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Abstract
Background Overweight and obesity are among the leading chronic diseases worldwide. Environmental phenols 
have been renowned as endocrine disruptors that contribute to weight changes; however, the effects of exposure to 
mixed phenols on obesity are not well established.

Methods Using data from adults in National Health and Nutrition Examination Survey, this study examined the 
individual and combined effects of four phenols on obesity. A combination of traditional logistic regression and two 
mixed models (weighted quantile sum (WQS) regression and Bayesian kernel-machine regression (BKMR)) were used 
together to assess the role of phenols in the development of obesity. The potential mediation of cholesterol on these 
effects was analyzed through a parallel mediation model.

Results The results demonstrated that solitary phenols except triclosan were inversely associated with obesity 
(P-value < 0.05). The WQS index was also negatively correlated with general obesity (β: 0.770, 95% CI: 0.644–0.919, 
P-value = 0.004) and abdominal obesity (β: 0.781, 95% CI: 0.658–0.928, P-value = 0.004). Consistently, the BKMR model 
demonstrated the significant joint negative effects of phenols on obesity. The parallel mediation analysis revealed that 
high-density lipoprotein mediated the effects of all four single phenols on obesity, whereas low-density lipoprotein 
only mediated the association between benzophenol-3 and obesity. Moreover, Cholesterol acts as a mediator of the 
association between mixed phenols and obesity. Exposure to single and mixed phenols significantly and negatively 
correlated with obesity. Cholesterol mediated the association of single and mixed environmental phenols with 
obesity.

Conclusions Assessing the potential public health risks of mixed phenols helps to incorporate this information into 
practical health advice and guidance.
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Introduction
Obesity is a type of metabolic disease caused by dietary, 
genetic, and environmental disorders [1, 2]. Thus, iden-
tification of the potential risk factors for obesity is cru-
cial for the prevention of obesity-associated health issues 
[3]. An increasing body of epidemiological evidence has 
revealed that individual environmental phenols influence 
the incidence and progression of obesity [4–6].

Environmental phenols, the endocrine disruptor chem-
icals (EDCs), including triclosan (TCS), benzophenol-3 
(BP-3), and parabens (Methylparaben (MP) and Eth-
ylparaben (EP), Propylparaben (PP) and Butylparaben 
(BP)), are present in consumer goods, such as preserva-
tives, ultraviolet ray protectors, and broad-spectrum 
antibacterials [7–10]. The daily and almost entire life’s 
exposure to environmental phenols undoubtedly raised 
the concern about the potential risk brought by them. In 
fact, previous research has demonstrated detectable lev-
els of the above environmental phenols in urine samples 
from a sizeable portion of Americans (U.S.), and a signifi-
cant negative correlation between the concentration of 
urine phenols and the obesity risk in U.S. adults popula-
tion [11, 12]. Triglycerides (TG), low-density lipoproteins 
(LDL), and high-density lipoproteins (HDL) comprise the 
majority of cholesterol, which is essential for the basal 
metabolism of living cells [13]. The intake of mono-2-eth-
ylhexyl phthalate ultimately can lead to imbalanced cho-
lesterol deposition and transport in the liver of mice by 
inducing cholesterol synthesis genes Srebp2 and Hmgcr, 
which are associated with adipocyte hypertrophy and 
cholesterol overload [14]. Modifying the cholesterol bal-
ance has a substantial effect on the adipocyte metabolism 
of obese animals or humans [15–17]. EDCs, cholesterol 
metabolism and obesity are highly correlated [18, 19]. 
Investigating the potential impact of environmental phe-
nols on obesity metabolism via their influence on choles-
terol levels could shed light on the role of cholesterol as 
a mediator between obesity and environmental phenols. 
Such research could enhance our comprehension of the 
mechanisms underlying endocrine disruptors, which 
are capable of effectively preventing and controlling the 
onset and progression of obesity.

Prior studies on the potential health effects of envi-
ronmental endocrine disruptors have mostly adopted 
traditional single contaminant analysis methods, which 
may overlook the complex nonlinear and nonadditive 
relationships that may exist between exposure to the 
mixed phenol components and health outcomes [20, 
21]. Combining traditional logistic regression with newly 
developed hybrid statistical methods robustly assesses 
phenotypic multicollinearity, reducing measurement 
error bias introduced by relying solely on a single model 
[22]. An unprecedented phenolic-mediated model aids in 

comprehending the mechanisms through which environ-
mental phenols act on obesity [23].

Representative samples of the non-institutionalized 
civilian population of the U.S. from 2007 to 2012 were 
randomly collected and utilized for this study. Combin-
ing traditional single models and new hybrid models, 
we elucidated the possible effects of four environmental 
phenol exposures on the development of obesity from 
different perspectives. Furthermore, a parallel mediation 
model was established to explore the role of cholesterol 
in the association between environmental phenols and 
obesity.

Materials and methods
Population studied and data processed
Adults from the National Health and Nutrition Examina-
tion Survey (NHANES) who participated between 2007 
and 2012 were used [24]. Besides, the analysis included 
1,894 objectives with available data for TCS, BP-3, and 
parabens. To reduce sampling bias, some participants 
with missing data were excluded from the analysis: par-
ticipants under the age of 20, participants with unde-
tected environmental phenols in urine, participants 
without measurements of weight data (BMI and WC), 
participants who answered “don’t know” or were missing 
covariates (PIR, Alcohol using, Energy, education, Smok-
ing, Diabetes, Hypertension), and participants with miss-
ing cholesterol data (Fig. 1).

Measurement of BP-3, TCS, and parabens
Urinary samples from participants were collected and 
transported according to NHANES requirements, 
and environmental phenols in the urine samples were 
detected as soon as possible [24, 25]. NHANES provides 
the limit of detections (LODs) for environmental phe-
nols, and for concentrations below the LODs, it uses the 
LODs divided by the square root of 2 as a substitute [26].

Obesity assessment
General obesity are expressed as body mass index (BMI), 
and weight-to-height squared ratio (i.e., BMI) of more 
than 30 is considered to be generally obese [27, 28]. 
Abdominal obesity, typically assessed by waist circum-
ference (WC), is generally defined as exceeding 102 cen-
timeters for adult males and 88 centimeters for females 
[29]. https://wwwn.cdc.gov/nchs/nhanes/.

Covariates
As age increases, so does the metabolic rate, which 
increases the likelihood of developing obesity; the risk 
of obesity differs among women and men of all ages [30]. 
Additionally, the prevalence of obesity differs among 
races as a result of cultural and environmental influ-
ences [30]. Thus, potential confounders included age 

https://wwwn.cdc.gov/nchs/nhanes/
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(chronological age), gender, and race/ethnicity. In addi-
tion, individuals’ health behaviour is influenced by the 
level of education attained and the poverty-to-income 
ratio (PIR) [31, 32]. Smoking and excessive alcohol con-
sumption alter the body’s metabolism and energy bal-
ance, which in turn affects body weight [33, 34]. The 
amount of energy intake affects the body’s fat storage 
[35]. For medical variables, hypertension, and diabetes 
may be included to minimize selection bias or survivor 
bias that may be introduced [36]. Urinary creatinine as 
a covariate was used to correct for individual urinary 
concentrations of phenolic metabolites. All continuous 
variables, except urinary creatinine, were modeled using 
natural transformation [24].

Statistical analysis
Descriptive statistics
Continuous variables are presented as means ± stan-
dard deviations (SDs), while categorical variables are 

represented as percentages [37]. In the present study, 
the concentrations of 1,894 environmental phenols were 
severely right-biased; thus, log-transformed values were 
generated to reform the Gaussian distribution [38]. Pear-
son’s correlation test is a method used to measure the 
interactions between these substances [39].

Logistic regression model
Firstly, a logistic regression model was used to assess 
the impact of individual environmental phenol expo-
sure. The log-transformed concentration values of these 
environmental phenols were sorted by four quartiles, 
and the model was adjusted by urinary creatinine, age, 
gender, race/ethnicity, PIR, education levels, physical 
activity, smoking status, alcohol drinking status, total 
energy intake, hypertension, and diabetes. Modelling of 
the upper three quartiles was compared with the low-
est quartile (reference quartile) to derive the odds ratios 
(ORs) and 95% confidence intervals (CIs) [40].

Fig. 1 A flowchart for screening the final eligible personnel for this study. N = 1,894, NHANES, U.S., 2007–2012
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Weighted quantile Sum (WQS)
Co-donation of multiple environmental phenols and their 
joint effects on obesity outcomes were considered simul-
taneously through WQS regression modelling [41]. This 
model constructs a weighted index (i.e., the WQS index) 
in a supervised manner, which can evaluate the over-
all effects of environmental exposure and the contribu-
tion of each component in mixed phenols to the overall 
effects [42, 43]. Here, we tested the correlation between 
obesity and the WQS index, as estimated according to 
the Quartile exposure concentration ranking (q = 4) [44]. 
The fitting model of WQS is as follows:

 g (µ) = β0 + β1WQS + z′φ,

where g (µ)   indicates a nonlinear linking function that 
allows for generalization to continuous, binary, and 
other distributions; binary results were considered in 
this study [44, 45]. As in representative regression sys-
tems, β0  reflects the model intercept, whereas β1  is the 
regression coefficient of the weighted quantile and WQS 
index, that is, the overall effects of environmental phe-
nols [46]. The WQS index is calculated as follows: WQS 
= (

∑
wiqij), where wi  indicates the weight of each com-

ponent in the mixed environmental phenols and qij  
indicates the quantile rank assigned to each subject per 
variable [46]. WQS was assumed that each exposed effect 
in the mixed phenols was in the same direction (all posi-
tive or all negative), essentially unidirectional, as it only 
tests for mixed effects that were positively or negatively 
correlated with a given result [44–46].

Bayesian Kernel Machine Regression (BKMR)
The BKMR model provides flexibility in modeling the 
combined effects of mixed phenols and elucidates the 
nonlinear and nonadditive associations between mul-
tiple phenols and obesity [47, 48]. The central idea is to 
treat the parameters in the regression model as random 
variables rather than as fixed but unknown values in the 
frequency pie statistics [47, 48]. BKMR is calculated as 
follows.

 g (µi) = h (zi1, · · · , ziM) + βxi,

whereg  denotes a monotonic link function, µi = E [Yi]
, h  is a flexible function of the predictor variables 
zi1, · · · , ziM , x  is a vector assuming a linear relation-
ship between the covariates and the outcome, β  is the 
corresponding coefficient vector [47, 48], z  is the expo-
sure variable, and h(·) is the exposure-response func-
tion [47–49]. The following procedure was used to 
study the cumulative toxic effects of the mixed phenols 
in the present study. First, we evaluated the cumulative 
effect by comparing the changes in obesity between all 

environmental phenols fixed at the 75th percentile and 
fixed at the 25th percentile. Subsequently, the remain-
ing phenols were then fixed at median concentrations to 
obtain dose-response relationships for each metabolite 
with the obesity assay [50].

Parallel mediation analysis
To determine whether serum cholesterol mediated the 
associations between single and mixed environmen-
tal phenols (shown as WQS index) and obesity, we per-
formed a parallel mediation analysis that used individual 
indicators as a mediator [51]. The direct effect (DE) 
reflects the effect of exposure to environmental phenols 
on obesity without a mediator, whereas the effects of 
exposure to environmental phenols on obesity through 
the mediators are considered an indirect effect (IE) [52]. 
The total effect (TE) represents the overall causal effect of 
environmental phenols on obesity [52]. Finally, the pro-
portion of mediating effect is calculated by dividing IE by 
TE [52].

The covariates adjusted for WQS, BKMR, and paral-
lel mediation model were the same as those adjusted 
for logistic regression. Logistic regression analysis was 
conducted using SPSS version 19.0 software. In R soft-
ware (version 3.6.0), additional analyses including WQS 
regression, BKMR, and mediation regression were per-
formed utilizing the ‘gWQS’, ‘BKMR’, and ‘mediation’ 
packages respectively. Statistical significance was deter-
mined at a P-value < 0.05 level.

Results
Descriptive analysis of participants
Table  1 presents the demographic characteristics of the 
1894 NHANES participants collected between 2007 and 
2012.

Briefly, 1188 (62.7%) and 706 (37.3%) objects were clas-
sified as non-generally obese and generally fat, respec-
tively. The general obese population encompassed 325 
(46.0%) men and 381 (54.0%) women with an average age 
of 50.1 ± 16.5, and 70.8% of the respondents had a high 
school education or above; the smoker and alcohol users 
accounted for 18.1% and 27.3%, respectively. The non-
general obese population included 635 (53.5%) men and 
553 (46.5%) women with an average age of 48.9 ± 18.5; 
Approximately 75.5% of respondents had a high school 
education or above. In general, obese individuals exhib-
ited a higher average age compared to non-obese indi-
viduals, and the prevalence of obesity was higher among 
women than men. More hypertensive and diabetic 
patients were found among obese patients than among 
non-obese patients.
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Urinary BP-3, TCS, and paraben measurements and their 
correlations
The detection rates of MP, BP-3, and PP were 99.3%, 
97.3%, and 93.9%, in that order; the detection rate of TCS 
was more 76.4%; while EP and BP were excluded from the 
following analyses because of their excessively low detec-
tion rates, which were 46.5% and 36.7%, respectively.

Figure S1 displays correlations among the four environ-
mental phenols. Correlation analysis of the four interfer-
ences showed a strong correlation between MP and PP 
(r = 0.83); the next strongest correlation was between 
BP-3 and PP (r = 0.29) and TCS was weakest with 
BP-3, matching that of TCS and PP (r = 0.18). All of the 

correlations mentioned above reached statistical signifi-
cance with a P-value < 0.001.

Assessment of individual BP-3, TCS and parabens in 
association with obesity
The results in Table 2 showed that the concentrations of 
BP-3, MP, and PP were negatively correlated with obesity.

BP-3 was significantly and negatively associated with 
general obesity (P-value < 0.001); the Odd Ratios (ORs) 
of the increase over the first quartile were 1.173 (95% CI: 
0.88–1.56), 0.911 (95% CI: 0.68–1.22), and 0.658 (95% CI: 
0.48–0.90), respectively. MP is positively associated with 
general obesity (P-value = 0.004); the ORs of the increase 
over the first quartile were 0.611 (95% CI: 0.46–0.82), 

Table 1 Characteristics of 1,894 participants in NHANES data, 2007–2012
Characteristics No obesity General obesity P-value No abdominal obesity Abdominal obesity P-value

N = 1,188 N = 706 N = 811 N = 1,083
Age, year 48.9 ± 18.5 50.1 ± 16.5 < 0.001a 45.3 ± 17.8 52.3 ± 17.2 < 0.001a

Gender 0.002 < 0.001a

 Male 635 (53.5) 325 (46.0) 532 (65.6) 428 (39.5)
 Female 553 (46.5) 381 (54.0) 279 (34.4) 655 (60.5)
Ethnicity < 0.001a < 0.001a

 Mexican American 169 (14.2) 118 (16.7) 122 (15.0) 165 (15.2)
  Other Hispanic 118 (9.9) 64 (9.1) 74 (9.1) 108 (10.0)
 Non-Hispanic White 601 (50.6) 312 (44.2) 376 (46.4) 537 (49.6)
 Non-Hispanic Black 187 (15.7) 189 (26.8) 147 (18.1) 229 (21.1)
  Others 113 (9.5) 23 (3.3) 92 (11.3) 44 (4.1)
Education Level 0.024 0.006
Lower than high school 123 (10.4) 73 (10.3) 78 (9.6) 118 (10.9)
  High school 168 (14.1) 133 (18.8) 106 (13.1) 195 (18.0)
Higher than high school 897 (75.5) 500 (70.8) 627 (77.3) 770 (71.1)
PIR 0.372 0.101
 ≤ 1.30 366 (30.8) 234 (33.1) 237 (29.2) 363 (33.5)
 1.31–3.50 436 (36.7) 263 (37.3) 303 (37.4) 396 (36.6)
 > 3.50 386 (32.5) 209 (29.6) 271 (33.4) 324 (29.9)
Smoking status 0.049 < 0.001a

 Never smoker 634 (53.4) 384 (54.4) 429 (52.9) 589 (54.4)
 Past smoker 287 (24.2) 194 (27.5) 182 (22.4) 299 (27.6)
 Now smoker 267 (22.5) 128 (18.1) 200 (24.7) 195 (18.0)
Energy 0.902 0.013
  Low energy intake 508 (42.8) 309 (43.6) 335 (41.3) 481 (44.4)
 Adequate energy intake 437 (36.8) 259 (36.7) 287 (35.4) 409 (37.8)
 High energy intake 243 (20.5) 139 (19.7) 189 (23.3) 193 (17.8)
Drink 0.067 < 0.001a

  No 280 (23.6) 193 (27.3) 166 (20.5) 307 (28.3)
  Yes 908 (76.4) 513 (72.7) 645 (79.5) 776 (71.7)
Diabetes < 0.001a < 0.001a

  No 1071 (90.2) 548 (77.6) 749 (92.4) 870 (80.3)
  Borderline 23 (1.9) 19 (2.7) 12 (1.5) 30 (2.8)
  Yes 94 (7.9) 139 (19.7) 50 (6.2) 183 (16.9)
Hypertension < 0.001a < 0.001a

  No 845 (71.1) 347 (49.2) 620 (76.4) 572 (52.8)
  Yes 343 (28.9) 359 (50.8) 191 (23.6) 511 (47.2)
Note PIR: family poverty income ratio. The data were presented as means ± standard deviations or N (%). a: P-value < 0.001
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0.627 (95% CI: 0.46–0.85), and 0.618 (95% CI: 0.45–0.85), 
respectively. PP was also negatively associated with gen-
eral obesity (P-value < 0.001); the ORs of the increase 
over the first quartile were 0.693 (95% CI: 0.52–0.93), 
0.627 (95% CI: 0.46–0.86) and 0.544 (95% CI: 0.39–0.75), 
respectively. The association between TCS and general 
obesity was not statistically mathematically significant 

(P-value = 0.798). A similar relationship to that of general 
obesity arose between the four phenols and abdominal 
obesity.

Assessment of mixed BP-3, TCS and parabens in association 
with obesity
The WQS model was then used to evaluate the associa-
tion between exposure to mixed phenols and obesity, and 
BKMR not only assessed these mixed effects but also 
showed the univariate exposure-response function. The 
WQS index, representing the mixed phenols, indicated a 
negative association with general obesity (OR: 0.770; 95% 
CI: 0.644–0.919) (Table S1). The weight order of all WQS 
indexes was as follows: BP-3 (41.62%), MP (39.24%), PP 
(11.53%), and TCS (7.61%) (Fig. 2A), indicating that BP-3 
was the most predominant contributor to the effects 
on these measures. This negative correlation was also 
observed in environmental phenols and abdominal obe-
sity (OR: 0.781; 95% CI: 0.658–0.928), and their contribu-
tions were consistent with the results of general obesity 
(Table S1, Fig. 2B).

The combined effects of TCS, BP-3, and parabens on 
general obesity were further revealed through BKMR 
(Fig.  3A). Compared with the medians, when the con-
centration of four environmental phenols was at a certain 
percentile, the differences between general obesity and 
95% CI were used to identify the estimated overall effect. 
Our results indicated that the combined effects of TCS, 
BP-3, and parabens on general obesity were statistically 
significant when whole TCS, BP-3, and parabens were at 
or exceeded the 30th percentile. Furthermore, the higher 
the combined concentration of the TCS, BP-3, and para-
ben, the greater the effect of its negative correlation with 
general obesity.

Univariate exposure-response functions were esti-
mated for TCS, BP-3, and parabens, which allows for the 
combination of observed data with a priori knowledge to 
provide more accurate and reliable results (Fig. 3B). Con-
sistent with the results of logistic regression, the direc-
tion of exposure-response obtained through the BKMR 
model revealed a negative correlation of MP and PP with 
obesity when other phenols were fixed at their median 
concentrations. A reverse U-shaped association was 
observed between BP-3 and general obesity. A similar 
association exists between abdominal obesity and these 
same substances (Fig. 3C-D).

The posterior inclusion probability (PIP) values show 
the probability distribution of the effects of several phe-
nols on obesity (Table S1).

Finally, this generalized the research results of the 
aforementioned three analysis models. As shown in Table 
S1, BP-3, MP, and PP were inversely associated with obe-
sity, while no significant association was found between 
TCS and general obesity. Exposure to mixed phenols was 

Table 2 Associations between BP-3, TCS, and parabens and 
obesity in the NHANES

BMI WC
OR (95% CI) P-value OR (95% CI) P-value

BP-3 < 0.001a 0.013
Q1 1.00 1.00
Q2 1.173(0.88,1.56) 0.279 1.212(0.90,1.64) 0.208
Q3 0.911(0.68,1.22) 0.537 0.937(0.69,1.27) 0.671
Q4 0.658(0.48,0.90) 0.009 0.747(0.55,1.02) 0.069
TCS 0.798 0.642
Q1 1.00 1.00
Q2 1.011(0.76,1.35) 0.940 0.976(0.73,1.31) 0.872
Q3 1.000(0.74,1.34) 0.986 0.937(0.70,1.26) 0.669
Q4 1.041(0.78,1.40) 0.789 0.937(0.70,1.26) 0.668
MP 0.004 < 0.001a

Q1 1.00 1.00
Q2 0.611(0.46,0.82) 0.001 0.747(0.56,1.01) 0.054
Q3 0.627(0.46,0.85) 0.002 0.517(0.38,0.70) < 0.001a

Q4 0.618(0.45,0.85) 0.003 0.587(0.42,0.81) < 0.001a

PP < 0.001a < 0.001a

Q1 1.00 1.00
Q2 0.693(0.52,0.93) 0.013 0.705(0.53,0.94) 0.019
Q3 0.627(0.46,0.86) 0.003 0.521(0.38,0.71) < 0.001a

Q4 0.544(0.39,0.75) < 0.001a 0.545(0.39,0.76) < 0.001a

Note Adjusted covariates: urinary creatinine, age, gender, race, family PIR, 
education levels, smoking status, alcohol drinking status, total energy intake, 
hypertension, and diabetes. CI: confidence interval. BMI: higher body mass 
index. WC: waist circumference. PIP: posterior inclusion probability. BP-3: 
benzophenol-3 (BP-3). TCS: triclosan. MP: methyl paraben. PP: propyl paraben. 
OR: Odd Ratio. a: P-value < 0.001

Fig. 2 The weights of each environmental phenol in the WQS model re-
gression index. The figure showed the weights of each phenol contribut-
ing to the overall effect. A WQS model regression index weights for general 
obesity. B WQS model regression index weights for abdominal obesity. 
The models were adjusted for urinary creatinine, age, gender, race/ethnic-
ity, PIR, education levels, physical activity, smoking status, alcohol drinking 
status, total energy intake, hypertension, and diabetes
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negatively associated with obesity in the WQS regression 
and BKMR models. In all three models, the results for 
general obesity and abdominal obesity were consistent.

3.5 Assessment of the mediating effects of cholesterol
In addition, the parallel mediation analysis was used to 
identify the potential mediating role of cholesterol in 
the association between environmental phenols and 
obesity. Specifically, HDL was estimated to explain the 
association of BP-3, TCS, MP, and PP with general obe-
sity, and the proportions of mediation were 34%, 44%, 
29%, and 27%, respectively (all P-value < 0.05) (Table 
S1). LDL only mediated the relationship between BP-3 
and general obesity with a 5% proportion of media-
tion (P-value < 0.05) (Table S1). TG was not a mediator 

between the association of four environmental phenols 
with general obesity (Table S1). The mediating effects of 
cholesterol on the association between individual envi-
ronmental phenols and general obesity also existed in 
abdominal obesity (Table S4). Moreover, cholesterol par-
allelly mediated the associations of mixed phenols with 
obesity (Table 3).

TG was estimated to explain 7% of the association 
between mixed phenols and obesity. LDL accounted for 
4% of the relationship between the mixed phenols and 
obesity (Fig. 4).

Figure 4 depicts that HDL elucidated 35% of the corre-
lation between the mixed phenols and obesity. Similarly, 
the mediating effect of cholesterol on the mixed phenols 
and abdominal obesity is found in Figure S1 and Table 3.

Fig. 3 The overall effect of the mixtures on obesity and univariate exposure-response function. A Overall risk (95% CI) of the mixture on general obesity 
when comparing all the environmental phenols at different percentiles with all of them fixed at the median level by BKMR model. B Overall risk (95% CI) 
of the mixture on abdominal obesity when comparing all the environmental phenols at different percentiles with all of them fixed at the median level by 
BKMR model. C Univariate exposure-response functions for each environmental phenol on general obesity, with other metabolites fixed at their median 
concentrations by BKMR model. D Univariate exposure-response functions for each environmental phenol on abdominal obesity, with other metabolites 
fixed at their median concentrations by BKMR model. The models were adjusted for urinary creatinine, age, gender, race/ethnicity, PIR, education levels, 
physical activity, smoking status, alcohol drinking status, total energy intake, hypertension, and diabetes
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Table 3 Cholesterol mediated the associations between the 
mixtures and obesity in the NHANES
Mixtures

TE DE IE Proportion 
of mediation

BMI M1 
(TG)

-0.040(-0.057,-0.020) -0.038(-
0.055,-0.020)

-
0.003(-
0.005,-
0.000)

7%

M2 
(LDL)

-0.040(-0.057,-0.020) -0.039(-
0.056,-0.020)

-
0.002(-
0.004,-
0.000)

4%

M3 
(HDL)

-0.039(-0.056,-0.020) -0.025(-
0.042,-0.010)

-
0.014(-
0.019,-
0.010)

35%

WC M1 
(TG)

-0.026(-0.039,-0.010) -0.025(-0.39,-
0.010)

-
0.001(-
0.004,-
0.000)

4%

M2 
(LDL)

-0.027(-0.040,-0.010) -0.025(-0.38,-
0.010)

-
0.002(-
0.004,-
0.000)

8%

M3 
(HDL)

-0.026(-0.040,-0.010) -0.014(-
0.28,0.000)

-
0.012(-
0.016,-
0.010)

44%

Note Adjusted covariates: urinary creatinine, age, gender, race, family PIR, 
education levels, smoking status, alcohol drinking status, total energy intake, 
hypertension, and diabetes. TG: triglyceride. LDL: low density lipoprotein 
cholesterol. HDL: high-density lipoprotein cholesterol. TE: total effect. IE: 
indirect effect. DE: direct effect. BMI: higher body mass index. WC: waist 
circumference

Fig. 4 Mediation analysis of cholesterol on the interaction between mixed phenols and obesity. Cholesterol mediated association between mixed 
environmental phenols and general obesity. The models were adjusted for urinary creatinine, age, gender, race/ethnicity, PIR, education levels, physical 
activity, smoking status, alcohol drinking status, total energy intake, hypertension, and diabetes. *: P-value < 0.05.
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Discussion
The present study combines both individual and hybrid 
models to jointly explore the effects of exposure to indi-
vidual and mixed phenols on obesity risk among a U.S. 
population. In logistic regression, solitary BP-3, MP, and 
PP were inversely associated with obesity, while no sig-
nificant association was observed between single TCS 
and obesity. The results of both mixing models showed 
that mixed phenols were also negatively correlated with 
obesity. Notably, the aforementioned associations were 
mediated by cholesterol through parallel mediation anal-
ysis. HDL mediated the association between single envi-
ronmental phenol and obesity, while LDL mediated only 
the association between BP-3 and obesity. In addition, all 
three types of cholesterol were mediators in a mediation 
model examining the role of mixed phenols. In all mod-
els, the results of abdominal obesity and general obesity 
were consistent, demonstrating the authenticity of our 
research results.

Studies have reported the inverse association of envi-
ronmental phenol concentrations in urine with obesity 
risk. For instance, obese participants may have lower 
concentrations of MP and PP in their urine compared 
with those with a normal BMI [53]. A national biologi-
cal monitoring survey conducted in Canada showed a 
negative correlation between methylparaben and female 
obesity [54]. In addition, a cross-sectional study based 
on Korean adults found that the ORs for obesity showed 
a decrease in the highest quartiles of certain endocrine-
disrupting substances detected in the urine [55]. Attrac-
tively, both the mixed model Sparse Decompositional 
Regression and BKMR found a mixed negative contri-
bution of BP-3, MP, and PP to obesity [22, 56]. Overall, 
the aforementioned evidence supports our view that 
there was a negative correlation between BP-3, TCS, and 
parabens and obesity. Phthalate deposition in human fat 
pools may be attributed to the lipophilic nature of endo-
crine-disrupting environmental substances, which may 
be helpful in explaining our research findings [57, 58]. In 
addition, endocrine disruptors may affect the expression 
of endogenous cannabinoids and cannabinoid receptors, 
thereby altering the expression of leptin or neuropeptide 
Y, the signaling neuropeptide for fatty liver [59]. Finally, 
endocrine disruptors may also affect the expression of 
lipid metabolism-related enzymes, transcription factors, 
and adipocytokines [59]. On the one hand, urinary TCS 
has been found to have a significant negative correlation 
with BMI and waist circumference in U.S. children and 
adults [60]. On the other hand, TCS was also reported 
to be positively associated with adiposity measurements 
conducted on girls who were overweight at baseline [61]. 
Our results did not reveal a connection between TCS and 
obesity as only adults were included as participants, and 
the genetic effect of obesity was not considered in the 

present study. Further and more comprehensive analy-
sis was necessary. Consistent with our research findings, 
Xue and fellows did not find an association between TCS 
exposure and obesity [62].

The relationship between endocrine disruptors and 
lipids is very complex. Low concentrations of the same 
chemicals can increase fat production, whereas high 
concentrations can inhibit fat cell differentiation [63]. 
Reduced safe storage locations of obesity lipophilic 
chemicals could potentially render them more hazard-
ous in nature compared with agents that induce obesity 
[64]. Although the association between these persistent 
organic compounds and obesity cannot be fully pre-
dicted, hybrid models can at least better identify inter-
actions between homologous chemicals [49]. More 
common are studies looking at how individual environ-
mental exposures affect health. However, chemical expo-
sure invariably results in the manifestation of mixture 
effects. Patterns of exposure to mixed environmental 
phenols and the potential effects of mixed exposure on 
obesity are unknown. BP-3, TCS, MP, and PP are often 
combined in products, and there was a strong correlation 
between them (P-value < 0.05) [63]. Therefore, analyz-
ing the relationship between mixed environmental phe-
nols and obesity might provide us with a more practical 
perspective for understanding the synergistic effects of 
these chemicals. The WQS model reflected the combined 
effects of mixed exposure and explained the contribu-
tions of each component in the mixed effects [45, 46]. 
Our results of the WQS model indicated a negative cor-
relation between environmental multi-phenols and obe-
sity, with BP-3 contributing the most to this association. 
One limitation of WQS is the reduced statistical power 
caused by the need to split the dataset into training and 
validation sets, which may also lead to unrepresenta-
tive datasets and unstable parameter estimation [46]. 
Thus, BKMR was further used, as it does not need to set 
parameter expression forms, allowing for the existence 
of nonlinear effects and interactions [43, 44]. The BKMR 
model can also generate kernel functions based on the 
mixture variables included in the model. Bayesian sam-
pling and analysis methods can be used to generate the 
association curve between the mixed phenol components 
and the disease variables included in the model [43, 44]. 
With this method, we found the negative association of 
mixed environmental phenols with obesity, consistent 
with the results of the WQS model.

Understanding the effects and mechanisms of action of 
EDCs on lipid metabolism is important for a comprehen-
sive assessment of the health risks of EDCs. Mechanisti-
cally, it has been shown that EDCs can directly increase 
the number of adipocytes by upregulating the expression 
of genes that promote adipocyte production [65]. EDCs 
can also indirectly increase fat content by disrupting 
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metabolic pathways, altering metabolic set points, induc-
ing adverse changes in the gut microbiome, and upregu-
lating obesogenic diets [66]. Cholesterol imbalance is 
a feature of enlarged fat cells in obese states, and cho-
lesterol normalization is beneficial in reversing insulin 
resistance and combating the development of obesity 
[15]. Previous investigations have also documented the 
effect of EDCs on cholesterol homeostasis [67–69]. Par-
allel mediation analyses were used to explore whether 
cholesterol plays a mediating role, our results indicated 
that the association between single/mixed phenols and 
obesity was mediated or at least mediated in part by dif-
ferent cholesterol types. This study assesses their com-
bined effects on health outcomes through single and 
mixed chemical models, providing new ideas for real-life 
exposure prevention and treatment strategies and new 
evidence for future epidemiological and toxicological 
studies [56].

Study strengths and limitations
The present study used WQS and BKMR model to 
solve nonlinear and data imbalance problems that can-
not be handled through logistic regression [70]. The 
BKMR method handles parameter uncertainty well and 
provides more comprehensive and accurate inference 
results, especially excelling in the face of small sample 
data or incomplete data [47, 48]. The WQS and BKMR 
hybrid models were used to determine weights based on 
self-help sampling experience, which better reflects the 
complexity of real-life endocrine disruptor exposure [56, 
70]. These two hybrid models can be applied in various 
environmental health studies for better exposure effect 
analysis, risk assessment, and exploration of factor inter-
actions [56, 70].

However, this study has some shortcomings. First, the 
results of parallel mediation may not fully explain the 
mediating effect of cholesterol, as studies on the inter-
action between the four types of cholesterol have not 
been considered [52]. Additionally, the WQS model can-
not assess the combined effects of phenolics in differ-
ent directions of effect but can only evaluate the effects 
of phenolics acting in a single direction separately [71, 
72]. Another limitation is that The NHANES data pro-
vide static urine sample data and lack information on 
dynamic changes in biomarkers [52, 56]. We have diffi-
culty assessing changes and trends in health factors over 
time, limiting research on causal associations between 
environmental phenols and obesity [52, 56].

Conclusions
In summary, the results of this study show a negative 
correlation between single and mixed environmental 
phenols and an increased risk of obesity, with identi-
cal results for abdominal obesity and general obesity. 

Furthermore, mediation analysis revealed that the asso-
ciation between single and mixed environmental phenols 
and obesity risk may be mediated by cholesterol. These 
results suggest that the combined effects of mixed chemi-
cals provide a better description of their true toxicity 
than single chemical exposure assessments, emphasizing 
the need for incorporating mixed phenols into chemical 
testing and risk assessment processes.
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