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Abstract
Background  We aimed to explore the causal relationship between blood metabolites and the risk of visceral obesity, 
as measured by visceral adipose tissue (VAT).

Methods  Summary statistics for 486 blood metabolites and total, as well as sex-stratified, MRI-derived VAT 
measurements, adjusted for body mass index (BMI) and height, were collected from previous genome-wide 
association studies (GWAS). A two-sample Mendelian Randomization (MR) design was used. Comprehensive 
evaluation was further conducted, including sensitivity analysis, linkage disequilibrium score (LDSC) regression, 
Steiger test, and metabolic pathway analysis.

Results  After multiple testing correction, arachidonate (20:4n6) has been implicated in VAT accumulation (β = 0.35, 
95%CI:0.18–0.52, P < 0.001; FDR = 0.025). Additionally, several blood metabolites were identified as potentially 
having causal relationship (FDR < 0.10). Among them, lysine (β = 0.67, 95%CI: 0.28–1.06, P < 0.001; FDR = 0.074), 
proline (β = 0.30, 95%CI:0.13–0.48, P < 0.001; FDR = 0.082), valerate (β = 0.50, 95%CI:0.23–0.78, P < 0.001, FDR = 0.091) 
are associated with an increased risk of VAT accumulation. On the other hand, glycine (β=-0.21, 95%CI: -0.33–0.09), 
P < 0.001, FDR = 0.076) have a protective effect against VAT accumulation. Most blood metabolites showed consistent 
trends between different sexes. Multivariable MR analysis demonstrated the effect of genetically predicted 
arachidonate (20:4n6) and proline on VAT remained after accounting for BMI and glycated hemoglobin (HbA1c). There 
is no evidence of heterogeneity, pleiotropy, and reverse causality.

Conclusion  Our MR findings suggest that these metabolites may serve as biomarkers, as well as for future 
mechanistic exploration and drug target selection of visceral obesity.
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Introduction
Obesity is a major global health problem, affecting bil-
lions of people worldwide and showing significant het-
erogeneity [1, 2]. The distribution of adipose tissue was 
considered as an important factor in determining the 
health risks of obesity [1]. VAT, the intra-abdominal fat 
encapsulating internal organs, is metabolically active and 
potentially harmful, unlike subcutaneous adipose tissue 
(SAT) [2, 3]. Visceral obesity, characterized by excessive 
VAT accumulation, is significantly linked to numerous 
detrimental health conditions, including cardiovascular 
diseases, metabolic disorders, and cancers [2, 4, 5].

Metabolomics, a modern omics-based technology, has 
greatly enhanced our understanding of disease mecha-
nisms by uncovering intermediate metabolites and 
altered metabolic pathways [6]. The analysis of exten-
sive datasets generated by previous metabolomics stud-
ies has revealed the vital role of metabolic products, such 
as lipids, amino acids, and so on, in regulating energy 
metabolism, lipid synthesis, adipocyte differentiation, 
lipid oxidation, and insulin sensitivity [7]. Nevertheless, 
the precise association between blood metabolites and 
the distribution of adipose tissue remains elusive in the 
current scientific understanding. Thus, it is imperative 
to identify metabolites associated with adipose tissue, 
particularly VAT, to investigate the potential metabolic 
mechanisms of visceral obesity and develop targeted 
intervention measures.

Compared to conventional observational studies, 
the MR approach is a powerful method for obtaining 
robust evidence of causality utilizing genetic variants as 
instrumental variables (IVs) to address confounding [8]. 
In this study, we followed the STROBE-MR guidelines 
and conducted a two-sample MR analysis to investigate 
the potential causal association between human blood 
metabolites and VAT accumulation [9].

Methods
Study design
The MR analysis was conducted based on three crucial 
assumptions: (1) The IVs used in the analysis exhibited a 
strong association with blood metabolites. (2) The cho-
sen IVs and potential confounding variables, which could 
impact blood metabolites and VAT, were not interrelated. 
(3) The IVs solely influenced VAT through their impact 
on blood metabolites.

Data sources
Blood metabolite genetic data were obtained from the 
metabolomics GWAS server (http://metabolomics.
helmholtz-muenchen.de/gwas/), or the GWAS Catalog 
(https://www.ebi.ac.uk/gwas/) [10, 11]. Shin et al. per-
formed a comprehensive GWAS of non-targeted metab-
olomics, identifying 486 human serum metabolites with 

genetic influences [11]. A total of 7824 participants were 
enrolled from two European population cohorts: 1768 
participants from the KORA F4 study in Germany and 
6056 from the UK Twin Study. Fasting serum samples 
were analyzed using non-targeted mass spectrometry 
analysis. Metabolon, Inc. was employed for standard-
ized processes of identification and relative qualifica-
tion (https://www.metabolon.com/) [12]. A total of 486 
metabolites were analyzed, comprising 177 unknown 
metabolites and 309 known metabolites, which were 
further classified into eight biochemical classes: peptide, 
nucleotide, amino acid, energy, cofactors and vitamins, 
lipid, carbohydrate, and xenobiotics. On the other hand, 
the GWAS summary statistics for total and sex-strati-
fied VAT utilized MRI scans, including 20,038 women 
and 19,038 men, were obtained from the UK Biobank 
(https://cvd.hugeamp.org/) [13]. These scans were anno-
tated using deep learning techniques. The GWAS was 
conducted using the UK Biobank imputed genotypes ver-
sion 3, excluding SNPs with a minor allele frequency less 
than 1% and imputation quality below 0.9. The GWAS 
analysis was performed using BOLT-LMM v2.3.4. To 
account for potential confounding factors, the measures 
were adjusted for BMI, height, age at the time of MRI, 
age squared, sex, the first 10 principal components of 
genetic ancestry, genotyping array, and MRI center. Sig-
nificant sex differences were observed, with men having 
a higher mean VAT of 5.0 L compared to 2.6 L in women. 
Lastly, we have also gathered the GWAS summary sta-
tistics on BMI and HbA1c from European populations, 
sourced respectively from the Genetic Investigation of 
ANthropometric Traits (GIANT) Consortium (https://
portals.broadinstitute.org/collaboration/giant/index.
php/GIANT_consortium) and the Meta-Analyses of 
Glucose and Insulin-related Traits Consortium (MAGIC) 
(https://magicinvestigators.org/) [14, 15].

Selection criteria for instrumental variables
The genetic variants were extracted using association 
thresholds of P < 1e-5, which are commonly used in MR 
analysis when there are limited SNPs available for the 
exposure variable. Linkage disequilibrium (LD) analy-
sis (r2 < 0.1, clumping distance = 500  kb) was conducted 
to minimize the impact of SNP associations based on 
the European 1000 Genomes Project Phase 3 reference 
panel. We further harmonized SNPs for exposure and 
outcome, and palindromic effects and allelic inconsis-
tent SNPs were removed. IVs that were strongly associ-
ated with outcomes (P < 5e-8) were also removed. To 
assess the suitability of the identified IVs for representing 
metabolite levels, we calculated F-statistics and excluded 
IVs with F-statistics < 10. The F-statistics formula 
employed was R2 (N-K-1) / [K (1-R2)], where R2 repre-
sents the explained variance of the exposure by the IVs, 
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N represents the effective sample size, and K indicates 
the count of variants included in the IV model. Addition-
ally, the PhenoScanner online platform was employed to 
identify and remove SNPs associated with potential con-
founding factors (age, BMI, height, diabetes, hyperten-
sion, and nonalcoholic fatty liver disease) (http://www.
phenoscanner.medschl.cam.ac.uk) [16]. Finally, to evalu-
ate the statistical power, we utilized the online tool avail-
able at https://shiny.cnsgenomics.com/mRnd/ [17].

MR analysis
The MR analysis was conducted using the R software, pri-
marily utilizing packages such as “TwoSampleMR”, “MR-
PRESSO”, and “MendelianRandomization”. To determine 
the causal effects of blood metabolites and VAT, five 
commonly used MR methods were employed: inverse 
variance weighted (IVW), weighted median, simple 
mode, weighted mode, and MR-Egger regression analy-
sis. The fixed-effects IVW method, which combines Wald 
ratios for each SNP to calculate a pooled estimate, was 
used as the primary method. The other methods were 
used as additional measures to support the findings. False 
Discovery Rate (FDR) correction was employed to con-
trol for false positives in multiple testing. A statistically 
significant correlation was defined as having an estimated 
causal effect with FDR < 5%. Blood metabolites with an 
P value < 0.05, but not reaching the FDR threshold, were 
deemed to potentially have a causal effect. Additionally, 
the causal relationship between identified metabolites 
with sex-stratified VAT was also explored. Heterogene-
ity between IVs was quantified using Cochrane’s Q test. 
If P <​ 0.05, indicating the presence of heterogeneity, the 
random-effects IVW was used instead of the fixed-effects 
IVW [18]. The intercept of MR Egger regression was 
examined to assess the presence of underlying pleiotropy, 
with a P < 0.05 suggesting the directional pleiotropy. The 
MR-PRESSO test was employed to identify and quantify 
potential pleiotropic effects, detect outliers that could 
impact the study outcomes, and assess improvements 
after their removal. Leave-one-out analysis was also con-
ducted to evaluate the influence of potentially significant 
IVs. Lastly, to unveil the potential vertical pleiotropic 
pathways of the identified blood metabolites, we con-
ducted multivariable MR (MVMR) analyses, including 
MVMR-IVW, MVMR-Egger, and MVMR-Median, to 
estimate the direct causal effects of these blood metab-
olites on VAT after adjusting for BMI and HbA1c. The 
parameter settings were consistent with those of univari-
able MR analysis.

Metabolic pathway enrichment analysis
Based on the identified blood metabolites with P 
value < 0.05, MetaboAnalyst 5.0 (https://www.metabo-
analyst.ca/), an intuitive online tool specifically designed 

for streamlined metabolomics data analysis, was used to 
conduct metabolic pathway analysis [19, 20].

Evaluation of genetic correlation and directionality
Genetic correlation between the exposure and outcome 
in MR analysis may lead to a violation of cause-effects 
[21, 22]. Despite excluding SNPs linked to VAT when 
choosing IVs, irrelevant SNPs might still influence VAT 
presence. LDSC is a statistical method used to analyze 
genetic correlation. By leveraging linkage disequilibrium 
information in the genome, it can assess the genetic cor-
relation between two traits, such as disease and gene 
expression [21, 23]. To confirm that the causal effects 
are not muddled by shared genetics, LDSC was used to 
assess the genetic correlation between metabolites and 
VAT [24]. Furthermore, the MR Steiger test was con-
ducted to address the potential bias arising from reverse 
causality [25].

Reverse MR analysis
Based on the same criteria, we conducted a reverse MR 
analysis using VAT-associated SNPs as IVs to investigate 
if VAT accumulation causally affected the blood metabo-
lites identified above.

Results
Selection of instrumental variables
After conducting a rigorous quality control process, we 
have identified 10,635 SNPs linked to 486 blood metabo-
lites as IVs, ranging from 3 to 505, to explore the causal 
relationship between metabolites and VAT. F-statistics 
for each SNP were all over 10, suggesting no weak IVs 
were employed. Comprehensive information for each 
SNP was presented in Supplementary 1.

Results of MR analysis between blood metabolites and VAT
The comprehensive analysis results of 486 blood metab-
olites and VAT was described in Supplementary 2. The 
IVW analysis identified a total of forty-five metabolites 
associated with VAT accumulation (P < 0.05). Among 
them, six metabolites remained chemically unknown. 
The remaining metabolites were assigned to eight amino 
acids, three carbohydrates, twenty-one lipids, two pep-
tides, and five xenobiotics (Fig. 1). Based on the pathway 
analysis conducted using MetaboAnalyst for the iden-
tified blood metabolites, the results indicated that the 
top twenty-five ranked metabolic pathways are caffeine 
metabolism, glutathione metabolism, alpha linolenic acid 
and linoleic acid metabolism, and so on (Fig. 2).

Further after FDR correction, the IVW MR estima-
tion identified a significance positive correlation between 
arachidonate (20:4n6) and the accumulation of VAT 
(β = 0.35, 95%CI:0.18–0.52, P < 0.001; FDR = 0.025). We 
also identified four metabolites with obvious potential 
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causal relationship (FDR < 0.10). Higher levels of lysine 
(β = 0.67, 95%CI: 0.28–1.06, P < 0.001; FDR = 0.074), pro-
line (β = 0.30, 95%CI:0.13–0.48, P < 0.001; FDR = 0.082), 
and valerate (β = 0.50, 95%CI:0.23–0.78, P < 0.001, 
FDR = 0.091) might also result in the accumulation of 
VAT. On the other hand, the presence of glycine (β=-0.21, 
95%CI: -0.33–0.09), P < 0.001, FDR = 0.076) suggested a 
protective effect against the accumulation of VAT (Fig. 3). 
MR Egger, weighted median, simple mode, and weighted 
mode also demonstrated a trend of causal relationships. 
Supplementary 3 displayed scatterplots demonstrat-
ing the causal relationship between metabolites and 
VAT accumulation. Cochrane’s Q test suggested there is 
no indication of heterogeneity among SNPs associated 
with blood metabolites in predicting VAT accumulation 
(P > 0.05) (Table  1). MR-Egger regression intercept also 
showed no risk discrepancy due to unbalanced pleiotropy 
related to VAT accumulation (P > 0.05) (Table  1). The 
MR-PRESSO test further confirmed the reliability of our 
results (P > 0.05) (Table 1). Lastly, leave-one-out analysis, 
as shown in Supplementary 3, did not find any influential 
SNPs affecting the overall effect estimate.

Results of MR analysis between blood metabolites and 
sex-stratified VAT
We further investigated the relationship between above 
five blood metabolites and VAT stratified by sex (Fig. 4). 
Our analysis showed consistent trends between different 

sexes for most blood metabolites. However, the associa-
tion between arachidonate (20:4n6), lysine, proline, val-
erate and VAT accumulation was statistically different in 
females (P < 0.05), while the associations between valer-
ate, glycine and VAT accumulation were statistically dif-
ferent in males (P < 0.05).

MVMR analysis
We further employed a multivariable MR analysis to esti-
mate the direct effects of these five metabolites on the 
accumulation of VAT (Fig. 5). Based on the MVMR_IVW 
results, the effect of genetically predicted arachido-
nate (20:4n6) (β = 0.28, 95%CI: 0.05–0.52, P = 0.017) and 
proline (β = 0.40, 95%CI: 0.15–0.66, P = 0.002) on VAT 
remained after accounting for BMI and HblA1c. The 
causal inference was further supported by consistent 
direction and magnitude from the results of MVMR_
Egger and MVMR_Median model.

Results of MR analysis at genome-wide significance 
threshold (5e-8)
Upon further refinement based on genome-wide sig-
nificance thresholds (5e-8) with LD analysis (r2 < 0.001, 
clumping distance = 10,000  kb), we selected IVs for five 
blood metabolites (Fig. 6). arachidonate (20:4n6), glycine, 
and lysine each had one SNPs as IVs; proline had three 
SNPs as potential IVs. However, for valerate, no suitable 
IVs were found. Further IVW analysis indicated that the 

Fig. 1  Causal relationships between forty-five metabolites and VAT
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increased levels of arachidonate (20:4n6) (β = 0.40, 95%CI: 
0.10–0.71, P = 0.010), lysine (β = 1.96, 95%CI: 0.87–3.05, 
P < 0.001), and proline (β = 0.40, 95%CI: 0.09–0.72, 
P = 0.013) remain as the risk factors for the augmented 
accumulation of VAT.

Evaluation of genetic correlation and directionality
To determine if the association between metabolites and 
VAT is due to shared genetic structure, we conducted 
LDSC analysis (Supplementary 3). Based on the total 
VAT, the results indicate no significant genetic correla-
tion between arachidonate (20:4n6), glycine, lysine, val-
erate, and VAT accumulation. However, there may be a 
genetic correlation between VAT and proline (Rg = 0.190 
P = 0.011). It is important to acknowledge that the limited 

sample size of the metabolites may have compromised 
the statistical power of our analysis. Steiger test indicated 
no reverse causation bias in the identified causal relation-
ships (P < 0.05) (Supplementary 3). Finally, reverse MR 
analysis did not find evidence of the causal relationship 
between VAT accumulation and the five blood metabo-
lites mentioned above (Supplementary 2). For other 
potential causal metabolites, reverse MR analyses results 
indicated that suggest that there is a bidirectional causal 
relationship between the accumulation of VAT and arabi-
nose, N-acetylglycine, 1-stearoylglycerophosphocholine, 
2-palmitoylglycerophosphocholine*, chiro-inositol.

Fig. 2  Results of pathway enrichment analysis of forty-five metabolites

 



Page 6 of 11Wang and Yang Lipids in Health and Disease           (2024) 23:39 

Discussion
To our knowledge, this is the first MR study to assess 
the causal role of human blood metabolites in visceral 
obesity.

Obesity is a multifactorial disease with significant het-
erogeneity. It manifests in various phenotypes, which 
can be either metabolically unhealthy or healthy [26]. 
Metabolomics, a high-throughput, and unbiased profil-
ing technique, enables the simultaneous quantification 

of a wide range of small-molecule metabolites within 
biological systems [27]. By analyzing the metabolome, 
which represents the end-products of cellular processes, 
metabolomics offers a unique opportunity to uncover 
the intricate metabolic alterations associated with obe-
sity [28]. We have identified that the metabolic path-
ways primarily enriched in these metabolites include 
caffeine metabolism. Current research consistently sug-
gests a strong correlation between caffeine metabolism 

Table 1  The results of Cochrane’s Q, MR-Egger intercept, and MR-PRESSO
Metabolites Group QIVW P Egger intercept P MR-PRESSO global test
arachidonate (20:4n6) Total 38.830 0.084 0.001 0.768 0.134

Female 43.163 0.034 -0.004 0.470 0.051
Male 32.222 0.266 0.006 0.242 0.324

glycine Total 40.928 0.263 -0.002 0.571 0.290
Female 29.018 0.789 0.001 0.804 0.829
Male 44.190 0.164 -0.003 0.421 0.166

lysine Total 29.104 0.216 -0.012 0.251 0.217
Female 27.727 0.272 -0.011 0.453 0.266
Male 21.492 0.610 -0.013 0.354 0.612

proline Total 51.642 0.103 -0.001 0.847 0.136
Female 57.891 0.033 0.000 0.901 0.055
Male 36.315 0.637 -0.001 0.666 0.677

valerate Total 15.489 0.078 0.011 0.399 0.114
Female 15.366 0.081 0.013 0.504 0.108
Male 7.494 0.586 0.007 0.617 0.647

Fig. 3  Causal relationships between five metabolites and VAT
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and obesity, including anti-inflammatory and antioxi-
dant effects that promote fat oxidation, increase energy 
metabolism, and suppress appetite [29–31]. Previous 
non-targeted metabolomics study focusing on the obese 
people and animals also revealed that caffeine and caf-
feine-related metabolism pathways were the most promi-
nent metabolic pathways [32, 33]. Additionally, previous 
studies have suggested that some of these blood metab-
olites, such as arachidonate (20:4n6) [34], glycine [35], 
palmitoleate [36], theophylline [37], and so on, might be 

involved in the pathogenesis of obesity and serve as bio-
markers for obesity. However, most of these studies have 
focused on general obesity measures such as BMI, while 
the distribution of body adipose tissue plays a crucial 
role in obesity and its associated health risks. By lever-
aging previous GWAS studies, we can more accurately 
identify the harmful obesity phenotype, specifically vis-
ceral obesity. Furthermore, based on the advantages 
MR studies, we have further elucidated the pathogenic 
and protective effects of these blood metabolites on the 

Fig. 4  Causal relationships between five metabolites and sex-stratified VAT
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accumulation of VAT. This additional information pro-
vides a more comprehensive understanding of the role 
of these blood metabolites in visceral obesity and related 
health outcomes.

After multiple testing correction, arachidonate (20:4n6) 
has been implicated in VAT accumulation. Arachidonate 
is a crucial essential fatty acid in the human body, and it 
is the most abundant and widely distributed polyunsat-
urated fatty acid. The metabolic products of arachido-
nate include a series of prostaglandins and leukotrienes, 
which are highly active inflammatory mediators. Stud-
ies have shown that it has a pro-inflammatory effect in 
the inflammatory microenvironment of 3T3-L1 adipo-
cytes induced by lipopolysaccharides [38]. Additionally, 
four other blood metabolites (glycine, lysine, proline, 
and valerate) were identified as having obvious potential 
causal relationship (FDR < 0.10). Glycine, the amino acid 
with the lowest molecular weight, shows lower circulat-
ing levels in metabolic disorders related to obesity, type 
2 diabetes (T2DM), and non-alcoholic fatty liver disease 
(NAFLD), and increasing glycine levels can inhibit these 

disorders in clinical application [35]. Lysine acetylation 
plays a crucial role in both immune and metabolic path-
ways, regulating the balance of energy storage and expen-
diture. Current evidence suggests that lysine acetylation 
can modulate innate immune and metabolic pathways 
related to obesity and metabolic diseases [39]. Proline, 
playing a role in the regulation of food intake and body 
fat accumulation suggests its potential as a target for 
interventions in managing visceral obesity [40]. However, 
there is limited research on the relationship between val-
erate and VAT accumulation and obesity. Further explo-
ration is needed in the future to better understand the 
potential impact of valerate on visceral obesity.

There are several limitations to this study that may 
impact the interpretation of the results. Firstly, the SNP 
used did not meet the GWAS significance threshold (5e-
8). Although we relaxed the selection criteria for IVs, it 
was considered an acceptable threshold for blood metab-
olites and has been adopted in other articles [23, 41]. 
Secondly, most participants in our study were of Euro-
pean descent. While this helped to minimize population 

Fig. 5  Results of MVMR analysis
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heterogeneity, it is important to validate the MR results 
in other populations to ensure their generalizability. 
Thirdly, VAT, due to its metabolic activity, could induce 
changes in the metabolome. We conducted a reverse 
MR analysis only on metabolites with potential causal 
relationships, and future research should delve deeper 
into the impact of VAT on human metabolism from this 
perspective. Furthermore, conducting further MR analy-
ses, such as MR-RAPS, and reinforcing the reliability of 
results through replication validation based on exter-
nal populations, are also necessary. Lastly, while the MR 
approach is excellent for causal inference, it is crucial to 
validate the findings from this study in well-powered ran-
domized controlled trials.
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