Skip to main content

Table 3 Logistic regression analysis for potential predictors of ISR

From: A prediction model based on platelet parameters, lipid levels, and angiographic characteristics to predict in-stent restenosis in coronary artery disease patients implanted with drug-eluting stents

  Univariate analysis Multivariate analysis
Parameters OR (95%CI) Wald χ2 P OR (95%CI) Wald χ2 P
TC 1.19 (1.05–1.36) 7.08 0.008* 1.18 (1.01–1.39) 4.25 0.039*
HDL 1.40 (1.04–1.88) 4.97 0.026*     
LDL-C 1.44 (1.11–1.87) 7.33 0.007* 1.34 (1.02–1.76) 4.38 0.036*
SBP 1.01 (1.00–1.02) 6.12 0.013* 1.01 (1.01–1.02) 6.08 0.014*
MI 1.96 (1.13–3.41) 5.72 0.017* 2.34 (1.32–4.15) 8.55 0.003*
PDW 1.14 (1.03–1.27) 5.88 0.015* 1.17 (1.05–1.31) 7.85 0.005*
RCA 1.91 (1.08–3.38) 5.01 0.025*     
Lesion vessels 1.27 (1.05–1.53) 5.90 0.015* 1.32 (1.06–1.64) 3.08 0.012*
  1. * P < 0.05. Abbreviations: ISR in-stent restenosis, BMI body mass index, MI myocardial infarction, PDW platelet distribution width, LDL-C low-density lipoprotein cholesterol, HDL high density lipoprotein, TC total cholesterol, TG triglyceride, RCA right coronary artery. Adjust: TC, HDL, LDL-C, SBP, MI, PDW, RCA, lesion vessels