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Abstract
Background  Alzheimer’s disease (AD) represents profound degenerative conditions of the brain that cause 
significant deterioration in memory and cognitive function. Despite extensive research on the significant contribution 
of lipid metabolism to AD progression, the precise mechanisms remain incompletely understood. Hence, this study 
aimed to identify key differentially expressed lipid metabolism-related genes (DELMRGs) in AD progression.

Methods  Comprehensive analyses were performed to determine key DELMRGs in AD compared to controls in 
GSE122063 dataset from Gene Expression Omnibus. Additionally, the ssGSEA algorithm was utilized for estimating 
immune cell levels. Subsequently, correlations between key DELMRGs and each immune cell were calculated 
specifically in AD samples. The key DELMRGs expression levels were validated via two external datasets. Furthermore, 
gene set enrichment analysis (GSEA) was utilized for deriving associated pathways of key DELMRGs. Additionally, 
miRNA-TF regulatory networks of the key DELMRGs were constructed using the miRDB, NetworkAnalyst 3.0, and 
Cytoscape software. Finally, based on key DELMRGs, AD samples were further segmented into two subclusters 
via consensus clustering, and immune cell patterns and pathway differences between the two subclusters were 
examined.

Results  Seventy up-regulated and 100 down-regulated DELMRGs were identified. Subsequently, three key DELMRGs 
(DLD, PLPP2, and PLAAT4) were determined utilizing three algorithms [(i) LASSO, (ii) SVM-RFE, and (iii) random forest]. 
Specifically, PLPP2 and PLAAT4 were up-regulated, while DLD exhibited downregulation in AD cerebral cortex 
tissue. This was validated in two separate external datasets (GSE132903 and GSE33000). The AD group exhibited 
significantly altered immune cell composition compared to controls. In addition, GSEA identified various pathways 
commonly associated with three key DELMRGs. Moreover, the regulatory network of miRNA-TF for key DELMRGs was 
established. Finally, significant differences in immune cell levels and several pathways were identified between the 
two subclusters.

Conclusion  This study identified DLD, PLPP2, and PLAAT4 as key DELMRGs in AD progression, providing novel 
insights for AD prevention/treatment.
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Introduction
Alzheimer’s disease (AD) represents a common neuro-
degenerative condition linked to aging process, resulting 
in gradual and degenerative dementia [1]. Approximately 
5.8  million individuals suffered from AD In the United 
States in 2020, and this number could rise to 13.8 million 
by 2050 [2]. The characteristic pathological characteris-
tics of AD include the manifestation of β-amyloid (Aβ) 
plaques and the accumulation of neurofibrillary tangles 
[3]. Previous research has investigated changes in in vivo 
biomarkers using cerebrospinal fluid (CSF) analysis [4], 
neuroimaging [5], and gene mutation analysis [6, 7]. Nev-
ertheless, the understanding of the metabolic foundation 
of AD is still limited, and the connection between meta-
bolic irregularities and the development of AD is yet to 
be determined.

Lipid metabolism is a multifaceted process, encom-
passing the catabolism, anabolism, and translocation of 
lipids within the organism. Lipids are indispensable for 
the typical development and functionality of the CNS. 
Notably, sphingolipids and cholesterol, being the primary 
lipid types, are primarily situated within the myelin of the 
CNS [8]. Impaired lipid metabolism within the brain is 
considered a pivotal factor contributing to the pathogen-
esis of neurodegenerative diseases [9, 10]. Plasma phos-
pholipid concentrations have been linked to cognitive 
impairment in AD patients [11], with notable changes 
in sphingomyelin and ceramide being identified dur-
ing initial stages [12]. A recent investigation unveiled 
a strong correlation between 26 metabolites, including 
sphingolipids, and hippocampal atrophy in conjunction 
with biomarkers linked to AD pathology [13]. Moreover, 
cholesterol accumulation was detected in affected brain 
regions of AD patients [14] and in relation to region-
specific synaptic deficiencies [15]. These findings reveal 
a strong relationship between lipid metabolism and AD, 
although the precise molecular mechanisms remain 
elusive.

This study aimed to identify key differentially expressed 
lipid metabolism-related genes (DELMRGs) related to 
AD progression by conducting a comprehensive analysis 
using public datasets. Additionally, immune infiltration 
analysis was conducted to assess the correlation between 
key DELMRGs and immune cells specifically in AD sam-
ples. Moreover, the potential functions of key DELM-
RGs were assessed using gene set enrichment analysis 
(GSEA). Furthermore, a potential transcription factor 
(TF)-miRNA regulatory network of the key DELMRGs 
was predicted. Finally, based on the DELMRGs, AD 
samples were divided into two subclusters, and the differ-
ences in immune cells and pathways between subclusters 
were examined.

Methods
Study design
The general flow chart is presented in Fig.  1. Initially, 
the exploratory dataset GSE122063 was used to identify 
DELMRGs in AD brain tissues. Afterward, the DELM-
RGs underwent functional enrichment analysis. Next, 
key DELMRGs were identified by using three diverse 
algorithms. Then, correlations between key DELMRGs 
and immune cells were assessed. Notably, validation for 
these key DELMRGs was conducted in external datasets. 
Furthermore, GSEA was utilized to investigate the pos-
sible roles of the key DELMRGs. In addition, a regula-
tory network involving TF-miRNA was established for 
key DELMRGs. Moreover, within the validation dataset 
GSE33000, AD samples were segregated into two sub-
clusters using consensus clustering, based on key DELM-
RGs. Subsequently, immune cell patterns and pathway 
differences between the two subclusters were examined. 
Finally, a correlation analysis of DELMRGs and immune-
related genes (IRGs) was conducted, followed by a pro-
tein-protein interaction (PPI) analysis, and these analyses 
successfully identified IRGs that exhibit strong correla-
tions and interactions with key DELMRGs in AD.

Datasets acquisition
The datasets were derived from the Gene Expression 
Omnibus (GEO) platform [16]. Specifically, three micro-
array datasets for gene transcript expression levels were 
included. GSE122063 was an exploratory dataset used to 
identify key DELMRGs between the AD group and con-
trols. To validate the expression levels of key DELMRGs 
between groups, GSE132903 and GSE33000 were utilized 
as validation datasets. Supplementary Table S1 provides 
comprehensive details about these datasets.

Identification of DELMRGs between AD and control groups
The gene sets for lipid metabolism were downloaded 
from the MSigDB database [17]. Following that, 867 
distinct lipid metabolism-related genes (LMRGs) were 
identified (Supplementary Table S2). Next, by “limma” 
R package, differentially expressed genes (DEGs) in 
GSE122063 were identified [18]. Based on previous stud-
ies [19, 20], |log2 fold change| > 0.5 and false discovery 
rate (FDR) < 0.05 was set as the threshold for detecting 
DEGs. This relatively lenient threshold was used to iden-
tify more potentially promising results. The overlapping 
genes between DEGs and LMRGs were identified as 
DELMRGs. Finally, the DELMRGs were visualized using 
a circular heatmap via the “circlize” R package [21].

Functional enrichment analysis of DELMRGs
Functional enrichment analyses for DELMRGs were 
implemented in the DAVID database [22]. The analy-
ses encompassed Gene Ontology (GO) [23], Kyoto 
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Encyclopedia of Genes and Genomes pathway (KEGG) 
[24], and Reactome pathway enrichment analyses [25]. 
Subsequently, the Sangerbox online platform was uti-
lized to visualize dot plots for the top 10 enriched terms 
(P < 0.05) [26].

Screening of AD key DELMRGs
Subsequently, three machine-learning approaches [(i) 
least absolute shrinkage and selection operator (LASSO), 
(ii) support vector machine recursive feature elimination 
(SVM-RFE), (iii) random forest] were utilized for further 
determining key DEMLRGs. The LASSO algorithm was 
employed to minimize regression coefficients and elimi-
nate redundant and uncorrelated genes from the analy-
ses, reducing the risk of overfitting [27]. The SVM-RFE 
algorithm, based on support vector machines, is fre-
quently utilized for optimal gene selection by minimiz-
ing classification errors and avoiding overfitting since 
the most accurate gene features could be filtered at the 
minimum root-mean-square error (RMSE) [28]. Ran-
dom forest is a powerful machine-learning algorithm for 
gene selection in microarray analysis that is known for its 
robustness, ability to handle noisy and high-dimensional 
data, and accurate variable importance measures [29]. 
The LASSO, SVM-RFE, and random forest were imple-
mented by “glmnet”, “e1071”, and “randomForest” pack-
ages in R, respectively. The key DELMRGs for AD were 

ultimately considered to be the common genes deter-
mined by all algorithms.

Immune cell infiltration analysis
The relative levels of 28 immune cells in every sample of 
the GSE122063 dataset were quantified using the “ssg-
sea” algorithm from the “GSVA” R package [30]. Cha-
roentong et al. conducted a previous study, from which 
a reference gene set of 28 immune cells was derived [31]. 
First, based on normality results, variances of immune 
cells between groups were calculated using either t-tests 
or Mann-Whitney Wilcoxon tests. Subsequently, the cor-
relations between key DELMRGs and immune cells in 
AD were calculated via either Pearson correlation analy-
ses or Spearman correlation analyses based on normality 
results.

Verifying key DELMRGs in internal and external AD 
datasets
The expression variation of key DELMRGs between 
AD and control samples was initially evaluated in fron-
tal cortex and temporal cortex tissues in GSE122063. In 
addition, to increase the reliability of key DELMRGs, the 
differences in relative levels of key DELMRGs between 
AD and controls were validated via two additional AD 
datasets (GSE132903 and GSE33000). Gene expression 
was normalized to the raw expression matrix using the 

Fig. 1  General flow chart
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z-score method. The comparisons were conducted using 
either a t-test or Mann‒Whitney Wilcoxon test based on 
normality assessment.

Gene set enrichment analysis
First, for each DELMRG, a gene list was initially con-
structed for GSEA by arranging the genes in descending 
order of their correlation with the respective DELMRG. 
Subsequently, gene sets of KEGG from the MSigDB 
were utilized as references for GSEA [17]. Finally, GSEA 
was performed for each DELMRG by “clusterProfiler” R 
package [32]. Significantly enriched terms were visual-
ized using the “GseaVis” R package [33].

Construction of TF-miRNA regulatory networks for key 
DELMRGs
Potential miRNAs regulating the key DELMRGs were 
predicted using the miRDB database [34]. Additionally, 
potential TFs regulating the key DELMRGs were pre-
dicted based on JASPAR in the NetworkAnalyst 3.0 data-
base [35, 36]. Finally, a miRNA-TF regulatory network for 
the key DELMRGs was visualized using Cytoscape soft-
ware [37].

Subcluster analysis with key DELMRGs
Based on the key DELMRGs, AD samples from 
GSE33000 were divided into two subclusters via “Con-
sensusClusterPlus” R package [38]. Subsequently, GSEA 
was performed to determine whether the “Alzheimer’s” 
KEGG pathway was significantly altered between the 
two subclusters [32]. In addition, the key DELMRG lev-
els in two subclusters were compared. Furthermore, 28 
immune cell levels were identified in two subclusters by 
the “ssgsea” method. Finally, the KEGG and HALLMARK 
pathways were evaluated in the two subclusters using 
the “GSVA” algorithm, and the top 10 most significantly 
altered pathways were visualized by heatmaps [30].

Identification of immune-related genes interacting with 
key DELMRGs
The potential interactive targets of key DELMRGs in 
AD brain tissue were further investigated. First, 1793 
IRGs were derived via the ImmPort database [39]. Sub-
sequently, the correlation between each key DELMRG 
and each IRG was calculated in the GSE122063 dataset 
and GSE33000 dataset, and strongly relevant IRGs were 
identified (P < 0.05). Next, the top 500 genes exhibiting 
interactions with each DELMRG were identified from 
the STRING database [40]. Finally, the intersection of 
the correlation results and the PPI results were identified 
as potential interactive IRGs of key DELMRGs by Venn 
diagrams.

Results
Identification of DELMRGs
In GSE122063, 5645 DEGs were identified. Of these 
DEGs, 2533 exhibited upregulation, while 3112 showed 
downregulation (Fig.  2A and B). Subsequently, 170 
DELMRGs were identified. Out of these, 70 exhibited 
upregulation, and 100 showed downregulation (Fig.  2C 
and D).

Enrichment analyses of DELMRGs
Figure 3 presents the top 10 terms for each category. In 
the subcategory of GO biological process, DELMRGs 
were enriched in “fatty acid metabolic process”, “phos-
phatidylinositol biosynthetic process”, and “fatty acid 
biosynthetic process” (Fig. 3A). In the GO cellular com-
ponent subcategory, DELMRGs were mainly enriched in 
“endoplasmic reticulum membrane”, “lipid particle”, and 
“cytosol” (Fig.  3B). In the GO molecular function sub-
category, DELMRGs were mainly enriched in “17-beta-
hydroxysteroid dehydrogenase (NADP+) activity”, 
“estradiol 17-beta-dehydrogenase activity”, and “oxidore-
ductase activity, acting on the CH-OH group of donors, 
NAD or NADP as acceptor” (Fig.  3C). KEGG analysis 
indicated that DEMLRGs were related to “metabolic 
pathways”, “inositol phosphate metabolism”, and “glycero-
phospholipid metabolism” (Fig.  3D). Reactome analysis 
suggested that DELMRGs were significantly enriched in 
“metabolism of lipids”, “metabolism”, and “metabolism of 
steroids” (Fig. 3E).

Identification of AD key DELMRGs
LASSO regression analysis identified 16 gene signatures 
of 170 DELMRGs (Fig. 4A). SVM-RFE identified 25 gene 
signatures from 170 DELMRGs at the minimum RMSE 
(Fig.  4B). Random forest identified the top 10 gene sig-
natures of 170 DELMRGs (Fig. 4C and D). Subsequently, 
the Venn diagram identified the three intersecting 
genes (DLD, PLPP2, and PLAAT4) (Fig.  4E). Therefore, 
DLD, PLPP2, and PLAAT4 might be the key DELMRGs 
involved in AD progression.

Immune infiltration features of AD
The expression pattern of immune cells differed distinctly 
between groups (Fig. 5A). Compared to those in controls, 
activated CD8 T cells, activated dendritic cells, effector 
memory CD8 T cells, immature B cells, MDSCs, natural 
killer cells, natural killer T cells, plasmacytoid dendritic 
cells, regulatory T cells, type 1 T helper cells, and type 
17 T helper cells were significantly elevated in AD, while 
effector memory CD4 T-cell levels were significantly 
decreased (Fig.  5A). Figure  5B, C and D indicate the 
correlation of DLD, PLPP2, and PLAAT4, respectively, 
with each immune cell in the AD samples. Interestingly, 
effector memory CD8 T cells, natural killer T cells, and 
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plasmacytoid dendritic cells were simultaneously corre-
lated with all three DELMRGs.

Validation of key DELMRGs
Three key DELMRGs were validated in the inter-
nal dataset (two different cortical sites) and two addi-
tional AD datasets. In the GSE122063 dataset, DLD was 

down-regulated and PLAAT4 and PLPP2 were up-reg-
ulated in frontal and temporal cortex in AD (Fig. 6A-F). 
Likewise, in the GSE132903 dataset, compared to those 
in the control group, DLD was significantly decreased 
(Fig. 6G) and PLAAT4 (Fig. 6H) and PLPP2 (Fig. 6I) were 
significantly increased in AD. Finally, the same results 
were observed in the GSE33000 dataset (Fig.  6J-L). 

Fig. 2  Identification of DELMRGs in AD. (A) Volcano map showing 5645 DEGs in GSE122063. (B) Heatmap showing 5645 DEGs in GSE122063. (C) Venn 
diagram identifying 70 up-regulated DELMRGs and 100 down-regulated DELMRGs. (D) Circular heatmap of 170 DELMRGs.
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These consistent results indicate the potential of DLD, 
PLPP2, and PLAAT4 as key DELMRGs involved in AD 
progression.

GSEA reveals the potential function of key DELMRGs in AD 
progression
The GSEA results indicated that DLD, PLPP2, and 
PLAAT4 were significantly associated with several KEGG 
terms simultaneously. For instance, DLD was positively 
correlated with “oxidative phosphorylation”, “Parkinson’s 
disease”, “Alzheimer’s disease”, “Huntington’s disease”, 
“calcium signaling pathway”, “neuroactive ligand recep-
tor interaction”, and “long term potentiation” (Fig.  7A), 
while PLPP2 and PLAAT4 were negatively associated 
with these terms (Fig.  7B and C). Additionally, DLD 
was negatively related to “ribosome”, “cytokine cytokine 
receptor interaction”, and the “JAK STAT signaling path-
way” (Fig. 7A), while PLPP2 and PLAAT4 were positively 
associated with these terms (Fig. 7B and C).

TF-miRNA regulatory networks of key DELMRGs
A TF-miRNA regulatory network, including 23 TFs, 132 
miRNAs, and 3 key DELMRGs, was constructed using 
the miRDB and NetworkAnalyst 3.0 databases (Fig.  8). 

Notably, miR-147b-5p and miR-4261 appear to poten-
tially regulate both DLD and PLAAT4 concurrently. 
Additionally, SRF might exert simultaneous modulatory 
effects on DLD and PLPP2. Furthermore, USF2, GATA2, 
and HINFP might collectively regulate both PLPP2 and 
PLAAT4.

Consensus clustering analysis of key DELMRGs
The ConsensusClusterPlus algorithm separated the 
AD samples in GSE33000 into two subclusters based 
on three key DELMRGs (Fig.  9A). Heatmap and vio-
lin plots indicated that compared to cluster 1, DLD lev-
els were decreased and PLPP2 and PLAAT4 levels were 
elevated in cluster 2 (Fig. 9B and C). GSEA showed that 
“Alzheimer’s disease” was significantly enriched, suggest-
ing that the two subclusters identified by key DELMRGs 
represented distinct AD progressions (Fig.  9D). The 28 
immune cell patterns of the two subclusters exhibited 
significant variation (Fig. 9E). In addition, Fig. 9F and G 
illustrate the top 10 KEGG and HALLMARK terms that 
exhibited significant distinctions between the two sub-
clusters, respectively.

Fig. 3  Analysis of functional enrichment in DELMRGs. Top 10 enriched terms for (A) GO_BP, (B) GO_CC, (C) GO_MF, (D) KEGG pathway, and (E) Reactome 
pathway analyses
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Identification of IRGs interacting with key DELMRGs in AD
Ten IRGs interacting with DLD were identified. Of these 
IRGs, 6 were positively correlated with DLD in AD (GPI, 
IREB2, PDK1, PSMC1, PSMC2, and TUBB3), and 4 
were negatively correlated with DLD in AD (CAT, CD4, 
PPARD, and RXRA) (Supplementary Figure S1). Twenty-
five IRGs interacting with PLAAT4 were identified. Of 
these IRGs, 23 were positively correlated with PLAAT4 
in AD (AKT1, B2M, BST2, HLA-B, HLA-DMA, HLA-
DMB, HLA-DPA1, HLA-DRA, HLA-E, HLA-F, IFITM1, 
IRF7, IRF9, LTBP1, MAVS, OASL, PRDX1, PSMB8, 
S100A2, TAP1, TLR2, TLR3, and TNFAIP3), and 2 were 

negatively correlated with PLAAT4 in AD (CD8A and 
HSP90AB1) (Supplementary Figure S2). Two IRGs inter-
acting with PLPP2 were identified. Specifically, PPARA 
showed a positive correlation with PLPP2, while GPI 
exhibited a negative correlation with PLPP2 (Supplemen-
tary Figure S3).

Discussion
Lipidomic and metabolomic investigations have consis-
tently demonstrated perturbations of diverse lipid classes 
that arise early in AD brains [10, 41]. Decades of research 
have uncovered intricate associations between lipid 

Fig. 4  Identification of key DELMRGs. (A) LASSO regression yielded a total of sixteen gene signatures. (B) Using SVM- RFE, a total of twenty-five gene 
signatures were obtained (C)-(D) Random forest was used to extract top ten gene signatures. (E) The Venn diagram identified three key DELMRGs shared 
by three algorithms
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metabolism and the pivotal pathogenesis of AD, includ-
ing amyloid plaque formation, oxidative stress, impaired 
energy production, inflammation in the brain, and dete-
rioration of myelin [42]. Nevertheless, the complete 
understanding of the underlying molecular mechanisms 
remains uncertain. Through comprehensive bioinformat-
ics analysis, 3 hub genes (DLD, PLPP2, and PLAAT4) 

linking lipid metabolism and AD were identified from 
transcriptomic data. Furthermore, the mechanisms lead-
ing to AD by these 3 key DELMRGs were investigated 
with immune infiltration analysis, GSEA, and a TF-
miRNA regulatory network.

By comprehensive analysis, DLD, PLPP2, and PLAAT4 
were determined as three key genes linking lipid 

Fig. 5  Immune infiltration results. (A) Comparison of 28 immune cell levels between AD and controls in GSE122063. (B) Correlation between DLD and 
diverse immune cells. (C) Correlation between PLPP2 and diverse immune cells. (D) Correlation between PLAAT4 and diverse immune cells
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metabolism and AD. Dihydrolipoamide dehydrogenase 
(DLD) is a crucial enzyme in eukaryotic energy metabo-
lism. Changes in energy metabolism have been linked 
to AD progression [43], and thus, DLD is a potential 
therapeutic target. Variants of DLD was reported being 
involved in late-onset AD [44], and suppression of DLD 
has been found to attenuate Aβ toxicity [45]. Previ-
ous studies have identified decreased activity in enzyme 
complexes containing DLD in postmortem brain tis-
sues of AD patients [46, 47]. Consistently, the present 
study found that DLD expression is significantly down-
regulated in AD samples. PLPP2 is a gene that encodes 
phospholipid phosphatase 2 (PLPP2), a constituent of the 

phosphatidic acid phosphatase (PAP) group. PAPs trans-
form phosphatidic acid into diacylglycerol, contributing 
to the generation of fresh glycerolipids and participating 
in receptor-triggered signal transmission facilitated by 
phospholipase D [48]. PLPP2 was reported being a con-
tributing factor for late-onset AD risk [49]. It was shown 
that PLPP2 was significantly increased in early and late 
beta cells in AD [50], which is in line with the present 
results. PLAAT4 belongs to the phospholipase A and 
acyltransferase family, which possesses O- and N-acyl-
transferase activity and biosynthesizes N-acylated etha-
nolamine phospholipids [51]. It has been reported that 
PLAAT4 can interact with ribosomal protein lateral stalk 
subunit P0 (RPLP0), which affects the expression of vari-
ous genes [52]. The downregulation of RPLP0 has been 
identified as a mediator of the endoplasmic reticulum 
stress reaction, which can trigger atypical autophagy [53]. 
Chen et al. identified up-regulated DNA methylation of 
RPLP0 in the brain tissues of AD, inhibiting gene expres-
sion [54]. Nevertheless, the complete comprehension of 
the role of PLAAT4 in AD remains unclear, necessitating 
additional investigation.

GSEA performed on gene lists arranged in descend-
ing order of correlation with key DELMRGs might pro-
vide insights into the potential functions of three key 
DELMRGs. The GSEA results demonstrated that these 
3 key genes (DLD, PLPP2, and PLAAT4) were all asso-
ciated with neurodegenerative diseases, which supports 
the notion that the identification of these key genes 
was accurate to some extent. In addition, GSEA results 
showed that DLD, PLPP2, and PLAAT4 were involved 
in ribosomes, oxidative phosphorylation, focal adhesion, 
calcium signaling pathways, and long-term potentiation. 
Recent findings indicate that malfunction of ribosomes 
could be critical for the pathology of AD [55]. During 
advanced stages of AD, changes in ribosomes and the 
process of protein synthesis in the cerebral cortex have 
been documented [56]. The build-up of defective amyloid 
precursor protein (APP) translation products, contribut-
ing to the characteristic traits of AD, has been linked to 
ribosome stalling in its etiology [57]. AD has been associ-
ated with mitochondrial malfunction and abnormalities 
in oxidative phosphorylation (OXPHOS). In AD brains, 
impaired OXPHOS leads to distinct mitochondrial dys-
function characterized by reduced ATP production, 
increased oxidative stress, and neuronal death [58]. Cru-
cially, OXPHOS genes have been identified as a key path-
way in AD using machine-learning techniques [59]. AD is 
linked to the pathophysiological mechanisms through the 
focal adhesion (FA) pathway, which integrates the physi-
ological roles of amyloid precursor protein and tau [60]. 
FA proteins are responsible for transducing signals from 
outside cells to produce responses that include cytoskele-
tal changes. Fibrillar Aβ activates FA proteins, regulating 

Fig. 6  The three key DELMRGs expression levels in internal and external 
AD datasets. Gene expression was normalized to the raw expression ma-
trix using the z-score method. (A) – (C) In frontal cortex samples of the 
GSE122063 dataset, DLD was down-regulated and PLAAT4 and PLPP2 ex-
hibited upregulation in AD compared to controls. (D) – (F) In temporal 
cortex samples of the GSE122063 dataset, DLD was down-regulated and 
PLAAT4 and PLPP2 exhibited upregulation in AD compared to controls. 
(G) – (I) In the GSE132903 dataset, DLD was down-regulated and PLAAT4 
and PLPP2 exhibited upregulation in AD compared to controls. (J) - (L) In 
the GSE33000 dataset, DLD was down-regulated and PLAAT4 and PLPP2 
exhibited upregulation in AD compared to controls
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cell cycle progression in AD [61]. The disruption of cal-
cium balance affects the functioning of numerous G 
protein-coupled receptors (GPCRs) associated with AD, 
including interactions between neuroactive ligands and 
receptors. The pathology of AD is influenced by the dys-
regulation of GPCR signaling and calcium homeostasis 
[62]. Long-term potentiation (LTP) represents a mecha-
nism of enduring memories at the cellular level. Studies 
have shown that synaptic plasticity, considered funda-
mental to learning and memory, could be compromised 
by exposure to Aβ in AD [63]. A decrease in basal syn-
aptic strength and LTP deficits has been reported in AD 
[64]. Overall, these enriched pathways suggest that DLD, 
PLPP2, and PLAAT4 could be strongly related to AD 
progression.

AD is partly linked to neuroinflammation, which 
involves the participation of intrinsic immune cells, 
including microglia and astrocytes, and peripheral 
immune cells [65]. Therefore, immune infiltration analy-
sis was further performed. The present results showed 
significantly diverse immune patterns among AD and 
controls. The presence of AD is linked to most catego-
ries of immune cells, in line with earlier findings that 
indicated the stimulation of both innate and adaptive 

immunity in individuals with AD [66, 67]. Three key 
DELMRGs were highly correlated with effector memory 
CD8 T cells and plasmacytoid dendritic cells. Although 
there was no significant correlation between the neu-
ropathological hallmarks of AD and activated CD8 T 
cells, its elevation in CSF and peripheral blood has been 
reported to negatively impact AD cognitive symptoms 
[68]. Similarly, Gate et al. identified an increased effec-
tor memory CD8 T cells in both AD patients’ peripheral 
blood and CSF [69]. Plasmacytoid dendritic cells, which 
are a minority group of DCs, may potentially contribute 
to the coordination of immune responses and inflam-
mation in AD [70]. Lai et al. identified that plasmacy-
toid dendritic cells are one of the most highly correlated 
immune cell types that can accurately predict AD pro-
gression [66]. In addition, AD samples from GSE33000 
were further categorized into C1 and C2 subclusters 
using unsupervised clustering based on DLD, PLPP2, 
and PLAAT4. The 28 immune cell patterns of the two 
subclusters exhibited significant variation. Compared 
with the C1 subcluster group, patients in the C2 subclus-
ter exhibited higher infiltration of immune cells. These 
findings indicate that these three key DELMRGs may 

Fig. 7  The potential interacting pathways of key DELMRGs identified by GSEA. (A) Correlation of DLD with common significantly enriched pathways. (B) 
Correlation of PLPP2 with common significantly enriched pathways. (C) Correlation of PLAAT4 with common significantly enriched pathways
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contribute to AD morbidities by affecting the immune 
microenvironment.

In various complex diseases, regulatory biomolecules 
can act as potential biomarkers. A regulatory network of 
TF-miRNA consisting of 132 miRNAs and 23 TFs was 
identified in this study. The present findings reveal that 
miR-147b-5p potentially plays a role in regulating both 
DLD and PLAAT4. Interestingly, previous research has 
demonstrated that the T171C mutation, an APP varia-
tion, disrupts the regulatory impact of miR-147 on APP 
expression through the inhibition of miR-147 binding 
[71]. Among the interacting TFs, SRF simultaneously 
modulated DLD and PLPP2. SRF is expressed extensively 
in all cell types and contributes to the pathogenesis of 
various diseases, including cardiovascular diseases, ner-
vous system diseases, and cancers [72]. The binding of 
SRF to the CArG DNA box, along with its interaction 
with various cofactors, regulates downstream genes [73]. 
In brain vascular cells, SRF and myocardin regulate Aβ 
clearance through the mediation of low-density lipopro-
tein receptor-related protein [74]. This implies that SRF 

and myocardin could potentially govern Aβ cerebro-
vascular clearance and influence AD progression [74]. 
Furthermore, the findings suggest that USF2, GATA2, 
and HINFP might collectively regulate both PLPP2 and 
PLAAT4. A meta-analysis suggested GATA2 as a com-
mon TF regulating mild cognitive impairment and AD 
[75]. The study by Gupta et al. revealed that CREB1 and 
HINFP are essential TFs participating in the crosstalk 
between AD and Parkinson’s disease, suggesting that tar-
geting CREB1 and HINFP could be potential common 
therapeutic targets for both AD and PD [76].

Furthermore, the present study identified IRGs that 
were strongly correlated with the three DELMRGs in AD 
brain tissue samples by performing correlation analy-
ses combining PPI analyses in two datasets. Ultimately, 
10, 25, and 2 interacting IRGs that were strongly cor-
related with DLD, PLAAT4, and PLPP2, respectively, 
were identified. Future investigations on these targets 
may help uncover the intricate mechanisms of complex 
interactions between lipid homeostasis and the immune 
response involving key DELMRGs in AD progression.

Fig. 8  TF-miRNA regulatory networks of key DELMRGs.
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Strengths and limitations
The primary advantages of this study lie in the compre-
hensive bioinformatics analysis to pinpoint three hub 
genes (DLD, PLPP2, and PLAAT4) linking lipid metabo-
lism and AD. This research offers insights into intricate 
associations between lipid metabolism and AD patho-
genic mechanisms, supported by diverse methods, such 
as immune infiltration analysis, GSEA, and regulatory 
networks. The identified genes shed light on poten-
tial therapeutic targets and provide valuable insights 
for further research into AD pathogenesis. Neverthe-
less, this study has some limitations. Initially, although 
the bioinformatics analysis provided reliable evidence, 
whether the altered key genes serve as a causal factor or a 

consequential outcome, as well as the underlying mecha-
nisms involved, remains for further experiments. More-
over, the immune infiltration assessment was conducted 
utilizing the pan-cancer immune cell gene set, and thus, 
the relevant results need to be interpreted with caution.

Conclusion
Through a comprehensive analysis, the present study 
identified DLD, PLPP2, and PLAAT4 as key lipid metab-
olism-related genes that potentially contribute to AD 
progression. These findings underscore the important 
role of lipid metabolism dysfunction in AD pathogenesis, 
providing novel insights for AD prevention/treatment.

Fig. 9  Identification of key DELMRG subtypes in AD samples. (A) Subclusters were constructed with key DELMRGs. (B) Heatmap of key DELMRG levels in 
two subclusters. (C) Violin plots of differences in key DELMRG levels between two subclusters. (D) GSEA performed among the two subclusters indicated 
that the AD KEGG term was significantly enriched. (E) Violin plots of variance of immune cell levels among two subclusters. (F) Top 10 significantly dif-
ferentiated KEGG pathways among two subclusters. (G) Top 10 significantly differentiated HALLMARK pathways among two subclusters
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