the NFY transcriptional regulator.
However, until now no interaction between NFY transcription factor and genes encoding
peroxisomal $-oxidation has been reported.

Results: This work studied the interactions between NFY factor with the rat gene promoters of
two enzymes of the fatty acid 3-oxidation, MFP-I (multifunctional protein type |) and ThB (thiolase
B) and their involvement in the cholesterol dependent-gene regulation. Binding of this nuclear
factor to the ATTGG motif of the MFP-1 and of the ThB promoters was demonstrated by EMSA
(Electrophoretic Mobility Shift Assay) and super shift assay. In contrast, in spite of the presence of
putative Spl binding sites in these promoters, competitive EMSA did not reveal any binding. The
promoter-dependent luciferase gene expression was downregulated by cholesterol in MFP-| and
ThB promoters harbouring constructs.

Conclusions: This work describes for the first time a NFY interaction with promoter sequences
of the peroxisomal B-oxidation encoding genes. It suggests that cholesterol would negatively
regulate the expression of genes involved in 3-oxidation, which generates the initial precursor for
its own biosynthesis, via at least the NFY transcription factor.

Background major pathways providing cellular energy. Beta-oxidation
Fatty acid B-oxidation is with glycolysis one of the two  of long and very long chain fatty acyl-CoA derivatives
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Nucleotide sequences of the 5'-flanking regions of the multifunctional protein-1 (MFP-1) and thiolase-B (ThB)
genes respectively. Each transcription start site is numbered +1 and the sequence of Exon | are shadowed. Upstream nucle-
otides of this site are shown by negative numbers. The ATG codon encoding the first methionine is indicated in bold. Putative

sequences for NFY and Spl motifs are shown.

occurs in peroxisomes, which are ubiquitous subcellular
organelles in eukaryotic cells [1]. Although it is not linked
with oxidative phosphorylation, peroxisomal p-oxidation
of fatty acids releases acetyl-CoA, a precursor for several
pathways such as cholesterol intermediate biosynthesis,
including farnesyl pyophoshate and geranyl-geraniol
pyrophosphate (required for ras protein membrane
anchor) and for cholesterol production as well. Several
reports indicate that peroxisomes would play a role in
cholesterol synthesis. For example, data showing that a
peroxisomal acetoacetyl-CoA thiolase which catalyzes the
conversion of acetyl-CoA to acetoacetyl-CoA, known as a
first step in cholesterol biosynthesis, has been reported
earlier by Thompson and Krisans [2]. Following this, sev-
eral enzymes participating to cholesterol pathway have
been co-localized to peroxisomes (i.e. HMG-CoA syn-
thase, HMG-CoA reductase, mevalonate kinase and far-
nesyl pyrophosphate synthase) [3]. In addition, defects in

peroxisomes biogenesis, associated with Zellweger syn-
drome and rhizomelic chondrodysplasia punctata, reveal
that in human liver mevalonate kinase and phosphome-
valonate kinase are peroxisomal enzymes [4]. Three
enzymes are required for peroxisomal f-oxidation, the
acyl-CoA oxidase, the enoyl-CoA hydratase/3-hydroxya-
cyl-CoA dehydrogenase, so called multifunctional
enzyme-1 (MFP-1) and 3-ketoacyl-CoA thiolase (Th A and
B). In contrast with numerous eukaryotic genes contain-
ing a CCAAT box at around -70 bp from the transcription
start site, the in silico sequence analysis does not locate any
CCAAT box in the proximal promoters regions of either
rat MFP-1 or rat ThB genes. However, the rat MFP-1 pro-
moter contains an ATTGG sequence at -92/-88, which cor-
responds to an inverted CCAAT box (figure 1). In
addition, the rat ThB promoter contains two inverted
CCAAT boxes located at nucleotides -60/-56 and-109/-
105, respectively (figure 1). The inverted CCAAT motif is
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a functional cis-acting element present in promoters and
enhancer regions of many eukaryotic genes including
those encoding for two type I collagens, albumin, hsp70,
major histocompatibility complex (MHC) class II and
numerous cell-cycle-related proteins such as thymidine
kinase and cyclins [5-9]. Although many nuclear proteins
have been described to bind CCAAT elements, the hetero-
meric inverted-CCAAT binding transcription factor CBF or
CP1, also called NFY [10,11] appears to be the major fac-
tor recognizing a true inverted CCAAT box located in the
-60 to -130 region of promoters [12]. NFY is an ubiqui-
tous transcription factor of 70 kDa resulting from the
interaction of the three subunits A, B and C [13,14], all of
which are required to form a NFY-DNA complex [6]. Tight
association of NFY-B and NFY-C subunits is a prerequisite
before recruitment of subunit A to the B-C complex lead-
ing to the binding of this heterotrimer complex to a spe-
cific DNA sequence [6]. Primary structures of NFY
subunits are conserved in mammals as deduced from the
cDNA sequences of NFY-A, NFY-B and NFY-C among sev-
eral species [6,7,15-17]. Human, mouse, and rat NFY sub-
units show more than 95% amino acid sequence identity
[18]. Portions of the amino acid sequences of mammalian
NFY-A, NFY-B, and NFY-C are also evolutionarily con-
served, with a high degree of sequence identity with seg-
ments of yeast HAP3, HAP2, and HAP5, respectively
[16,18,19]. These polypeptides are components of a Sac-
charomyces cerevisiae CCAAT binding transcription factor
which controls several nuclear genes involved in the mito-
chondrial function [20]. The role of NFY has been demon-
strated in the transcriptional regulation of genes encoding
enzymes implicated in two major synthetic pathways: 3-
hydroxy-3-methylglutaryl-CoA reductase and farnesyl
diphosphate synthase for cholesterol biosynthesis, and
acetyl-CoA carboxylase and fatty acid synthase for fatty
acids biosynthesis [21-25].

The current study reports that NFY binds to the proximal
promoter regions of both the rat MFP-1 and the rat ThB
genes. It suggests that cholesterol would negatively regu-
late the expression of genes involved in f-oxidation,
which generates the initial precursor for it own biosynthe-
sis, via at least the NFY transcription factor.

Results and discussion

Identification of trans-acting factors recognizing ATTGG
motifs of the MFP-1 and ThB promoters

In silico sequences analysis of rat peroxisomal genes
encoding MFP-1 and ThB reveals the presence of inverted
CCAAT boxes in both promoters, which are positioned
from the transcription start sites at: -68/-64 for the MFP-1
gene and at -56/-60 and -105/-109 for the ThB gene (Fig-
ure 1). EMSA experiments were performed to determine
whether liver nuclear factors interact with these inverted
CCAAT boxes. The 115 bp probe corresponding to the

http://www.lipidworld.com/content/3/1/4

positions -116 to -1 of the MFP-1 promoter region con-
taining a putative NFY binding site and two putative Sp1
binding sites (Figure 1) was used in EMSA experiments.
Incubation of the 115 bp probe with nuclear extracts
resulted in the formation of two close protein-DNA com-
plexes, a major one, complex I and a minor one, complex
IT (Figure 2A, lanes 1 and 6). These labelled complexes
were competed by the unlabeled DNA competitor.
Indeed, increased quantities of NFY25 oligonucleotide
corresponding to the -76/-56 region (Figure 2A, lanes 2 to
5) completely abolished complexes formation for an
excess of 500-fold. In contrast, complexes formation was
unaffected by the use of the mutated oligonucleotide
(NFY mut) over the same excess range (Figure 2A, lanes 7
to 10) confirming specificity of the nucleoprotein com-
plexes association. These experiences suggested that the
two shifted bands correspond to complexes joining of the
-116/-1 region of the MFP-1 rat promoter, by binding to
the pentanucleotide ATTGG sequence. These two bands
could result from the existence of two isoforms of NFY-A
subunit in the rat liver [18].

For the ThB promoter, incubation of two oligonucleotides
corresponding to the NFY-1 or to NFY-2 motifs with
nuclear extract leads to the formation of one main com-
plex (Figure 2B). Despite a difference in complex inten-
sity, similar mobilities were obtained for the probes
corresponding to NFY-1 or NFY-2 sites. This labelled com-
plex was displaced by adding unlabelled NFY-1 (lanes 2 to
4) or NFY-2 (lanes 7 to 9) competitors. However, it was
unaffected with the corresponding mutated oligonucle-
otides NFY-1 mut (lane 5) and NFY-2 mut (lane 10).

Super-shift experiment using a 132 bp PCR probe (-114 to
+18) corresponding to the MFP-1 promoter was con-
ducted to confirm the presence of NFY transcription factor
in nucleoprotein complexes (Figure 3). This probe leads
to the formation of two complexes (lane 2). The addition
of the anti-NFY-B polyclonal antibody (lane 3) decreased
the intensity of the two complexes observed in lane 2. Due
to a weak concentration, the purified anti-NFY-B polyclo-
nal antibody was less effective (lane 5). However the addi-
tion of the anti-NFY-A monoclonal antibody (lane 4)
leads to the disappearance of the complexes. This latter
monoclonal antibody targets the epitope localized at the
C-terminus region of NFY-A known to be a conditional
requirement for DNA binding activity [26]. A control reac-
tion with a pre-immune serum is shown on lane 6. The
lack of complexes with anti-NFY-B antibodies possibly
resulted either in the antibody binding to the NFY-DNA
binding domain or in the formation of too large a com-
plex to enter in the gel. Meanwhile, the two subunits seem
to be involved in the nucleoprotein complexes. These data
suggest that the inverted CCAAT box of MFP-1 interacts, at
least in vitro, with NFY transcription factor.
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Figure 2

A. Competition between the |15 bp MFP-1 fragment and two different competitors. Unlabelled competitor
NFY25 (lanes 2 to 5) or NFY mut (lanes 7 to 10) was added to the radiolabelled DNA probe and the rat liver nuclear extract.
Lanes | and 6 contain only a |15 bp radiolabelled fragment with the nuclear extract. B. Competition between the oligo-
nucleotides NFY-1 or NFY-2 of ThB and different competitors. Unlabelled competitor NFY-1 (lanes 2 to 4) or NFY-|
mut (lane 5) was added to the radiolabelled DNA probe and the rat liver nuclear extract. Unlabeled competitor NFY-2 (lanes
6 to 9) or NFY-2 mut (lane 10) was added to the radiolabelled DNA probe and the nuclear extract. Lanes | and 6 contain only
radiolabelled oligonucleotides NFY-I and NFY-2 respectively with the nuclear extract.
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132 bp fragment + o+ o+
nuclear extract -+ o+
anti NFY-A - .
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1

Complex |
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Figure 3

Super-shift experiments. Lane I: 132 bp fragment with-
out nuclear extract; lane 2: 132 bp fragment + nuclear
extract; lane 3: 132 bp fragment + nuclear extract + anti-
NFY-B polyclonal antibody; lane 4: 132 bp fragment + nuclear
extract+ anti-NFY-A monoclonal antibody; lane 5: 132 bp
fragment + nuclear extract + purified anti-NFY-B polyclonal
antibody; lane 6: 132 bp fragment + pre-immuneserum.

Does Spl bind to the MFP-1 promoter (-114/+18 region)?

The NFY binding site of the MFP-1 promoter is flanked by
three putative Spl binding sites. To test the Sp1 protein
binding, a 78 bp fragment overlapping two putative Sp1l
binding sites at -55/-50 and at -37/-32 was used in com-
petition with the 132 bp probe as well as a 22 bp probe
containing a Sp1 consensus binding site. Therefore, the
lack of competitive effect in shift assay of the 78 bp
fragment or the Sp1 probe reveals the absence of nuclear
proteins displacement towards the two complexes (com-
plex I and II) that binds the 132 bp fragment (Figure 4,
lanes 2 to 4 and 5 to 7 respectively). These results suggest
that the Sp1 protein is not involved in formation of these
complexes and the factors involved in the complexes
observed (Figure 2A) especially bind to the region -114 to
-56. Competition experiments between the 132 bp probe
and the 58 bp fragment (-114/-56 region) confirmed this
result (not shown).

Involvement of NFY binding site in the regulation of the
MFP-1 and ThB gene expression by cholesterol

Since NFY is involved in the transcriptional regulation of
genes implicated in cholesterol synthesis, such as the far-
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Figure 4

Competition between the 132 bp fragment and two
different competitors. Unlabelled competitor 78 bp frag-
ment (-60/+18 region of the MFP-1) (lanes 2 to 4) or Spl
(lanes 5 to 7) was added to the radiolabelled 132 bp DNA
fragment (-1 14/+18 region of the MFP-1) and the rat liver
nuclear extract. Lane | contains only a 132 bp radiolabelled
fragment with the nuclear extract.

nesyl diphosphate synthase, we used this gene construct
as a positive control for the repressive effect of 25-hydrox-
ycholesterol and cholesterol, which gives 94% inhibition
(Figure 5). Thus, we checked for a regulation of the MFP-
1 and the ThB gene expression by adding cholesterol into
the medium. Luciferase reporter constructs containing the
-3400 bp MFP-1 or the -2800 bp ThB promoter sequences
upstream of the transcription initiation site (-3400/+20
pGL2 and pTBLuc) were transfected into HepG2 cells in
presence or in absence of sterols for 48h. In addition to
cholesterol, 25-hydroxycholesterol was used since it
increases the intracellular cholesterol concentration and
acts by blocking cholesterol efflux [27]. Figure 5 shows
that the promoter activity was down-regulated by choles-
terol for the MFP-1 and thiolase B constructs (-70%).

Further transfection assays of the MFP-1 gene were con-
ducted to locate the fragment involved in the cholesterol-
dependent regulation in the -114/+18 promoter region.
Two fragments were inserted upstream of the minimal (-
globin promoter of the pGLuc vector [28]; the 132 pGLuc
for -114/+18 fragment and the 58 pGLuc for -114/-56
fragment in pGLuc modified plasmid. Sterols induced a
downregulation of the 58 and 132 bp fragments by 56%,
and -49 %, respectively. From these results, it appears that
the NFY sequence located in the 58 bp fragment is proba-
bly directly responsible for the repression by sterols, but
other factors could be essential too. Among them, the
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Figure 5

Effect of cholesterol on regulation of the MFP-1, ThB and FPPS promoter reporter genes. The HepG2 cells were
transiently cotransfected (5 hours) with -3400/+20 pGLuc, 132 pGLuc, 58 pGLuc, -2800 pTBGLuc or pFPPSGLuc luciferase
reporter plasmid and pCH1 |0 -galactosidase reporter plasmid and mock treated (filled bars) or treated (open bars) with 25-
hydroxycholesterol+cholesterol (mixture) for 48 hours. The data represent the average of three independent experiments
with the error bars. Luciferase activities were normalised according to the protein concentration and [-galactosidase activities.
Relative luciferase activities are given, taking as | the activity obtained for each plasmid in the absence of sterols.

SREBP transcription factor could be also involved due to
its essential role in the cholesterol homeostasis[25].
Indeed, the inhibition is more important with the com-
plete promoter region (-3400/+20 fragment) (-70%) than
with the 132 bp fragment (-49%), suggesting presence of
cholesterol response element upstream to this region. In
fact, seven sequences corresponding to a putative E-box
are present in the first 500 bp of the promoter. Moreover,
the binding of the SREBP-1 factor is 20 fold increased
when the NFY factor is present [24,25]. Such interaction
may be involved in the transcriptional regulation of the
MEFP-1 gene by cholesterol.

Conclusions

This work describes for the first time a NFY interaction
with the promoter regions of genes encoding for peroxiso-
mal B-oxidation enzymes and suggests its involvement in
the cholesterol-mediated downregulation of the MFP-1

and the ThB genes. Control of the peroxisomal fatty acid
B-oxidation would be involved in the peroxisomal choles-
terol homeostasis.

Materials and methods

Cell culture

HepG2 cells (ATCC, Manassas, VA, USA) were grown as
monolayers in Dulbecco's modified Eagle's medium
(Gibco Life Technologies, France) supplemented with
10% (v/v) fetal calf serum (Sigma), penicillin (125 IU/ml)
and streptomycin (125 pg/ml). Cells were grown at 37°C
in a 5% CO, atmosphere.

Preparation of nuclear extract for EMSA

Nuclear extracts from normal rat liver were prepared as
previously described [29]. Briefly, livers were freezed and
crushed in liquid nitrogen. Tissue was lysed with buffer A
(0.6% Nonidet P-40, 150 mM NaCl, 10 mM Hepes pH
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7.9, 1 mM EDTA, 0.5 mM PMSF), homogenized with a
Dounce homogenizer (Pestle B) and centrifuged at 1700
g for 30 s. The supernatant was incubated for 5 min on ice
and centrifuged at 5000 g for 5 min. The pellet was resus-
pended in buffer B (25% glycerol, 20 mM Hepes pH 7.9,
420 mM NaCl, 1.2 mM MgCl,, 0.2 mM EDTA, 0.5 mM
DDT, 0.5 mM PMSF, 2 mM benzamide, 5 pg/ml pepstatin
A) and incubated for 20 min on ice. Sample was centri-
fuged at 13000 g for 15 s, and the supernatant was stored
at-70°C. The protein concentration of nuclear extract was
determined by Bradford assay [30] by using assay reagent
(Bio-Rad Laboratories, France) according to the manufac-
turer's recommendations.

DNA fragment preparation and construction of reporter
plasmid

The -3400/+20 pGLuc plasmid containing the promoter
of the rat MFP-1 gene [ 28] was digested with Aat Il and Bgl
I endonucleases (Promega, France) to obtain a 115 bp
fragment (-116/-1 region), with a putative NFY binding
site. DNA fragments of different proximal promoter
regions of the MFP-1 gene were also obtained by PCR with
a combination of four primers, 115S (sense) (5'-GTA-
GATCTGCAGAGCACGAAGT-3"), 115A (antisense)(5'-
AGAAGCITAAGGTATCCTGCACCT-3'), P76S (sense)
(5'ATAGATCTAGCGCGCGCCCC T-3') and NF60A (anti-
sense) (5'-ATAAGCTTCGCTGGGCCAAT-3'). To obtain a
132 bp fragment (-114/+18 region) containing putative
NFY and 2 Sp1 binding sites, PCR was run for 35 cycles
(94°C for 30 s, 50°C for 45s and 72°C for 3 min) with
primers 115S/115A. For the 78 bp fragment (-60/+18
region) containing 2 putative Sp1 binding sites and the 58
bp fragment (-114/-56 region) containing a putative NFY
binding site fragments, PCR was run for 35 cycles (94°C
for 30's, 47°C for 45 s and 72°C for 3 min) with primers
P76S/115A and 115S/NF60A respectively. Amplification
was performed using the 3400/+20 pGLuc plasmid as
template in 10 mM Tris-HCI buffer, pH 9, 50 mM KCl,

Table I: Sequences of the oligonucleotides competitors
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0,1% Triton X-100, 3.12 mM MgCl,, 50 pmol of each
primer, 2 mM dNTPs (Promega) and 1 U of Tag DNA
polymerase (Promega) in PTC-100™ thermocycler (M]
Research, Reno, NV, USA). PCR fragments were inserted
into pGLuc modified plasmid [28] between Bgl 11 and
Hind 111 sites to obtain the 132 pGLuc and 58 pGLuc plas-
mids. The ThB promoter (-2800 base pairs upstream the
transcription initiation site, Hind III / Eco T221 promoter
region) was inserted at the Hind III site of the pGVB plas-
mid upstream of the luciferase gene (-2800 pTBLuc) [31].
For the farnesyl diphosphate synthase promoter, a 723 bp
sequence (-770 to -47 region upstream the translation ini-
tiation site) was inserted upstream to the luciferase gene
in the reporter vector pGL2 (pFPPSGLuc) according to C.
Le Jossic-Corcos (unpublished results).

Oligonucleotides competitors (Table I)

Oligonucleotides (Invitrogen, Cergy Pontoise, France)
used as competitors in the electrophoretic mobility shift
assays include two complementary 27 bp wild-type oligo-
nucleotides (NFY25) corresponding to the -76/-56 region
of the MFP-1 promoter containing the ATTGG motif with
additional nucleotides representing of 5'Bgl Il and 3'Hind
III half sites and two complementary 27 bp oligonucle-
otides (NFY mut) corresponding to the same region with
a mutated ATTGG motif to CGGTT. For the NFY binding
sites of the thiolase B gene, four wild type oligonucle-
otides, NFY-1 (30 bp) and NFY-2 (28 bp), corresponding
respectively to the -70/-46 and -118/-95 region of the thi-
olase B promoter with the ATTGG motif with additional
nucleotides representing of 5' Hind IIl and 3' BamH I half
sites and four oligonucleotides NFY-1 mut (30 bp) and
NFY-2 mut (28 bp) sense and antisense corresponding to
the original sequences of the thiolase B promoter with a
mutated ATTGG motif (CGGIT) were used. Moreover,
two complementary 22 bp oligonucleotides (Sp1) con-
taining the consensus binding-site of the Sp1 factor were
purchased from Promega.

Gene Name of oligonucleotides Sequence

MFP-1 NFY25 (-76/-56) Sense 5'-GATCTCGGTTCCCATTGGCCCAGCGCA-3'
Antisense 3'-CTAGAGCCAAGGGTAACCGGGTCGCGT-5'

MFP-1 NFY25 mut (-76/-56) Sense 5'-GATCTCGGTTCCCCGGTTCCCAGCGCA-3'
Antisense 3'-CTAGAGCCAAGGGGCCAAGGGTCGCGT-5'

ThB NFY-1 (-70/-46) Sense 5'-AGCTTCAAGGCTCCCATTGGCTCTGCCCTG-3'
Antisense 3'-AGTTCCGAGGGTAACCGAGACGGGACCTAG-5'

ThB NFY-1 mut (-70/-46) Sense 5-AGCTTCAAGGCTCCCCGGTTCTCTGCCCTG-3'
Antisense 3'-AGTTCCGAGGGGCCAAGAGACGGGACCTAG-5'

ThB NFY-2 (-118/-95) Sense 5-AGCTTTCCTTCTGATTGGCTGTAGAATG-3'
Antisense 3'-AAGGAAGACTAACCGACATCTTACCTAG-5'

ThB NFY-2 mut (-118/-95) Sense 5-AGCTTTCCTTCTGCGGTTCTGTAGAATG-3'
Antisense 3'-AAGGAAGACGCCAAGACATCTTACCTAG-5'

Spl Sense 5-ATTCGATCGGGGCGGGGCGAGC-3'

Antisense 3'-TAAGCTAGCCCCGCCCCGCTCG-5'
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Radiolabelling of DNA probes with [a-32P]dCTP
Labelling was performed with 50 mM Tris-HCI, pH 7.5,
10 mM MgCl,, 1 mM DTT, 0.05 mg/ml BSA, 5 pmol DNA
(132 or 115 bp fragment), 10 pCi [a-32P] ACTP (3000 Ci/
mmol, Amersham, Saclay, France), 20 U DNA polymerase
I (Klenow fragment, Promega) and 500 pM each of dATP,
dGTP and dTTP (Promega). Reaction was incubated for
45 min at 30°C and then stopped by addition of 0.5 M
EDTA, pH 8. Radiolabelled probes were purified on
Sephadex 50 column (Pharmacia) [32].

Electrophoretic mobility shift assay (EMSA)

DNA-protein binding reaction contained 10 mM p-mer-
captoethanol, 5 mM EDTA, migration buffer (0.01%
bromophenol blue, 30% glycerol and 5 mg/ml BSA), 1 pg
poly [dI-dC], 1 pg sonicated DNA salmon sperm, 20 pg of
rat liver nuclear extract and buffer (0.01 M Tris-HCI, pH
7.1,0.1 mM EDTA pH 8, 0.08 M NaCl, 3 mM MgCl,, 0.1%
Triton X-100, 5% glycerol). The radiolabelled probe
(20000 cpm) was added and reaction was incubated for
30 min at 4°C. Reaction was separated on 5% native poly-
acrylamide gel electrophoresed for 15 min at 5 mA and 40
min at 10 mA. Gel was incubated for 15 min in 5%
glycerol, dried for 30 min at 80°C, and exposed overnight
at-70°C to a Kodak film (X-OMAT AR).

Transient transfections and reporter gene assays

HepG2 cells (7.104 cells/well) were plated on 24 wells
plate in DMEM with 10% lipoproteins-deficient fetal calf
serum (Sigma). Cells were transiently transfected using
lipofectine (Gibco) with reporter constructs (-3400/+20
pGLuc, 132 pGLuc, 58 pGLuc, -2800 pTBLuc or
pFPPSGLuc) and an internal control (pCH110 plasmid
encoding B-galactosidase, Pharmacia). Cells were
incubated for 5 h in optimem (Gibco) and then for 48 h
in the absence or presence of sterols (10 pg/ml of choles-
terol and 1 pg/ml 25-hydroxycholesterol). Cell extracts
were prepared with lysis buffer of the luciferase assay kit
(Promega) and assayed for B-galactosidase (Galactolight
kit Tropix, Applied Biosystems, Courtaboeuf, France) and
luciferase activities (luciferase assay kit, Promega). The
protein concentration (Bradford assay) and f-galactosi-
dase activity were measured in each sample and values
were used to normalized luciferase activities.
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