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Abstract
Background  Near-infrared irradiation photobiomodulation (NIR-PBM) has been successfully used in periodontal 
treatment as an adjuvant tool to locally improve cell function and regeneration. Although the relationship between 
periodontitis and systemic disease constitutes an important aspect of periodontal clinical research, the systemic 
effects of NIR-PBM in periodontitis are not well known. In this study, we aimed to investigate the effects of NIR-PBM 
on systemic oxidative stress and inflammation in an apolipoprotein E (ApoE) knockout mouse model of periodontal 
disease (PD).

Methods  We evaluated alveolar bone loss by measuring the distance from the cementoenamel junction (CEJ) to 
the alveolar bone crest (ABC), reactive oxygen species (ROS) production in blood cells, inflammatory activity, plasma 
cholesterol levels, and lipid peroxidation levels in three experimental groups: (1) ApoEC, control group without 
intervention; (2) ApoEP, first molar ligation-induced periodontitis for 4 weeks; and (3) ApoEP + PBM, exposed to 
808 nm continuous wave, ø ~ 3 mm2, 100 mW, 60 s of NIR-PBM for 7 consecutive days after 4 weeks of periodontitis. 
At the end of the experimental protocols, ApoEP mice presented significantly increased alveolar bone loss, ROS 
production, inflammatory activity, plasma cholesterol, and lipid peroxidation levels compared to the ApoEC group 
(P < 0.05). NIR-PBM for 7 days in the ApoEP + PBM mice significantly decreased systemic ROS production, inflammatory 
response, plasma cholesterol, and lipid peroxidation levels, similar to those found in the ApoEC group (P > 0.05). 
However, it was not capable of preventing alveolar bone loss (P > 0.05 compared to ApoEP mice).

Conclusion  A 7-day treatment with NIR-PBM effectively reduces systemic oxidative stress and inflammatory 
parameters in hypercholesterolemic mice with PD. However, more studies with longer evaluation times are needed to 
confirm the systemic effects of locally applied NIR-PBM on PD associated with hypercholesterolemia.

Keywords  Photobiomodulation, Low-level light therapy, ApoE knockout, Periodontal disease, Hypercholesterolemia, 
Oxidative stress
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Introduction
Photobiomodulation (PBM) using near-infrared irra-
diation (NIR) is based on the theory that low-level light 
can modify and enhance cellular function [1]. The local 
reduction in edema and the decrease in oxidative stress 
markers and proinflammatory cytokines in PBM treat-
ment are well established. However, some systemic 
effects, whereby light delivered to the body can posi-
tively impact distant tissues and organs, have also been 
reported [2]. Cellular effects attributed to NIR-PBM 
include an increase in adenosine triphosphate (ATP) pro-
duction, a reduction in reactive oxygen species (ROS) 
production, protection against toxins, enhanced cell pro-
liferation, and reduced apoptosis [3].

Excessive ROS production can lead to increased oxida-
tive stress, resulting in tissue damage, lipid peroxidation, 
damage to deoxyribonucleic acid (DNA), protein dam-
age, and the oxidation of important enzymes. However, 
ROS can also function as signaling molecules or media-
tors of inflammation [4].

Inflammatory mediators encompass a variety of solu-
ble and diffusible molecules that act locally at the site of 
infection and at more distant locations. These mediators 
may be of endogenous origin (such as lipopolysaccha-
rides from gram-negative bacteria) or exogenous (related 
to toxins and bacterial products) [5]. Increased oxida-
tive stress plays a significant role in many human dis-
eases, including periodontitis [6], hypercholesterolemia, 
atherosclerosis, chronic obstructive pulmonary disease, 
Alzheimer’s disease, and cancer [7].

Hypercholesterolemia is the most important modifiable 
risk factor for cardiovascular disease. Its reduction sig-
nificantly decreases the risk of this type of disease in the 
population [8]. Moreover, high plasma cholesterol levels 
in hypercholesterolemic individuals reduce antioxidant 
activity and increase oxidative stress due to decreased 
superoxide dismutase (SOD) activity and increased 
malondialdehyde (MDA) activity, whereas the reverse is 
observed in normal individuals [9]. A study by Katz et al. 
[10] suggested that hypercholesterolemia could poten-
tially serve as a link between chronic periodontal inflam-
mation and atherosclerosis.

The relationship between periodontitis and systemic 
diseases constitutes an important area of clinical peri-
odontal research. Periodontal disease (PD) may play a 
role in the development of a systemic inflammatory state 
by sharing inflammatory risk factors. However, systemic 
changes also affect oral health [11].

Periodontics has embraced laser technology in both 
surgical and nonsurgical treatments of periodontal tis-
sues, either as a standalone treatment or as an adjunct, 
with many successful outcomes. Different lasers of high 
and low power have been utilized in periodontal treat-
ments, offering benefits such as improved coagulation, 

antibacterial effects, root surface detoxification, removal 
of the smear layer, and enhanced bone recontouring [12].

While laser therapy has been employed in numerous 
studies related to periodontal disease (PD), its impact 
on systemic oxidative stress levels and inflammation in 
a hypercholesterolemia model of PD has not yet been 
explored. Therefore, our study aims to assess systemic 
levels of oxidative stress and inflammation in a hyper-
cholesterolemic model, specifically using apolipoprotein 
E knockout (ApoE−/−) mice with PD subjected to the 
effects of NIR-PBM.

Methodology
Animals and experimental groups
The handling and care of the mice were conducted in 
accordance with the ethical principles outlined in the 
national and institutional guidelines for the care and 
use of laboratory animals, with approval from the eth-
ics committee of Vila Velha University (No. 586–2021). 
ApoE−/− mice, aged 16 weeks and weighing 25–30  g, 
were provided with a standard chow diet and had access 
to water ad libitum. They were individually housed in 
plastic cages under controlled conditions of temperature 
(22–23  °C), humidity (60%), and a 12-hour light/dark 
cycle. The mice were divided into three experimental 
groups: ApoEC (n = 6–8), which received no intervention; 
ApoEP (n = 6–8), where periodontitis was induced for 4 
weeks; and ApoEP + PBM (n = 6–8), which underwent 
PBM treatment for 7 consecutive days after 4 weeks of 
periodontitis induction (Fig. 1).

ApoE knockout mouse model
The ApoE knockout mouse model was developed by 
two laboratories in 1992 with the aim of creating better 
animal models for studying lipoprotein disorders and 
atherosclerosis and identifying genes that may mod-
ify atherogenesis and lesion progression [13, 14]. The 
increase in plasma cholesterol in ApoE knockout ani-
mals occurs due to the inhibition of the expression of the 
gene that encodes apolipoprotein E. Apolipoprotein E is 
a glycoprotein with a molecular weight of approximately 
34  kDa that functions by binding to LDL (low-density 
lipoprotein) receptors to remove cholesterol from circu-
lation in the liver. It is present in VLDL (Very-low-density 
lipoprotein), IDL (Intermediate low-density lipoprotein), 
and HDL (High-density lipoprotein). Its synthesis pri-
marily occurs in the liver, but it is also produced in the 
brain and by macrophages [15].

To inhibit its expression, mouse embryonic stem cells 
are genetically modified by the insertion of two plasmids 
containing the neomycin resistance gene, which replaces 
part of the ApoE gene. These plasmids are inserted into 
blastomeres of wild-type mice (C57Bl/6), generating 
homozygous and heterozygous offspring. The crossing 
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between homozygous animals results in ApoE knockout 
mice that present increased levels of VLDL in the plasma 
[13, 14].

Compared to other animal models of atherosclero-
sis, ApoE knockout mice have several advantages. They 
develop atherosclerosis spontaneously, without the need 
for a high-cholesterol diet [16, 17]. The development of 
atherosclerosis involves the activation of proinflamma-
tory signaling, which includes the expression of cytokines 
and chemokines and promotes increased oxidative stress. 
Oxidative stress plays a crucial role in inflammatory 
responses, apoptosis, cell growth, changes in vascular 
tone, and LDL oxidation [18].

Induction of periodontitis
Following the protocol for induction in mice suggested 
by Pereira et al. [19], with modifications, the mice were 
anesthetized with ketamine and xylazine (91 + 9.1  mg/
kg) via intraperitoneal injection and positioned on an 
adapted surgical table that allowed for the opening of 
their oral cavity. Endodontic digital spacers #20 and 
#25 (Dentsply Maillefer, Ballaigues, Switzerland) with 

3-mm bent tips were used to create space between the 
1st and 2nd lower molars on the right side of the mice’s 
oral cavity. First, the #25 spacer was inserted, and after 
its removal, the #20 spacer was placed, with a 6.0 suture 
(Ethicon, USA) tied to its stem. Spacer #20 was then care-
fully removed to allow the suture thread to pass between 
the two teeth. Once the thread was inserted into the 
interproximal space, two knots were tied in the mesial 
area of the 1st molar to secure the ligature for plaque 
retention. The ligature was maintained in this region for 
a period of four weeks. After 4 weeks, the induction of 
periodontitis was confirmed by the presence of visualized 
plaque at the molar ligature suture and bleeding upon 
ligature suture removal and supragingival scraping to 
remove bacterial plaque [20].

Laser irradiation
A Gallium Aluminum Arsenide diode laser (AsGaAl) 
known as Laser Duo (MMOptics Ltda, São Carlos, Bra-
zil) was used for the PBM treatment. During the treat-
ment, the mice were gently immobilized on their backs, 
and the laser was positioned in the extraoral region at 

Fig. 1  Schematic diagram of the experimental study design and the experimental groups. Apolipoprotein E knockout mice (ApoE−/−), including ApoEC 
(Control without Periodontitis induction), ApoEP (Periodontitis Induced for 4 weeks), and ApoEP + PBM (Periodontitis + 7 days of photobiomodulation)
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the angle of the mandible, allowing the light beam to 
penetrate the entire intraoral region of the right lower 
molars of the animals. Laser treatment for the mice in 
the ApoEP + PBM group was conducted using an infra-
red wavelength and an energy density of 6  J per session 
(808  nm, continuous wave, ø ~ 3  mm², 100 mW) for a 
duration of 60  s. The treatment was administered for 
seven days with a 24-hour interval between sessions, 
totaling seven sessions. The ApoEP group received 
the same treatment, with the exception that the laser 
remained inactive. The ApoEC group received no inter-
vention and served as the control. The mice were anes-
thetized 24 h after the conclusion of the laser treatment, 
and blood was collected through an intracardiac punc-
ture. Subsequently, the mice were perfused with 10 ml 
of phosphate-buffered saline (PBS), and their mandibles 
were dissected [21].

Mandible scanning electron microscopy and 
morphometric analysis
To confirm the establishment of PD and assess the effects 
of NIR-PBM, the mandibles of the mice were extracted 
and dissected. The organic tissue was removed from the 
samples by soaking them in 3% sodium hypochlorite for 
four weeks. After this period, the mandibles were rinsed 
in running distilled water for one minute. Subsequently, 
they were dried in an oven at 37  °C for seven days and 
stored in a humidity-free environment. To obtain scan-
ning electron microscopy (SEM) images, the samples 
were left for 48 h at 50 °C and then coated with pure gold 
in a vacuum coater (Desk V, Denton Vacuum). The sam-
ples were then analyzed in direct mode using a scanning 
electron microscope (Jeol, JEM-6610 LV) [22].

After obtaining SEM images of the mandible, to assess 
alveolar bone loss, the linear distance in micrometers 
(μm) from the cementoenamel junction (CEJ) to the alve-
olar bone crest (ABC) of the mesial root, following the 
long axis of the tooth, was measured in the first mandib-
ular molar using ImageJ, a public domain image analysis 
software. Bone loss was expressed in micrometres (μm) 
[23].

Flow cytometry for ROS quantification
ROS production was assessed in blood cells by measur-
ing intracellular superoxide anion (•O2

−) and hydrogen 
peroxide (H2O2) using changes in median fluorescence 
intensity (MFI) emitted by dihydroethidine and dichloro-
fluorescein (DHE and DCF, Sigma‒Aldrich, USA, respec-
tively). Briefly, 106 cells were incubated with 160 mmol 
L− 1 DHE and 20 mmol L− 1 DCF at 37  °C for 30 min in 
the dark. The data were acquired using the FACSCanto 
II, and overlay histograms were analyzed using FACS-
Diva software by determining the average fluorescence 

intensity of 10,000 cells. Data were expressed as the 
median of emitted fluorescence intensity (MFI) [24].

Biochemical analysis
Plasma cholesterol levels were assessed using a com-
mercial colorimetric kit (Cholesterol Liquicolor - InVi-
tro, Itabira/MG, Brazil). This kit utilizes reagents for 
the quantitative determination of cholesterol in plasma. 
The assay involves an enzymatic reagent – RGT (phos-
phate buffer, pH 6.5, 30 mmol/L; 4-aminoantipyrine, 0.3 
mmol/L; phenol, 5 mmol/L; peroxidase > 5 KU/L; choles-
terase > 150 U/L; cholesterol oxidase > 100 U/L; sodium 
azide, 0.05%) and a standard – STD (cholesterol, 200 mg/
dL; sodium azide, 0.095%). Ten microliters (10 μL) of the 
plasma sample was mixed with 1000 μL of RGT, and 10 
μL of STD was mixed with 1000 μL of RGT. They were 
then incubated for 5  min at 37  °C. Absorbances were 
measured using a spectrophotometer at a wavelength of 
546 nm. To determine cholesterol values, the absorbance 
of the sample was divided by the absorbance of the STD 
and multiplied by 200. The plasma cholesterol values are 
expressed in mg/dL.

Inflammatory activity was assessed by measuring 
myeloperoxidase (MPO) activity. In this assay, hydrogen 
peroxide (H2O2) is cleaved by MPO, and the resulting 
oxygen radical reacts with O-dianisidine dihydrochlo-
ride, leading to the formation of a colored compound. 
Plasma samples (12 μL) were transferred to a flat-bottom 
microplate, and the biochemical reaction was initiated 
by adding 236 μL of O-dianisidine solution (compris-
ing 16.7 mg O-dianisidine hydrochloride, 90 ml distilled 
water, 10 ml potassium phosphate buffer, and 50 μL H2O2 
1%). Absorbance was measured using an iMark® Absor-
bance ELISA microplate reader (Bio-Rad, Washington, 
USA) at a wavelength of 460 nm, with data recorded at 
15-second intervals over a period of 10 min. The results 
were expressed as arbitrary units of myeloperoxidase 
activity (u.a. myeloperoxidase) as a function of time [25].

To determine oxidative stress, plasma lipid peroxida-
tion was assessed using the TBARS assay. The generation 
of free radicals and lipid peroxidation are rapid pro-
cesses, measured by their products, with thiobarbituric 
acid-reactive substances (TBARS), particularly malondi-
aldehyde (MDA), being the primary indicator. To mea-
sure metabolites reactive to TBA, 43 μL of plasma was 
placed in a microtube with 7% perchloric acid and mixed 
using a vortex for 60 s. After this step, the samples were 
centrifuged at 7400 rpm for 10 min, resulting in the for-
mation of a white pellet at the bottom of the microtube. 
Subsequently, 47 μL of the supernatant was transferred 
to two labeled microtubes, and an additional 53 μL of 
0.6% thiobarbituric acid was added. The tubes were then 
placed in a thermocycler at 95 °C for 1 h. Following this 
incubation, the samples were centrifuged again and read 
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in a spectrophotometer at 532 nm using a 96-well plate 
and the iMark® Absorbance Reader ELISA microplate 
reader (Bio-Rad, Washington, USA). The malondialde-
hyde (MDA) level was expressed in μM of MDA per mil-
ligram of protein [26].

Statistical analyses
The results are expressed as the mean ± SEM. Normal dis-
tribution of the variables was assessed using the Shapiro‒
Wilk test. When the results passed the normality test, the 
means of the values were statistically analyzed for com-
parisons among different groups using one-way ANOVA 
followed by Tukey’s post hoc test, conducted with Graph-
Pad Prism Software, version 8.02 (GraphPad, Inc., San 
Diego, CA, USA). Differences were considered significant 
when P < 0.05 [27].

Results
Effects of PBM on periodontal disease
The success of ligature-induced periodontal dis-
ease (PD) was confirmed through significant alveo-
lar bone loss in the ApoEP group compared to the 
ApoEC group (790.7 ± 31.90  μm vs. 553.8 ± 22.70  μm, 
P < 0.05, respectively). Interestingly, PBM treatment was 
unable to reverse bone loss in the ApoEP + PBM group 
(770.5 ± 27.03 μm, Fig. 2).

Determination of plasma cholesterol
Ligature-induced periodontitis significantly increased 
plasma cholesterol levels in the ApoEP group 
(516.9 ± 31.36 mg/ml, P < 0.05) compared with the ApoEC 
group (354.5 ± 34.26  mg/ml). NIR-PBM treatment 
decreased plasma cholesterol levels in the ApoEP + PBM 
group (327.6 ± 18.76  mg/ml) to ApoEC group values 
(Fig. 3).

Fig. 2  Typical scanning electron microscopy microphotographs showing the results of alveolar bone loss, measured in micrometers as the distance 
between the cementoenamel junction (CEJ) and the alveolar bone crest (ABC) in the experimental groups (40x objective, scale bar: 500 μm). (A) ApoEC 
(control, without periodontitis induction), (B) ApoEP (with 4 weeks of periodontitis), (C) ApoEP + PBM (with photobiomodulation for 7 consecutive 
days after 4 weeks of periodontitis), and (D) representative bar graph of alveolar bone loss in the experimental groups. Values are represented as the 
mean ± SEM (one-way ANOVA, Tukey’s post hoc test, n = 6–8 animals per group). *P < 0.05 vs. ApoEC mice
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Analysis of myeloperoxidase (MPO) activity
The quantification of myeloperoxidase enzymes to 
assess inflammatory activity showed that the ani-
mals in the ApoEP group had higher levels of MPO 
(0.02153 ± 0.002214 a.u., P < 0.05.) when compared to 
those in the ApoEC group (0.01218 ± 0.002232 a.u.) and 
ApoEP + PBM (0.007571 ± 0.00263 a.u.). Moreover, mice 
in the ApoEP + PBM group had significantly decreased 
levels of MPO activity, similar to those found in the 
ApoEC mice, demonstrating a pronounced effect of PBM 
in controlling inflammatory activity in PD (Fig. 4).

Superoxide and hydrogen peroxide levels
The levels of superoxide anion and hydrogen perox-
ide, measured using the fluorescence markers DHE and 
DCF, respectively, showed that periodontitis significantly 
increased ROS production in ApoEP mice (147.5 ± 21.50 
a.u.; 989.5 ± 35.50 a.u.; P < 0.05) compared to the ApoEC 
group (98.57 ± 5.331 a.u.; 491.7 ± 53.41 a.u.). NIR-PBM 
treatment restored DHE levels (83.75 ± 7.74 a.u.) to lev-
els similar to those found in ApoEC mice. However, DCF 
levels in the ApoEP + PBM group decreased (651.3 ± 17.75 

a.u.) compared to those in the ApoEP group but did not 
reach the levels observed in the ApoEC group (Fig. 5).

Evaluation of lipid peroxidation levels
Animals from the ApoEP group showed higher lipid 
peroxidation levels (0.02738 ± 0.004885 μmol MDA/
mg protein, P < 0.05) than those from the ApoEC group 
(0.008580 ± 0.001743 μmol MDA/mg protein). Moreover, 
the animals from the ApoEP + PBM group that received 
PBM treatment showed lower lipid peroxidation levels 
(0.01280 ± 0.0001581 μmol MDA/mg protein), similar to 
the untreated animals. These results indicate that peri-
odontitis increases oxidative stress levels, but treatment 
with NIR-PBM is highly effective in reducing it (Fig. 6).

Discussion
Our study evaluates the effect of photobiomodulation 
(PBM) on experimental ligation-induced periodontitis 
in hypercholesterolemic mice (ApoE knockout). Various 
types of lasers are available for periodontal treatment. 
PBM is a complex treatment, offering a wide range of 
combinations due to its extensive variation in parameters 
that can be utilized: wavelength, source power, energy 

Fig. 3  Plasma cholesterol measurement in the experimental groups. Values are represented as the mean ± SEM (one-way ANOVA, Tukey’s post hoc test, 
n = 6–8 animals per group). *P < 0.05 vs. ApoEC and ApoEP + PBM
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Fig. 5  A) DHE and B) DCF levels in the experimental animals. Values are represented as the mean ± SEM (one-way ANOVA, Tukey’s post hoc test, n = 6–8 
animals per group). *P < 0.05 vs. ApoEC and ApoEP + PBM; #P < 0.05 vs. ApoEC

 

Fig. 4  Proinflammatory enzyme myeloperoxidase (MPO) plasma activity. Values are represented as the mean ± SEM (one-way ANOVA, Tukey’s post hoc 
test, n = 6–8 animals per group). *P < 0.05 vs. ApoEC and ApoEP + PBM
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density, power density, irradiation time, and total applied 
energy [28]. These variations have led to an increase in 
the number of published negative trials and have gener-
ated controversy, despite the large number of positive 
clinical results [29]. The photobiomodulatory effects of 
laser irradiation vary among different cell types, and this 
aspect has often been overlooked as a potential explana-
tion for the conflicting results reported in the literature 
following treatment [30].

The PBM parameters used in our study were similar 
to those presented by Santos et al. [31], who employed 
a laser with a wavelength of 808  nm in a rat model of 
critical bone defect. Theodoro et al. [32] utilized the 
GaAlAs diode laser as monotherapy and as an adjuvant 
to mechanical treatment, using the same wavelength 
and power as in our study. However, in their work, they 
administered the treatment in a shorter timeframe and 
within a single session in rats with periodontitis. They 
observed a notable influence on the healing processes, 
tissue repair, and greater efficacy in modulating the 
inflammatory response in animals treated with laser, 
both in monotherapy and as an adjuvant treatment.

Several studies have shown that the application of 
diode lasers has bactericidal and detoxifying effects, and 
this technique demonstrates clinical benefits as an adju-
vant to nonsurgical periodontal therapy [33, 34]. Low-
intensity laser therapy promotes healing through collagen 
synthesis and angiogenesis [35].

In our study, after the removal of the ligature, suprag-
ingival scaling was performed to clean the tooth surfaces 
by removing plaque, and we administered 60  s of infra-
red laser treatment for seven consecutive days. It is worth 
noting that the literature often lacks comprehensive 
reports on all the parameters used, the number of ses-
sions and the intervals between them [28]. The literature 
has shown that the combination of low-intensity laser 
therapy and root planing increases the effectiveness of 
periodontal disease treatment [20, 31, 36].

Our ligature-induced periodontitis model proved to be 
effective, according to our analyses of alveolar bone loss, 
which showed a decrease in bone level in animals that 
had induced periodontitis compared to those without 
periodontitis, as well established in the literature [19, 37].

Fig. 6  Evaluation of lipid peroxidation levels in ApoE hypercholesterolemic mice. Values are represented as the mean ± SEM (one-way ANOVA, Tukey’s 
post hoc test, n = 6–8 animals per group). *P < 0.05 vs. ApoEC and ApoEP + PBM
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Treatment with PBM, however, was ineffective in 
promoting bone neoformation in both the ApoEP and 
ApoEP + PBM groups in our study.

According to Tuner [28], PBM doses are cumula-
tive, and several sessions in a short period can lead to 
inhibitory effects. In addition, Hablim et al. [2] stated 
that increasing PBM doses result in a cellular maximum 
response. If the dose exceeds the maximum value, the 
therapeutic effects of PBM will decrease and disappear, 
causing negative or inhibitory effects.

We chose the ApoE knockout mouse model, an animal 
model that presents high plasma cholesterol levels and 
develops atheromatous lesions very similar to those in 
humans, to evaluate the systemic effects of periodonti-
tis and PBM. We observed higher levels of plasma cho-
lesterol in ApoE mice with untreated periodontitis than 
in those that received PBM treatment. The literature 
reports that periodontitis can lead to a greater reservoir 
of cholesterol esters within macrophages and poses a sig-
nificant risk for systemic implications, such as atheroscle-
rosis [38, 39]. Moreover, bacterial products, cytokines, 
and chemokines resulting from the infectious and inflam-
matory periodontal process enter the bloodstream and 
may stimulate the upregulation of endothelial cell surface 
receptors, as well as adhesion expression on the vascular 
endothelium. This, in turn, leads to circulating mono-
cytes adhering to the blood vessel endothelium. These 
monocytes migrate to the subendothelial space and dif-
ferentiate into macrophages, which can take up oxidized 
low-density lipoprotein (LDL) and transform into foam 
cells, eventually leading to the apoptosis of LDL-laden 
macrophages. This process results in the accumulation 
of lipids in the subendothelial space, contributing to the 
formation of atheromatous plaques [40]. From this per-
spective, periodontitis may be considered a risk factor 
for cardiovascular diseases such as atherosclerosis [38]. 
Regarding the influence of the laser on cholesterol lev-
els, the literature provides conflicting results, with some 
studies suggesting an increase [41], while others report a 
decrease [42].

Myeloperoxidase (MPO), a heme peroxidase found in 
large quantities in the azurophilic granules of neutro-
phils, serves multiple functions, including antimicrobial 
activity, participation in the biochemical pathway of ROS 
production, and serving as an important indicator for 
assessing neutrophil infiltration into tissues, oxidative 
stress, and tissue damage [4] and as a marker of inflam-
matory activity. Wei et al. [43] discovered that MPO levels 
in the periodontitis patient group significantly increased 
following periodontal clinical evaluation, emphasizing 
the pivotal role of ROS in periodontal tissue destruction. 
This finding aligns with the results of our study. Another 
study, conducted by Uslu et al. [44], evaluated the effect 
of diode laser treatment when applied as an adjunct to 

root scraping and planning in an experimental model of 
periodontitis. They concluded that diode laser treatment 
reduces inflammation and oxidative stress in periodontal 
tissues, a result similar to what we observed in our study, 
where we found a significant decrease in inflammatory 
activity in PBM-treated mice.

In our work, we assessed oxidative stress levels, which 
are positively associated with periodontitis [6]. During 
periodontitis, neutrophils release ROS in response to 
invading microorganisms. ROS are responsible for oxida-
tive stress and contribute to much of the tissue damage 
during infection [45].

In our study, we quantified superoxide anion (O2
−) 

and hydrogen peroxide (H2O2) levels by flow cytometry 
using DHE and DCF, respectively, as markers of ROS. 
We observed a significant increase in O2− and H2O2 lev-
els in the untreated periodontitis group. This increase 
was prevented in the NIR-PBM mice. However, previous 
research has indicated that low-intensity laser therapy 
can accelerate electron transfer (respiratory chain) and 
initiate ROS production, specifically increasing the pro-
duction of superoxide anion, which can lead to cell dam-
age [46].

Hablim et al. [2] raise the question of whether these 
types of ROS generated by PBM are identical to those 
naturally induced or not, with their benefits or harm 
depending on the rate at which they are produced. If 
superoxide is generated in the mitochondria at a rate 
that allows superoxide dismutase (SOD) to detoxify it 
into hydrogen peroxide, then H2O2 can diffuse out of 
the mitochondria to activate beneficial signaling path-
ways. However, if superoxide is generated at a rate or at 
levels beyond the capacity of SOD to handle, the accu-
mulated superoxide can damage the mitochondria [2]. 
We also utilized the TBARS assay to evaluate the rela-
tionship between oxidative stress (lipid peroxidation), 
periodontitis, and PBM. Our study revealed a significant 
increase in lipid peroxidation levels in the ApoEP group 
when compared to the ApoEC group, while lipid peroxi-
dation decreased in the APOE + PBM animals. The test 
detected malondialdehyde (MDA) formation resulting 
from the oxidation of lipid substrates [47]. During this 
process, ROS bind to polyunsaturated fatty acids, gener-
ating byproducts that can damage the membrane system, 
DNA, and cell proteins. Our results are consistent with 
a study by Almerich-Silla et al. [48], which observed sig-
nificantly higher levels of MDA in periodontitis patients 
than in healthy controls. It has also been demonstrated 
that elevated serum and salivary MDA levels without 
changes in antioxidant status can lead to systemic and 
local complications in patients with periodontitis [49]. 
Increased lipid peroxidation has been found in the gingi-
val fluid, plasma, and saliva of individuals with periodon-
titis [50, 51]. Others have also observed an association 
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between PBM and reduced lipid peroxidation leading to 
a significant reduction in oxidative stress in cells and tis-
sues, consistent with our findings [2, 52, 53].

Study strengths and limitations
Our study is the first to demonstrate that NIR-PBM, as 
an adjunctive treatment for periodontal disease, has a 
significant beneficial effect in reducing systemic levels of 
cholesterol, inflammation, reactive oxygen species, and 
oxidative stress in a mouse model of periodontitis and 
hypercholesterolemia. These findings reinforce and sup-
port the importance of standardizing and including the 
use photobiomodulation therapy in dental clinical prac-
tice, especially, in situations where there is an associated 
chronic inflammatory systemic disease. However, some 
limitations of our study should be acknowledged. The 
wide range of NIR-PBM parameters in the existing litera-
ture can lead to contradictory results and could explain 
the absence of bone neoformation in the ApoEP + PBM 
group in our study. Additionally, more studies to evalu-
ate the long-lasting systemic photobiomodulation effects 
need to be conducted, and finally, it’s worth noting that 
an ApoE knockout mouse model used in this study may 
not fully capture all the nuances of a hypercholesterol-
emic individual with periodontitis.

Conclusion
In hypercholesterolemic mice with periodontitis, seven 
days of NIR-PBM treatment effectively reduced ROS 
production, plasma cholesterol, lipid peroxidation, and 
inflammatory activity. However, the observed benefits 
did not extend to bone formation, likely due to treatment 
duration and/or PBM dose. Our findings suggest that 
NIR-PBM has the potential to mitigate systemic factors 
in periodontal disease progression in hypercholesterol-
emic conditions. Future research with longer evaluation 
periods and varying doses is necessary to fully under-
stand PBM’s impact on hypercholesterolemia-related 
periodontitis.
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