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Abstract 

Background  Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease. Metabolism-related genes 
significantly influence the onset and progression of the disease. Hence, it is necessary to screen metabolism-related 
biomarkers for the diagnosis and treatment of NAFLD patients.

Methods  GSE48452, GSE63067, and GSE89632 datasets including nonalcoholic steatohepatitis (NASH) and healthy 
controls (HC) analyzed in this study were retrieved from the Gene Expression Omnibus (GEO) database. First, dif-
ferentially expressed genes (DEGs) between NASH and HC samples were obtained. Next, metabolism-related DEGs 
(MR-DEGs) were identified by overlapping DEGs and metabolism-related genes (MRG). Further, a protein–protein 
interaction (PPI) network was developed to show the interaction among MR-DEGs. Subsequently, the “Least absolute 
shrinkage and selection operator regression” and “Random Forest” algorithms were used to screen metabolism-related 
genes (MRGs) in patients with NAFLD. Next, immune cell infiltration and gene set enrichment analyses (GSEA) were 
performed on these metabolism-related genes. Finally, the expression of metabolism-related gene was determined 
at the transcription level.

Results  First, 129 DEGs related to NAFLD development were identified among patients with nonalcoholic steato-
hepatitis (NASH) and healthy control. Next, 18 MR-DEGs were identified using the Venn diagram. Subsequently, four 
genes, including AMDHD1, FMO1, LPL, and P4HA1, were identified using machine learning algorithms. Moreover, a reg-
ulatory network consisting of four genes, 25 microRNAs (miRNAs), and 41 transcription factors (TFs) was constructed. 
Finally, a significant increase in FMO1 and LPL expression levels and a decrease in AMDHD1 and P4HA1 expression 
levels were observed in patients in the NASH group compared to the HC group.

Conclusion  Metabolism-related genes associated with NAFLD were identified, containing AMDHD1, FMO1, LPL, 
and P4HA1, which provide insights into diagnosing and treating patients with NAFLD.
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Introduction
Nonalcoholic fatty liver disease (NAFLD) is the hepatic 
manifestation of metabolic syndrome. Metabolism asso-
ciated with risk factors, including obesity, hypertension, 

dyslipidemia, and diabetes, are associated with NAFLD 
[1]. NAFLD is a major cause of chronic liver disease [2]. 
NAFLD can be divided based on disease progression pro-
files into the non-alcoholic fatty liver (NAFL), nonalco-
holic steatohepatitis (NASH), and liver fibrosis as well as 
cirrhosis [3]. Studies have shown that the incidence of 
NAFLD among adults in European and American coun-
tries is 20%-33% [4]. NAFLD has overtaken viral hepatitis 
as a major chronic liver disease. Moreover, the incidence 
of NAFLD is increasing year by year and becoming 
younger [3]. Globally, NAFLD is the most prevalent type 

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Lipids in Health and Disease

*Correspondence:
Jianpeng Gao
gaojianpengkm@163.com
1 Department of Gastroenterology, The Affiffiffiliated YanAn Hospital 
of Kunming Medical University, Kunming, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12944-023-01911-2&domain=pdf


Page 2 of 14Jiang et al. Lipids in Health and Disease          (2023) 22:150 

of chronic liver disease [5]. Although treating patients 
with NAFLD at an early stage could help in complete 
recovery, approximately 20% of patients with NAFLD 
progress to cirrhosis and end-stage liver disease [4]. This 
seriously endangers the health of people [6]. Additionally, 
NAFLD is involved in the onset and progression of dia-
betes, arteriosclerosis, and several chronic liver diseases, 
respectively, seriously affecting the quality of life and life 
expectancy [7]. Due to the regulation of insulin resist-
ance, there is an increased risk of developing cancers 
other than the liver, such as bladder cancer [8]. There-
fore, identifying biomarkers for diagnosing patients with 
NAFLD is the need of the hour.

Metabolic dysfunction, such as hepatic steatosis, is an 
early indicator of NAFLD development. Studies have 
shown the interaction between metabolic pathways, 
intestinal flora, and immune systems in patients with 
NAFLD. Immune disorders, intestinal imbalances, and 
metabolic disorders promote liver inflammation and 
other aspects during late-stage NAFLD [9]. A study has 
shown that inflammation and metabolic processes in 
adipose tissue could accelerate NASH development and 
serve as therapeutic targets [10]. In fact, some stud-
ies have suggested that NAFLD could be referred to 
as metabolic (dysfunction) associated fatty liver dis-
ease (MAFLD) [11]. Therefore, determining the influ-
ence of metabolism on regulating NAFLD would aid in 
designing targeting therapies [12]. However, the role of 
metabolism-related genes (MRGs) in NAFLD is yet to be 
elucidated.

In this study, publicly available databases were 
searched, followed by bioinformatic analysis to identify 
MRGs in NAFLD onset and progression. Next, the reg-
ulatory network of MRGs and their correlation with the 
immune microenvironment were analyzed. The results 
of this research would aid in understanding the mecha-
nisms of MRGs in NAFLD and identifying new therapeu-
tic targets.

Materials and methods
Data acquisition
The GSE48452 and GSE63067 datasets consisting of data 
on clinical features and gene expression in liver tissue 
of patients with NASH and healthy controls (HC) were 
retrieved from the Gene Expression Omnibus (GEO) 
database based the source and size of samples. GSE48452 
comprised 14 HC and 18 patients with NASH, and 
GSE63067 comprised seven HC and nine patients with 
NASH. Additionally, the GSE89632 dataset, compris-
ing 24 HC and 19 patients with NASH, was used to ver-
ify the expression level of biomarkers. Finally, based on 
the background gene set “c2.cp.kegg.v7.4.symbols.gmt”, 
the gene set related to metabolism were obtained from 

The Molecular Signatures Database (MsigDB) database 
(v7.4, https://​www.​gsea-​msigdb.​org/​gsea/​msigdb/), and 
948 metabolism-related genes (MRGs) were acquired by 
merging the genes from gene set and after de-duplicat-
ing. The flow chart of this study is shown in Supplemen-
tary Fig. 1.

Removing batch effects
To minimize the effects of sequencing platforms, experi-
mental environments, sample processing and other fac-
tors, the Combat function in the “sva” package [13]
was used to implement the de-batch of GSE48452 and 
GSE63067 datasets. Then, the merged dataset was used 
as a training cohort. Furthermore, the “ggplot2” package 
and UMAP algorithm were used to validate the correc-
tion results.

Analysis of differential genes
First, the “linear models for microarray data” R pack-
age [14] were used to identify differentially expressed 
genes (DEGs) based on “P < 0.05” and “|log2fold change 
(FC)|> 0.5” criteria in the NASH and HC groups in the 
training cohort. Next, a volcano plot and heatmap were 
constructed to show DEGs in NAFLD. Metabolism-
related DEGs (MR-DEGs) were identified by intersecting 
DEGs and key module genes using the “VennDiagram” 
package [15].

Functional enrichment analysis and Protein–protein 
interaction (PPI) network
Gene Ontology (GO) and “Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analyses 
were conducted on MR-DEGs using the “clusterProfiler” 
package [16] with “P < 0.05” as screening criteria. Next, a 
PPI network was constructed to present the interaction 
between MR-DEGs using the STRING (https://​string-​
db.​org) database. Finally, the topological features of the 
network were visualized using the “Cytoscape (version 
3.7.2)” software [17].

Machine learning methods
The “Least absolute shrinkage and selection operator 
(LASSO)” regression analysis was performed, and the 
random forest (RF) algorithm was implemented using the 
“randomForest” package to screen important genes in the 
training cohort. The LASSO algorithm was performed by 
“glmnet” package [18] (version4.0–2), with parameters 
set to: family = binomial, type.measure = class, nfold = 10, 
to reduce the feature dimensions. Biomarkers were iden-
tified by intersecting genes identified using these algo-
rithms. Moreover, the diagnostic significance of these 
genes was evaluated by constructing receiver operating 
characteristic (ROC) curves using the “pROC” package 

https://www.gsea-msigdb.org/gsea/msigdb/
https://string-db.org
https://string-db.org
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[19]. GSE89632 served as the external validation cohort 
for verifying these biomarkers. Based on the expression 
of biomarkers and sample grouping information in the 
training set, the nomogram was established by “RMS” 
[20] package (version6.4–1). To assess the predictive 
power of the nomogram, the calibration curve was plot-
ted and the consistency index calculated using the cali-
brate function in the “RMS” package.

Immune cell infiltration (ICI) and Gene set enrichment 
analysis (GSEA)
The single-sample GSEA (ssGSEA) algorithm was used 
for calculating the relative abundance of 28 immune cells 
infiltrating the immune microenvironment of patients 
with NAFLD. Next, the correlation between diagnosis-
related MRGs and differentially infiltrating immune cells 
was calculated and visualized. Finally, GSEA was per-
formed to identify MRG-enriched KEGG pathways and 
GO terms using the “clusterProfiler” package [21].

Constructing biomarker regulatory networks
Biomarker-related micro-RNAs (miRNAs) were screened 
using the miRwalk3.0 database as per the following crite-
ria: “binding probability ≥ 0.95” and “binding site position 
at 3’ untranslated region (UTR).” In addition, the tran-
scription factors (TFs) targeting these biomarkers were 
predicted using the “hTFtarget” database. Finally, the TF-
miRNA-mRNA network was constructed with the aid of 
the “Cytoscape (version 3.8.2)” software.

Analysis of MRG expression
Quantitative reverse transcriptase PCR (RT-qPCR) was 
performed to determine MRG expression profiles among 
patients with NAFLD. Blood samples were collected from 
five HC and five patients with NASH. Liver tissue and 
serum samples were collected from patients undergoing 
liver biopsy between April 2019 and July 2020, and cate-
gorized based on histopathological diagnosis into hepatic 
steatosis (HS), non-alcoholic steatohepatitis (NASH), and 
hepatitis control (HC). Participants with predetermined 
abnormal imaging parameters were offered a liver biopsy. 
Biopsies were read in a blinded fashion with results based 
on the consensus by 2 expert pathologists.The prevalence 
of NASH was defined by biopsy. The demographic infor-
mation of the included participants was shown in Sup-
plementary Table 1.

All participants provided informed consent to partici-
pate in the study. This study was approved by the Medi-
cal Ethics Committee of Yan’an Hospital, affiliated with 
the Kunming Medical University ethics committee. First, 
total RNA was isolated from ten blood samples using 
TRIzol (Ambion, Austin, USA). Next, cDNA was syn-
thesized by reverse transcribing total RNA into cDNA 

using the First-strand-cDNA-synthesis-kit (Service-
bio, Wuhan, China). Finally, qRT-PCR was performed 
using the 2xUniversal Blue SYBR Green qPCR Master 
Mix (Servicebio, Wuhan, China). All these experiments 
were performed based on the protocol provided by the 
manufacturer. The sequences of primer used for PCR 
were designed based on the length of primer (17–25 bp), 
Tm value (58–62℃), GC content (40–60%), the size of 
the product (100–200  bp) and so on (Table  1). GAPDH 
served as an internal reference gene. Gene expression 
was calculated using the 2-ΔΔCt method [22].

Results
Subject characteristics
The demographic and clinical characteristics of the par-
ticipants are summarized in supplementary Table  1. 
There were no significant differences in age, sex, race, 
diabetes and hypertension prevalence between the 
NASH and HC groups. The levels of TC and BMI in 
NASH group were higher than those in HC group, but 
there was no significant difference in TG, LDL-C, HDL-
C, ALT, AST, GGT and WC between the two groups.

Identifying MR‑DEGs in Patients with NAFLD
Principal component analysis (PCA) plots show 
GSE48452 and GSE63067 before and after eliminating 
batch effects between datasets (Fig. 1A-D). In total, 129 
DEGs among patients with NASH and HC in the merged 
dataset were identified. Of which 100 genes were upregu-
lated, and 29 genes were downregulated genes (Fig. 2A). 
These DEGs were visualized using a heatmap (Fig.  2B). 
Finally, DEGs and 948 MRGs were overlapped to identify 
18 MR-DEGs (Fig. 2C). Subsequently, functional enrich-
ment analysis was performed to identify the underlying 
mechanisms of NAFLD-associated MR-DEGs. Fig-
ure  2D shows the top ten GO terms under each classi-
fication. The results revealed that these MR-DEGs were 

Table 1  Gene-specific primer sequences used for qRT-PCR

Primer Sequence

AMDHD1-F GGG​ATG​AAC​TCC​ACC​CGA​TG

AMDHD1-R CGA​TCC​GTG​TGT​GTG​AGA​CT

FMO1-F AGA​GAA​CAT​GGC​CAA​GCG​AG

FMO1-R TTC​GGT​GAA​TCT​CCA​CAG​CC

LPL-F AAG​GCC​TAC​AGG​TGC​AGT​TC

LPL-R CCA​GAT​TGT​TGC​AGC​GGT​TC

P4HA1-F AAT​GAC​CCC​TCG​GAG​ACA​GA

P4HA1-R TGG​CTC​ATC​TTT​CTG​TAA​TTC​CTC​T

GAPDH-F CGA​AGG​TGG​AGT​CAA​CGG​ATTT​

GAPDH-R ATG​GGT​GGA​ATC​ATA​TTG​GAAC​
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primarily enriched in the “isoprenoid metabolic process,” 
“acylglycerol biosynthetic process,” and “fatty acid meta-
bolic process.” The KEGG pathways enriched by these 
MR-DEGs primarily included the “biosynthesis of ster-
oid hormones” as well as the “fatty acid and glycerolipid 
metabolism” pathways (Fig. 2E). Finally, a PPI network of 
MR-DEGs was constructed, which included 12 nodes (11 
up-regulated genes and 1 down-regulated genes) and 14 
edges (Fig.  2F). The PPI network revealed that LPL had 
interactions with PLA2G7, ME1, FADS2, ACSL4, and 
DGAT2. Meanwhile, FMO1 interacted with CYP1A1 and 
UGT2A3.

Screening of biomarkers related to metabolism
To further dig out the key genes, LASSO regression 
analysis was performed on 18 MR-DEGs to screen for 
key genes, and 10 feature genes were identified, includ-
ing ACSL4, Amidolytic domain1 (AMDHD1), CA14, 
DGAT2, Flavin-Containing Dimethylaniline Monoox-
ygenase 1 (FMO1), IDO2, Lipoprotein lipase (LPL), 
(Proline 4-hydroxylase subunit α1) P4HA1, PKLR, and 
TREH (Fig.  3A-B). Meanwhile, 10 feature genes were 
identified, including CYP1A1, UGT2A3, P4HA1, ME1, 
AMDHD1, PDE11A, PLA2G7, FMO1, LPL, and FADS2 
using the RF algorithm (Fig.  3C-D). Subsequently, 

Fig. 1  Eliminating batch effects in GSE48452 and GSE63067 datasets. A, B The boxplots show two datasets before (A) and after (B), eliminating 
batch effects. C, D Principal component analysis (PCA) plots of two datasets before (C) and after (D) eliminating batch effect
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four overlapping genes, AMDHD1, FMO1, LPL, and 
P4HA1, were obtained using these algorithms (Fig. 3E) 
and defined as metabolism-related biomarkers (MRBs) 
in NAFLD. The AUC values of the MRBs were > 0.8, 
thus indicating that these MRBs had good diagnostic 

accuracy (Fig.  3F). Next, the diagnostic value of bio-
markers in the external validation set (GSE89632) was 
further validated, and the results were consistent with 
the training set (Fig. 3G). Subsequently, the nomogram 
(C-index = 0.95) was created to further explore the 

Fig. 2  Identifying metabolism-related differentially expressed genes (MR-DEGs) and functional enrichment analysis. A, B The volcano map (A) 
and heat map (B) show 129 differentially expressed genes (DEGs) between the nonalcoholic steatohepatitis (NASH) and healthy controls (HC) 
groups in the merged dataset. C The Venn diagram of 18 MR-DEGs was obtained by overlapping DEGs and 948 metabolism-related genes (MRGs). 
D, E Gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched by MR-DEGs. BP, biological progress; CC, 
cellular component; MF, molecular function. F The protein–protein interaction (PPI) network of MR-DEGs
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clinical value of biomarkers (Fig.  3H). The calibration 
curve showed that the error between the actual and 
predicted risk was small, indicating that the nomogram 
model has high prediction accuracy for NASH samples 
(Fig. 3I).

Immune infiltration and functional enrichment analysis
To analyze the immune microenvironment of patients 
with NAFLD, the relative abundance of 28 immune cell 
types was compared between both groups in the train-
ing cohort. The results revealed significant differences 

Fig. 3  Identification of biomarkers for non-alcoholic fatty liver disease (NAFLD). A, B 18 key genes were screened using least absolute shrinkage 
and selection operator (LASSO). C, D Ten feature genes were retained by the random forest (RF) algorithm. E The Venn diagram of four biomarkers. 
F, G The receiver operating characteristic (ROC) curves of biomarkers in the training and external validation sets. AUC, the area under the curve. H 
The nomogram of biomarkers. I The calibration curve of the nomogram
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in the abundance of eight immune cells, including acti-
vated and central memory CD4 T cells, immature and 
activated dendritic cells (DCs), effector memory CD8 
T cells, mast cells, myeloid-derived suppressor cells 
(MDSCs), and T follicular helper (Tfh) cells (Fig.  4A). 

Figure 4B shows the correlation between MRBs and dif-
ferential ICI. A significant negative correlation between 
AMDHD1 and Tfh cells as well as a positive correlation 
between LPL and activated CD4 T cells was observed 
(Fig.  4C). Next, ssGSEA was performed on biomarkers 

Fig. 4  Immune infiltration and functional enrichment analyses. A The relative abundance of 28 immune cells in the immune microenvironment 
of patients with NAFLD. B The correlation between MRBs and differential immune cells. C Correlation between hub gene expression and differential 
immune cells in patients with NAFLD
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to determine the possible functions of AMDHD1, FMO1, 
LPL, and P4HA1 in NAFLD. The results showed that 
AMDHD1 was mainly enriched in the ‘cytoplasmic trans-
lation’ and ‘ECM − receptor interaction’ (Supplementary 
Fig.  2A). Additionally, FMO1 was primarily enriched in 
the intrinsic apoptotic and FoxO signaling pathways 
(Supplementary Fig. 2B). “Chromosome segregation” and 
“complement and coagulation pathways” were enriched 
primarily by LPL (Supplementary Fig.  2C). P4HA1 was 
primarily enriched in the “organic acid catabolic process” 
and “the interactions between neuroactive ligand recep-
tors” (Supplementary Fig. 2D).

Four MRB‑based regulatory network
A regulatory network integrating AMDHD1, FMO1, 
LPL, and P4HA1 was constructed to identify the under-
lying regulatory mechanism of these MRBs. In addition, 
mRNA-miRNA and TF-mRNA pairs were matched to 
construct an “mRNA-miRNA-TF” regulatory network 
consisting of 25 miRNAs, four mRNAs, 41 TFs, 37 nodes, 
and 51 edges (Fig. 5). The results revealed that AMDHD1, 
P4HA1, and FMO1 could have common regulatory fac-
tors, such as PAD21 and CTCF.

Validating MRB expression
Prognostic gene expression in patients in the training set 
and GSE89632 was determined, respectively. The results 
revealed an increase in FMO1 and LPL expression levels 
and a decrease in AMDHD1 and P4HA1 expression levels 
among patients in the NASH group compared to the HC 
group in the training cohort (Fig.  6A). In GSE89632, a 
significant decrease in AMDHD1 and P4HA1 expression 
level and a significant increase in FMO1 and LPL expres-
sion level were observed in patients in the NASH group 
compared to the HC group (Fig. 6B). Finally, the expres-
sion of these MRBs in the blood samples of the patients 
was determined using qRT-PCR. The results were con-
sistent with the results obtained by analyzing publicly 
available databases (Fig. 7).

Discussion
Adipocyte dysfunction affects NAFLD onset and pro-
gression and could be a therapeutic target for treating 
patients with NAFLD. However, there were significant 
challenges in addressing the global epidemic of NAFLD, 
metabolic, and hepatic complications [23]. In this study, 
four NAFLD-associated MRBs were identified to deter-
mine the correlation between MRGs and differential ICI.

Fig. 5  The regulatory network of four biomarkers. Red circles represent biomarkers; green diamonds represent transcription factors (TFs); blue 
triangles represent microRNAs (miRNAs); pink arrowheads represent miRNA-mRNA pairs, and blue T-shaped lines represent TF-mRNA pairs
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AMDHD1 is localized in the cytoplasm, which cata-
lyzes the non-peptide carbon–nitrogen bond hydroly-
sis in cyclic amides. AMDHD1 encodes a 426 amino 
acid protein. It is involved in the catabolism of histi-
dine, including glutamic acid and formamide, glutamic 
acid, and Formate [24]. AMDHD1 is highly expressed in 
liver-specific [25]. A study showed a significant increase 
in AMDHD1 expression level in the regenerating liver 
compared to the developing liver, thereby indicating that 
AMDHD1 is involved in the renewal and repair of the 
liver [26]. Our results revealed a decrease in AMDHD1 
expression level in patients with NAFLD, which suggest 

inhibition in the regeneration and development of the 
liver among patients with NAFLD. The failure of liver 
tissues to adequately repair after damage due to inflam-
mation leads to NAFLD onset and progression. A study 
performed with integrated proteomics and bioinformatic 
analysis showed that AMDHD1 could predict the prog-
nosis of patients with hepatocellular carcinoma (HCC) 
[27].

FMOs are involved in the metabolism of small-mol-
ecule drugs. In humans, five FMOs, such as FMO1, 
FMO3, and FMO5, are involved in drug metabolism 
in the liver. FMO1 and FMO3 convert Trimethylamine 

Fig. 6  The expression of biomarkers in the training set (A) and GSE89632 (B). *** P < 0.001, **** P < 0.0001
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N-oxide (TMAO), a metabolite, to trimethylamine in 
the liver [28]. Because it was associated with insulin 
resistance, the formation of atherosclerotic plaques, 
cancer, diabetes, heart failure, and Hepatic steato-
sis was positively correlated. TMAO is produced by 
the fermentation of dietary nutrients, such as cho-
line and carnitine, in the gut microbiota. In metabolic 
syndromes, an increase in TMAO levels occurs along 
with an increase in body mass, visceral adiposity, and 
fatty liver indices [29]. Our results revealed that FMO1 
is a hub gene in NAFLD; however, the involvement of 
FMO1 in NAFLD pathogenesis is yet to be determined. 
A study used marker-free quantitative proteomics to 
demonstrate the effect of NASH on biological processes 
and functions in rats. The results showed a decrease in 
FMO1 expression level in rats in the NASH group, indi-
cating significant involvement of FMO1 in NAFLD pro-
gression [30].

LPL encodes for lipoprotein lipase, detected in cardiac, 
muscle, and adipose tissue. LPL is a homodimer and acts 
as a triglyceride hydrolase and a ligand-bridging fac-
tor involved in the uptake of lipoproteins mediated by 
the receptors. LPL binds to glycerol tripolyester. It par-
ticipates in catalysis, the process associated with changes 
in cellular state or activity (such as motility, secretion, 
enzyme production, gene expression, etc.), and the inter-
nal homeostasis of cholesterol. Gain, loss, or modifi-
cation of proteins or lipids in chylomicrons, including 
lipoprotein lipase hydrolysis of triglycerides and subse-
quent loss of free fatty acids. LPL activates or enhances 
the frequency, rate, or degree of adipocyte differen-
tiation. Severe mutations due to LPL deficiency cause 
type I hyperlipoproteinemia. In fact, LPL mutations are 
involved in multiple lipoprotein metabolism diseases. 
Moreover, rs328 polymorphism in the G allele of LPL 
could reduce the risk of abdominal obesity [31]. Fibrin 

Fig. 7  Validating the expression of biomarkers using reverse transcription quantitative PCR (RT-PCR). ns, not significant; *P < 0.05
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and omega-3 fatty acids reduce TG levels. However, 
ideal therapeutic strategies for patients with high TG and 
TGRL levels and low HDL levels are still unavailable. LPL 
is a key regulator of lipids. In lipoprotein particles, lipids 
into glycerol and free fatty acids are hydrolyzed by LPL 
for the storage and consumption of lipids by peripheral 
organs. With an enhancement in our comprehension of 
human genetics, proteins regulating LPL activity, includ-
ing the apolipoprotein and angiopoietin-like families, 
have been identified.

A previous study showed an increase in LPL expression 
levels among patients with NASH, consistent with our 
results. LPL is critically involved in incorporating plasma 
lipids into tissues, regulates the metabolism of lipids, and 
energy balance in the body [32]. The hepatic stellate cells 
(HSC) activation pathway mediated by LPL could be tar-
geted for treating liver fibrosis in patients with NASH 
[33]. During fasting, high insulinemia and blood glucose 
could reduce the LPL-mediated catabolism of triglyc-
eride-rich lipoproteins and increases postprandial lev-
els [34]. LPL regulates lipid metabolism by hydrolyzing 
triglycerides and very low-density lipoproteins in chy-
lomicrons. In high-fat diet-fed mice, a high LPL expres-
sion level could attenuate lipid droplet accumulation in 
the liver and improve the metabolism of glucose. These 
results could aid in designing new drugs to treat meta-
bolic syndromes, such as type 2 diabetes and NAFDL 
[35]. Studies have shown that targeting the LPL/FABP4/
CPT1 axis could be a promising strategy for preventing 
NASH-related HCC [36].

P4HA1 encodes for a component of proline 4-hydrox-
ylase, a key enzyme in the synthesis of collagen and 
composed of two. The protein encoded by P4HA1 con-
tains several different alpha subunit types and serves as 
a major portion of the catalytic site of an active enzyme. 
P4HA1 also acts as a cofactor and antioxidant in several 
species [37]. P4HA1 is an essential rate-limiting enzyme 
and a P4H (also called PHD) isoenzyme [38]. P4H acts 
as an oxygen sensor in cells and regulates the degrada-
tion of hypoxia-inducible factor (HIF) in proteasomes in 
an oxygen-dependent manner. HIF is activated by P4H 
hydroxylation and regulates adaptive hypoxic responses 
[39]. A study has shown the involvement of P4H in the 
pathogenesis of NAFLD [36]. Our results showed that 
P4HA1 was a hub gene in NAFLD. Furthermore, a study 
has shown differential expression of P4HA1 in the liver 
of patients with morbid obesity [40]. Our results revealed 
a decrease in P4HA1 expression level in patients with 
NASH.

In the KEGG enrichment analysis, FOXO1 is involved 
in both the insulin signaling pathway, and FOXO1 was 
the characteristic target gene for NAFLD. A study 
showed that Lut/ZnO NPs could activate the PI3K/

AKT signaling pathway, thereby inactivating FOXO1. 
Thus, Lut/ZnO NPs could alleviate NAFLD progression 
by reducing insulin resistance and antioxidant levels, as 
well as by regulating the insulin signaling pathway [41]. 
Furthermore, LPL was mainly enriched in chromosome 
segregation. A paradoxical response to DNA damage 
occurs in HCC, which leads to errors in chromosome 
segregation [42]. Error in mitosis occurs in metabolic 
disorders and causes numerical and structural chromo-
some aberrations during cell division [43]. FMO1 and 
P4HA1 involved in these pathways are closely associ-
ated with HCC [44]. Inflammation and ICI are critically 
involved in NALFD development. P4HA1 was primarily 
enriched in the interaction between neuroactive ligand 
receptors was a close relationship of NALFD [45].

Activated innate immune cells are involved in NAFLD 
pathogenesis. In fact, NAFLD progression involves 
recognizing immune cells, such as Kupffer cells, neu-
trophils, DCs, and natural killer T cells, by pattern 
recognition. This leads to oxidative imbalance, which 
promotes the production of cytokines and new reac-
tive species by innate immune cells, thereby promot-
ing inflammation induced by adaptive immune cells. 
Recent studies suggest that the activation of innate and 
adaptive immune cells causes inflammation and fibro-
sis in the liver. Tfh cells cause dysregulation of humoral 
immunity in patients with liver cirrhosis [46] and are 
involved in virus-induced liver fibrosis [47]. The results 
of this study revealed a significant negative correla-
tion between AMDHD1 and Tfh cells. Therefore, it is 
speculated that AMDHD1 could aid in preventing liver 
fibrosis and cirrhosis among patients with NAFLD. In 
addition, HSC activation induces liver fibrogenesis in 
NAFLD. CD4 + T cells suppressed Th9 cell differentia-
tion and reduced IL-9 expression, thus promoting the 
activation of hepatic stellate cells (HSCs) by activating 
the Raf/MEK/ERK signaling pathway [48].

TFs and miRNAs regulate gene expression and its 
downstream targets. MiRNAs regulate genes associated 
with normal metabolism in the liver. MiRNA dysregula-
tion is involved in the development and progression of 
NAFLD [49]. microRNA-432-5p suppresses E2F3 trans-
lation by binding to the 3’ UTR of E2F3, thereby influ-
encing the invasion and migratory abilities of liver cancer 
cells [50]. miR-124-3p is involved in NAFLD develop-
ment by directly targeting preadipocyte factor-1 [51]. 
miR-124-3p modulates sirtuin 1 expression in liver can-
cer, thereby attenuating the growth of liver cancer cells 
[52].

The results of this study showed that CTCF was regu-
lated by AMDHD1, P4HA1, and FMO1. CTCF could 
alleviate NAFLD. Specific deletion of CTCF in the liver 
causes augments PPARγ-DNA binding activity, which 
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increases downstream lipid MRG expression, thus caus-
ing hepatosteatosis [53].

Study strengths and limitations
For the first time, MRBs in patients with NAFLD were 
identified using GEO to discover new targets for treat-
ing patients with NAFLD. In addition, these biomarkers 
and differential ICI would aid in exploring the correlation 
between NAFLD and the immune microenvironment. 
Nevertheless, the present study has a few limitations. 
First, this is a retrospective study, and the data were 
obtained from publicly available databases. Hence, the 
results should be validated using additional clinical sam-
ples and data. Second, the mechanism of action of these 
MRBs in NAFLD progression needs to be determined.

Conclusion
In summary, four MRBs, including AMDHD1, FMO1, 
LPL, and P4HA1, were identified and demonstrated good 
ability in distinguishing patients with NAFLD from HCs. 
The results of this study would aid in determining the 
involvement of metabolism in the onset and development 
of NAFLD. This would help identify new targets for diag-
nosing and treating patients with NAFLD.
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MR-DEGs	� Metabolism-related differentially expressed genes
PPI	� Protein–protein interaction
LASSO	� Least absolute shrinkage and selection operator
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GO	� Gene ontology
KEGG	� Kyoto Encyclopedia of Genes and Genomes
ROC	� Receiver operating characteristic
GSEA	� Gene set enrichment analysis
TF	� Transcription factor
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