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Serum trans fatty acids, asymmetric
dimethylarginine and risk of acute
myocardial infarction and mortality in
patients with suspected coronary heart
disease: a prospective cohort study
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Abstract

Background: Trans fatty acids (TFAs) have been found to impair flow mediated vasodilation and nitric oxide (NO)
production. We sought to examine if serum TFA levels are associated with plasma levels of the NO inhibitor
asymmetric dimethylarginine (ADMA) and if possible relationships between serum TFA and cardiovascular morbidity
or mortality are mediated or modified by plasma ADMA levels.

Methods: The cohort included patients who underwent coronary angiography for suspected coronary heart
disease in 2000–2001. Serum trans 16:1n7 and trans 18:1 isomers were determined by gas liquid chromatography
and the summation of these two TFAs is reported as TFA (percentage by weight (wt%) or concentration).
Associations between TFAs and ADMA were estimated by calculating the Spearman’s rank correlation coefficient
(ρ), and risk associations with AMI, cardiovascular death and all-cause mortality across quartiles of TFAs (wt% or
concentration) were explored by Cox modeling.

Results: A total of 1364 patients (75 % men) with median (25th,75th percentile) age 61 (54, 69) years, serum TFA
0.46 (0.36, 0.56) wt% and plasma ADMA 0.59 (0.50, 0.70) μmol/L were studied. Serum TFA levels (ρ = 0.21, p < 0.001),
trans 16:1n7 (ρ = 0.22, p < 0.001) and trans 18:1 (ρ = 0.20, p < 0.001) levels were significantly correlated with plasma
ADMA levels. During the median (25th,75th percentile) follow-up time of 5.8 (4.5, 6.4) years, 129 (9.5 %) patients
experienced an AMI, 124 (9.1 %) died, whereof 66 (53 %) due to cardiovascular causes. After multivariate
adjustments no significant associations between serum TFA levels (wt% or concentration) and incident AMI, CV
death and all-cause mortality were observed. Similar results were obtained when repeating the analyses with trans
16:1n7 and trans 18:1 individually. Plasma ADMA levels did not significantly modify the associations between TFA
levels and outcomes.

Conclusions: Serum TFA levels were positively correlated with plasma ADMA levels. After multivariate adjustments,
TFAs were not associated with incident AMI or mortality, and associations were not influenced by ADMA.

Trial registration: Clinicaltrials.gov Identifier: NCT00354081
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Background
Transfatty acids (TFAs) are naturally present in small
quantities in dairy products and meat, but the main diet-
ary source is processed foods containing partially hydro-
genated vegetable oils. While no, or even beneficial
cardiovascular (CV) effects of TFAs from dairy products
and meat have been claimed, a high consumption of in-
dustrially produced TFAs have repeatedly been associ-
ated with an increased risk of CV disease [1, 2]. The
underlying mechanisms of the adverse effects are multi-
faceted but at present predominantly explained by the
influence of TFAs on serum lipid levels [3–5]. Also,
TFAs have been found to increase markers of inflamma-
tion, promote thrombogenesis [6–8] and impair flow
mediated dilatation [9]. More recently, human endothe-
lial cells treated with TFAs were found to have decreased
production of the important vasodilator nitric oxide
(NO) [10].
Asymmetric dimethylarginine (ADMA) is a potent in-

hibitor of NO synthesis, and numerous studies have
linked increasing levels of ADMA with risk of CV dis-
ease [11]. ADMA is metabolized by the enzyme
dimethylarginine dimethylamoniohydrolase (DDAH) [12,
13], which is a critical regulator of ADMA levels. DDAH
activity is in turn up-regulated by activation of peroxi-
some proliferator-activated reseptor γ (PPARγ) [14] and
inhibition of sterol regulatory element binding protein-
1c (SREBP-1c) [15]. TFAs have been found to down-
regulate PPARγ mRNA expression [16] and to up-
regulate SREBP-1c mRNA expression [17]. Additionally,
TFAs are associated with higher levels of inflammatory
markers, including TNF-α [18], which in turn may
down-regulate DDAH activity [19]; hence TFAs may be
a potential inhibitor of ADMA degradation, with a sub-
sequent decrease of NO levels.
As of today, the mechanisms by which TFAs are re-

lated to CV disease are not fully understood. Thus, in
over 1300 Norwegian patients with suspected coronary
heart disease (CHD), we aimed to examine if serum TFA
levels (trans 16:1n7 and trans 18:1 isomers) were associ-
ated with plasma ADMA levels, and if potential asso-
ciations between serum TFA levels and risk of acute
myocardial infarction (AMI), CV death and all-cause
mortality were mediated or modified by plasma
ADMA.

Methods
Study population
The Bergen Coronary Angiography Cohort (BECAC) in-
cludes 4241 patients undergoing coronary angiography
for suspected CHD (stable angina pectoris or acute cor-
onary syndrome (ACS) [20]. The initial 1367 patients re-
cruited to BECAC during 2000–2001 were selected for
fatty acid (FA) analyses. Three patients were excluded

due to no data on plasma ADMA, leaving 1364 patients
eligible for analyses. Of these patients, 707 were also
recruited to the Western Norway B-Vitamin Interven-
tion Trial (WENBIT) (ClinicalTrials.gov Identifier:
NCT00354081), a RCT investigating the effect of high
dose B-vitamin supplementation on risk of CV disease
and mortality [21]. The study protocol was approved by
the Regional Committee for Medical Research Ethics
and the Norwegian Data Inspectorate and met the
mandate of the Declaration of Helsinki. All participants
signed a consent form.

Baseline data
As previously reported each patient completed a self-
administered questionnaire on medical history, risk fac-
tors and medications, and the information was subse-
quently validated against medical records [20, 21].
Diabetes mellitus included type 1 and 2 as previously di-
agnosed, independent of serum glucose or HbA1C levels
at baseline. Current smoking included self-reported
current smoking, those who had quit smoking within
the last month and patients with plasma cotinine
>85 ng/mL [22]. Fasting referred to abstaining from food
at least 6 h prior to blood sample collection. Left ven-
tricular ejection fraction (LVEF) (%) and extent of sig-
nificant stenosis of the coronary arteries were verified as
previously reported [23]. Effective statin dose refers to
the ranked value of the expected percent of LDL-
cholesterol reduction based on type and dose of speci-
fied statin use [24, 25].

End point and follow up
Clinical endpoints were AMI (fatal and non-fatal), CV
death and all-cause mortality. The patients were
followed from angiography in 2000 or 2001 until any
endpoint occurred, or throughout December 31th 2006.
Collection of clinical events information has previously

been described [26]. AMI definition, published in 2000
[27], was used as diagnostic criteria. CV death included
death causes coded I00-I99 or R96 (International Statis-
tical Evaluation of Disease, 10th Revision System). Events
were classified as fatal if death occurred within 28 days
after onset. An endpoints committee adjudicated all
events, with no information on baseline characteristics.

Biochemical analyses
Serum and plasma samples were collected prior to angi-
ography and stored at −80 °C until analysis. ApoA1,
ApoB and lipoprotein (a) concentrations were deter-
mined using the Hitachi 917 system (Roche Diagnostics,
GmbH, Mannheim, Germany). C-reactive protein (CRP)
was measured using a latex, high sensitive assay (Behring
Diagnostics, Marburg, Germany). Serum was treated
with 2 % (v/v) of sulfuric acid in methanol to prepare
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serum FA methyl esters (FAMEs) [28]. FAMEs were ana-
lyzed by gas-liquid chromatography (GC 8000 TOP,
Finnigan, USA) on DB1-ms capillary column (J & W
Scientific, USA) coupled to a flame-ionization detector
[29]. The method is developed for analyses of a general
FA profile, and included trans 16:1n7 and trans 18:1 iso-
mers. Other positional isomers were thus not separated
on the column. The two TFAs combined are here re-
ferred to as serum TFA (percentage by weight (wt%) or
concentration). With-in day coefficient of variation was
2.22 % for TFA (wt%), 3.00 % for trans 16:1n7 (wt%) and
2.33 % for the trans 18:1 isomers (wt%). Plasma ADMA
was measured using high performance liquid chroma-
tography/tandem mass spectrometry (LC-MS/MS) at
BEVITAL AS (www.bevital.no), and within-day coeffi-
cient of variation was 5–7 %. Cotinine was determined
by LC-MS/MS [30]. The Friedewald formula was used to
calculate LDL cholesterol, and estimated glomerular fil-
tration rate (eGFR) was calculated using the Chronic
Kidney Disease Epidemiology Collaboration [31].

Statistical methods
Continuous variables are presented as median (25th, 75th

percentile), unless otherwise stated, and categorical vari-
ables as count (percentage). Trends across quartiles of
serum TFAs (wt%) and plasma levels of ADMA were
calculated using median linear regression for continuous
variables and logistic regression for binary variables.
A generalized additive model (GAM) was fitted to as-

sess for possible non-linear relationships between serum
TFA (wt%) and plasma ADMA levels. Bivariate correl-
ation analyses between serum TFA, trans 16:1n7, trans
18:1 (as wt% and concentration) and plasma ADMA
levels were calculated as the Spearman’s rank correlation
coefficient. Multivariate adjusted correlation analyses be-
tween serum TFAs, trans 16:1n7, trans 18:1 and plasma
ADMA levels were calculated as the partial rank correl-
ation coefficient, adjusting for the clinically relevant vari-
ables age (years), sex, effective statin dose at baseline (0–
6), fasting (yes/no), eGFR (mL/min), ACS diagnosis prior
to baseline coronary angiography (yes/no) and serum tri-
glycerides (mmol/L) levels.
Hazard ratios (HR) of AMI, CV death and all-cause

mortality according to serum levels of serum TFAs were
estimated with Cox proportional hazard models. When
evaluating the relationships between quartiles of TFA
levels and subsequent risk of AMI or mortality, the first
quartile was used as reference. Variables in the multi-
variate adjusted model were selected based on clinical
relevance and included age (years), sex, diabetes mellitus
(yes/no), current smoking (yes/no), effective statin dose
at discharge (0–6), extent of significant stenosis of the
coronary arteries (0–3) and eGFR (mL/min)). WENBIT
intervention status (vitamin B6 (yes/no) or folate/B12

(yes/no)) had no effect on any estimates (data not
shown), and was not included in the model.
Additionally, the association between ADMA and risk

of AMI, CV death and all-cause mortality was examined
in a Cox model (adjusting for age and sex and also TFA
(wt%)) to confirm a relationship between the possible
mediator and outcome independent of the exposure
(TFA). An additional GAM model was fitted to assess
for non-linear relationships.
Potential mediation by ADMA was examined by add-

ing ADMA (μmol/L) to the univariate, age and sex and
multivariate adjusted Cox models examining the effect
of TFA on outcomes. Possible effect modification was
explored by including an interaction product term of
TFA (quartiles) and ADMA (above and below median)
in the same Cox models.
All probability values are 2-tailed, and were considered

significant when <0.05. Statistical analyses were per-
formed with SPSS 21 (SPSS Inc, Chicago, IL) and R
2.14.2 (The R-Foundation for Statistical Computing,
Vienna, Austria).

Results
Demographic and clinical characteristics
Baseline clinical characteristics of the 1364 participants,
according to quartiles of serum TFA levels (wt%), are
presented in (Table 1). In the total population, wt% and
concentration of serum TFA levels ranged between
0.10–1.61 % and 2,69–255 mg/L, respectively.
Patients with higher serum TFA levels were character-

ized by older age, a relatively higher proportion of fe-
males and non-fasting patients. They had less often
undergone PCI and were less often diagnosed with ACS
prior to baseline coronary angiography and 1-vessel dis-
ease following baseline coronary angiography. Also, they
were less frequently discharged with statins and ADP-
receptor blockers. However, they were more often diag-
nosed with 3-vessel disease following baseline coronary
angiography.
Patients with higher serum TFA levels had higher

plasma ADMA levels, serum triglyceride and total FA
levels and lower eGFR and serum ApoA-I levels.

Correlations between TFAs and ADMA
Bivariate and multivariate correlation analyses revealed
highly significant (p < 0.001) and positive relationships
between serum levels of TFAs and of the individual
TFAs (both as wt% and concentration) and plasma
ADMA levels (ρ = 0.12–0.22) (Table 2), and the GAM
plot revealed no non-linear associations (data not
shown). The estimates were not significantly influenced
by additional adjustments for previous PCI, current
smoking, extent of significant stenosis of the coronary
arteries or plasma arginine.
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Table 1 Baseline characteristics of participants by quartiles of serum trans fatty acids

Quartiles of serum trans fatty acids (wt%)

Total Q1 Q2 Q3 Q4

0.30 (0.10, 0.36)a 0.41 (0.37, 0.45) 0.51 (0.46, 0.55) 0.64 (0.56, 1.61)

n = 1364 n = 355 n = 325 n = 331 n = 353 p-trendb

Demographic and clinical characteristics

Male sexc 1019 (74.7) 296 (83.4) 240 (73.8) 239 (72.2) 244 (69.1) <0.001

Age (years)d 61 (54, 69) 57 (51, 63) 61 (54, 68) 64 (56, 71) 65 (55, 72) <0.001

BMI (kg/m2) 26.2 (24.1, 28.7) 26.7 (24.4, 29.0) 26.0 (24.3, 28.7) 26.1 (24.0, 28.7) 26.1 (23.8, 28.7) 0.11

Fasting 187 (14.5) 69 (20.7) 46 (15.0) 34 (10.7) 38 (11.4) <0.001

Diastolic blood pressure (mmHg) 80 (75, 88) 81 (75, 90) 80 (75, 87) 80 (74, 87) 80 (74, 89) 1.00

Systolic blood pressure (mmHg) 138 (125, 152) 139 (126, 154) 139 (125, 150) 136 (124, 150) 137 (122, 154) 0.08

Cardiovascular history

Previous AMI 553 (40.5) 140 (39.4) 126 (38.8) 137 (41.4) 150 (42.5) 0.84

Previous PCI 239 (17.5) 83 (23.4) 61 (18.8) 45 (13.6) 50 (14.2) <0.01

Previous CABG 134 (9.8) 32 (9.0) 38 (11.7) 33 (10.0) 31 (8.8) 0.70

Risk factors

Impaired ejection fraction 151 (11.1) 42 (11.8) 30 (9.2) 38 (11.5) 41 (11.6) 0.98

Diabetes 140 (10.3) 38 (10.7) 26 (8.0) 33 (10.0) 43 (12.2) 0.71

Current smoker 457 (33.5) 158 (44.5) 101 (31.1) 92 (27.8) 106 (30.0) 0.05

Clinical diagnosis before baseline coronary angiography

Stable angina 1273 (93.3) 318 (89.6) 296 (91.1) 315 (95.2) 344 (97.5) <0.001

Acute coronary syndrome 91 (6.7) 37 (10.4) 29 (8.9) 16 (4.8) 9 (2.5) <0.001

Extent of coronary artery stenosis at baseline coronary angiography

No significant stenosis 234 (17.2) 44 (12.4) 67 (20.6) 58 (17.5) 65 (18.4) 0.09

1-vessel disease 368 (27.0) 134 (37.7) 74 (22.8) 85 (25.7) 75 (21.2) <0.001

2-vessel disease 329 (26.3) 91 (25.6) 82 (25.2) 94 (28.4) 92 (26.1) 0.35

3-vesseldisease 403 (29.5) 86 (24.2) 102 (31.4) 94 (28.4) 121 (34.3) 0.04

Medication following baseline coronary angiography

Acetylsalisylic acid 1175 (86.1) 316 (89.0) 276 (84.9) 284 (85.8) 299 (84.7) 0.14

ADP receptor blocker 322 (23.6) 118 (33.2) 75 (23.1) 60 (18.1) 69 (19.5) <0.01

Statins 1107 (81.2) 309 (87.0) 263 (80.9) 255 (77.0) 280 (79.3) 0.01

β-blockers 1022 (74.9) 268 (75.5) 235 (72.5) 248 (74.9) 271 (77.0) 0.43

ACE inhibitors 272 (19.9) 75 (21.1) 64 (19.7) 60 (18.1) 73 (20.7) 0.36

Loop diuretika 145 (10.6) 26 (7.3) 32 (9.8) 42 (12.7) 45 (12.7) 0.11

Fatty acids

Total fatty acids (mg/L) 3932 (3320, 4673) 3913 (3225, 4646) 3881 (3345, 4490) 3883 (3293, 4570) 4114 (3407, 4835) 0.02

Trans fatty acid (mg/L) 17.8 (13.3, 23.8) 11.5 (8.97, 14.0) 15.8 (13.3, 18.7) 19.6 (16.5, 23.1) 26.9 (22.3, 33.8) <0.001

Trans 16:1n7 (mg/L) 2.64 (1.91, 3.68) 1.75 (1.36, 2.24) 2.46 (1.89, 3.09) 2.95 (2.40, 3.77) 3.81 (2.93, 4.94) <0.001

Trans 18:1 (mg/L) 15.0 (11.2, 20.2) 9.66 (7.57, 11.8) 13.3 (11.2, 15.6) 16.4 (14.0, 19.7) 22.9 (18.8, 29.1) <0.001

Lipid related parameters

ApoA1 (g/L) 1.29 (1.14, 1.46) 1.31 (1.17, 1.49) 1.31 (1.14, 1.48) 1.28 (1.13, 1.43) 1.26 (1.12, 1.45) <0.01

ApoB (g/L) 0.91 (0.76, 1.07) 0.89 (0.76, 1.06) 0.91 (0.76, 1.07) 0.91 (0.74, 1.08) 0.92 (0.78, 1.07) 0.16

Cholesterol (mmol/L) 5.00 (4.30, 5.80) 5.00 (4.30, 5.70) 5.10 (4.40, 5.95) 5.00 (4.30, 5.90) 5.10 (4.30, 5.80) 0.33

HDL Cholesterol (mmol/L) 1.20 (1.00, 1.43) 1.20 (1.00, 1.40) 1.20 (1.00, 1.50) 1.20 (1.00, 1.40) 1.17 (0.94, 1.40) 1.00

Triglycerides (mmol/L) 1.52 (1.13, 2.15) 1.44 (1.08, 2.18) 1.48 (1.13, 1.92) 1.49 (1.08, 2.02) 1.67 (1.20, 2.40) 0.01
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The correlation between serum total FA levels and
plasma ADMA levels (adjusted for TFA concentration,
age and sex) was inverse (ρ = −0.06, p = 0.018).

Serum TFA levels and risk of AMI, CV death and all-cause
mortality
During the median (25th, 75th percentile) follow-up
period 5.8 (4.5, 6.4) years), 129 (9.5 %) patients had an
incident AMI, of which 44 were fatal (34 %). A total of
124 (9.1 %) patients died, whereof 66 (53 %) deaths were
due to CV causes.
In univariate analyses, there were significant trends of

increased risk of CV death and all-cause mortality across
quartiles of TFA (Table 3). However, after multivariate
adjustments no significant associations between TFA
(wt% or concentration) and endpoints were observed.
Similar results were obtained when repeating the ana-
lyses with trans 16:1n7 (Additional file 1: Table S1) and
trans 18:1 (Additional file 2: Table S2) (wt% and concen-
tration) individually. Further adjustments for BMI, blood
pressure, fasting, impaired LVEF, previous PCI, ACS
diagnosis prior to baseline coronary angiography, use of

ADP receptor blocker, use of loop diuretics or concen-
tration of any lipid related parameter did not signifi-
cantly influence the results. Additionally, GAM plots
revealed no non-linear associations (data not shown).
The risk associations between TFA, trans 16:1n7, trans

18:1 and endpoints did not significantly differ between
patients who were discharged with statins and those
who were not (data not shown).

Plasma ADMA levels and risk of AMI, CV death and
all-cause mortality
Plasma ADMA levels (μmol/L) were positively associ-
ated with risk of AMI (HR (95 % CI) (3.44 (1.24, 9.51) p-
value = 0.017), CV death (7.17 (2.13, 24.2) p-value =
0.001) and all-cause mortality (8.04 (3.35, 19.3) p-value
<0.001) (wt%) (adjusting for age and sex). The associa-
tions were only slightly attenuated after an additional ad-
justment for TFA (wt%): 3.26 (1.16, 9.17) p-value = 0.025
for AMI, 7.09 (2.09, 24.0) p-value = 0.002 for CV death
and 7.45 (3.09, 18.0) p-value <0.001 for all-cause mortal-
ity. Additionally, GAM plots revealed a linear and posi-
tive association between plasma ADMA levels and
endpoints (data not shown).

Mediating and modifying effect of plasma ADMA
Including plasma ADMA (μmol/L) in the univariate and
age and sex adjusted Cox models slightly attenuated the
effect of TFA on endpoints, but plasma ADMA did not
significantly influence the multivariate adjusted esti-
mates (Additional file 3: Table S3). Moreover, the effect
of TFA, as either wt% or concentration, on risk of AMI,
CV death and all-cause mortality was not modified by
ADMA levels (above or below median) (All p for inter-
action >0.29) (Table 3).

Discussion
In this prospective cohort study of 1364 Norwegian pa-
tients with suspected CHD, there was a positive and

Table 1 Baseline characteristics of participants by quartiles of serum trans fatty acids (Continued)

Lp(a) (mmol/L) 0.21 (0.10, 0.54) 0.25 (0.11, 0.59) 0.22 (0.10, 0.54) 0.19 (0.09, 0.48) 0.22 (0.10, 0.54) 0.11

Other parameters

Glucose (mmol/L) 5.70 (5.10, 6.70) 5.80 (5.10, 6.80) 5.60 (5.10, 6.50) 5.60 (5.20, 6.50) 5.70 (5.00, 6.80) 1.00

HbA1c (mmol/L) 5.84 (5.17, 6.54) 5.77 (5.19, 6.38) 5.77 (5.12, 6.44) 5.95 (5.22, 6.65) 5.87 (5.09, 6.73) 0.11

Arginine (μmol/L) 71.5 (50.9, 90.5) 77.8 (56.0, 96.5) 70.4 (51.2, 87.7) 65.3 (50.2, 88.2) 71.6 (49.1, 91.1) <0.01

ADMA (μmol/L) 0.59 (00.50, 0.70) 0.54 (0.48, 0.65) 0.57 (0.49, 0.68) 0.61 (0.52, 0.74) 0.61 (0.52, 0.74) <0.001

eGFR (mL/min) 91.0 (78.0, 99.0) 96.0 (85.0, 103) 90.0 (79.0, 99.0) 89.0 (77.0, 98.0) 87.0 (70.5, 97.5) <0.001

CRP (mg/L) 1.92 (0.95, 3.98) 2.18 (1.00, 4.28) 1.82 (0.89, 3.91) 1.82 (0.97, 3.66) 1.97 (1.00, 3.77) 0.40

Abbreviations: ApoA-1 apolipoprotein A-1, BCA baseline coronary angiography, BMI body mass index, CRP C-reactive protein, GFR glomerular filtration rate, HbA1c
hemoglobin A1c, HDL high density lipoprotein, LDL low density lipoprotein, Lp(a) lipoprotein(a), PCI percutanous coronary intervention, wt% percentage by weight
aMedian (range)
bMedian linear regression for continuous and logistic regression for categorical variables
cCount (percentage) for all such values
dMedian (25th, 75th percentile) for all such values

Table 2 Correlationsa between trans fatty acids and ADMA

Bivariate Multivariateb Multivariatec

Percentage by weight (wt%)

Trans fatty acid 0.21 0.16 0.14

Trans 16:1n7 0.22 0.16 0.12

Trans 18:1 0.20 0.15 0.14

Concentration (mg/L)

Trans fatty acid 0.18 0.15 0.20

Trans 16:1n7 0.21 0.17 0.18

Trans 18:1 0.17 0.15 0.20
a Spearman’s ranked (partial) correlation coefficient (ρ)
b Adjusted for age (years) and sex
c Adjusted for age (years), sex, effective statin dose at baseline (0–6), fasting
(yes/no), eGFR (mL/min), ACS (yes/no), triglycerides (mmol/L)
All correlation are significant at the 0.001 level (2-tailed)
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significant association between serum TFA levels and
plasma ADMA levels. Serum levels of TFAs were associ-
ated with increased risk of CV death and all-cause mor-
tality, but not AMI. The associations were, however,
attenuated and no longer significant in multivariate
models. Plasma ADMA levels were positively related to
incident AMI, CV and all-cause mortality, independent
of TFA levels, but did not significantly influence the as-
sociations between TFA levels and outcomes.

TFAs and ADMA
As recently reviewed [1], there are numerous studies re-
lating TFAs to adverse effects on CV health, and several
possible mechanisms may explain this association. TFAs
have been found to unfavorably alter the lipid profile by
increasing LDL cholesterol, Lp(a) and triglyceride levels
and decreasing HDL cholesterol levels [3–5]. In the
current study, we did not observe an association be-
tween TFA levels and HDL cholesterol, LDL cholesterol
or Lp(a) levels, but in accordance with previous studies
[3], patients with higher serum TFA levels had higher
circulating levels of triglycerides. Statins alter the lipid
profile and were used by the majority of patients in this
study. Although adjusted for in all multivariate analyses,
use of statins may possibly serve as an explanation as to
why we did not observe any significant associations be-
tween serum TFA and cholesterol levels. In addition to

the modifying effect of TFAs on the lipid profile, dietary
intake of TFAs has been associated with an increase in
markers of endothelial dysfunction such as CRP,
interleukin-6, soluble tumor necrosis factor receptor 2,
E-selectin and soluble cell adhesion molecules [7]. We
did not, however, observe an association between serum
TFA levels and CRP, which may be due to the CRP low-
ering effect of statins [32]. A previous crossover study
among healthy men and women found consumption of
TFAs, relative to consumption of saturated FAs, to be
associated with reduced flow-mediated vasodilatation
(FMD) [9]. Moreover, a recent study found human endo-
thelial cells treated with TFAs to produce less NO [10].
To the best of our knowledge, this is the first study to
examine the relationship between serum levels of TFA
and the NO inhibitor ADMA. The association was not
attenuated by adjustments for other groups of FAs (cis-
monounsaturated FAs, omega-3 FAs, omega-6 FAs or
saturated FAs) (data not shown). Additionally, the cor-
relation between serum total FA levels and plasma
ADMA were inverse and weak, suggesting that the cor-
relation between serum TFAs and plasma ADMA was
not caused by high serum FA levels per se. Previously, a
positive association between ADMA levels and LDL
cholesterol has been observed [19]. However, the re-
ported association between ADMA and TFA was not
mediated or confounded by LDL cholesterol, as

Table 3 Trans fatty acid quartiles and risk of acute myocardial infarction, cardiovascular death and all-cause mortality

Percentage by weight (wt%) Concentration (mg/L)

Model AMI CV death All-cause mortality AMI CV death All-cause mortality

HR 95 % CI HR 95 % CI HR 95 % CI HR 95 % CI HR 95 % CI HR 95 % CI

Univariate

Q2 1.13 0.66, 1.93 1.69 0.74, 3.87 1.29 0.71, 2.36 1.10 0.66, 1.83 1.05 0.51, 2.15 0.96 0.55, 1.69

Q3 1.49 0.90, 2.45 1.92 0.86, 4.27 1.73 0.99, 3.04 1.05 0.63, 1.75 0.74 0.34, 1.60 0.95 0.54, 1.65

Q4 1.36 0.82, 2.25 2.39 1.11, 5.14 2.24 1.32, 3.82 1.25 0.77, 2.05 1.53 0.79, 2.96 1.84 1.13, 3.00

P-trend 0.15 0.03 0.03 0.42 0.28 0.01

P-interactiona 0.52 0.74 0.85 0.68 0.38 0.59

Age and sex adjusted

Q2 1.07 0.63, 1.84 1.36 0.59, 3.13 1.09 0.60, 2.01 1.11 0.67, 1.85 1.00 0.48, 2.04 0.94 0.54, 1.66

Q3 1.31 0.89, 2.18 1.23 0.54, 2.77 1.21 0.69, 2.15 1.02 0.61, 1.70 0.63 0.29, 1.38 0.85 0.49, 1.49

Q4 1.19 0.71, 2.00 1.44 0.65, 3.18 1.51 0.87, 2.62 1.25 0.76, 2.05 1.36 0.69, 2.65 1.73 1.06, 2.85

P-trend 0.41 0.45 0.10 0.46 0.49 0.02

P-interactiona 0.68 0.48 0.74 0.64 0.29 0.51

Multivariate adjustedb

Q2 1.10 0.64, 1.90 1.43 0.62, 3.31 1.18 0.64, 2.17 1.08 0.65, 1.80 1.00 0.48, 2.07 0.97 0.55, 1.71

Q3 1.43 0.86, 2.39 1.36 0.60, 3.09 1.36 0.76, 2.41 1.02 0.61, 1.72 0.62 0.28, 1.37 0.89 0.50, 1.56

Q4 1.14 0.67, 1.92 1.39 0.62, 3.11 1.53 0.87, 2.67 1.11 0.67, 1.84 1.11 0.56, 2.21 1.54 0.93, 2.55

P-trend 0.49 0.54 0.11 0.74 0.92 0.08

P-interactiona 0.64 0.72 0.80 0.77 0.41 0.74
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inclusion of LDL cholesterol in the correlation analyses
did not change the results.

TFAs and incident AMI and mortality
Despite the observed relationships between serum levels
of TFAs and markers of endothelial dysfunction, we did
not observe any significant associations between TFA
and incident AMI or mortality in multivariate adjusted
analyses. In this study, two different TFAs were mea-
sured in serum; trans 16:1n7 and trans 18:1. Trans
16:1n7 (trans palmitoleic acid) is a natural TFA, but the
trans 18:1 pool was most likely a mixture of industrially
produced and natural TFAs as the different positional
isomers were not separated. Dietary intake of industrially
produced TFAs has repeatedly been linked with in-
creased risk of CV disease, whereas there is no clear
consensus regarding intake of ruminant TFAs and risk
of CV disease [1, 2]. However, in the present study, indi-
vidually, neither trans 16:1n7 nor trans 18:1, were asso-
ciated with incident AMI or mortality, and the
associations did not differ between patients with low
(below median) or high (above median) plasma ADMA
levels. Further, the lack of association between TFA and
endpoints even at high or low ADMA levels implies that
the excess risk associated with elevated ADMA was ex-
plained by other determinants of ADMA levels.

Strengths and limitations
This study was based on a large, well characterized
population and had a prospective design. The relation-
ships between serum TFA levels, plasma ADMA levels
and risk of AMI, CV death and all-cause mortality were
calculated with TFAs as both wt% and concentration.
The wt% of single FAs, or groups of FAs, is influenced
by the changes in other FAs, whereas the individual con-
centrations of FAs are independent of each other.
Reporting on both strengthens the validity of our results.
Serum levels of TFA reflect dietary intake as these FAs
are not synthesized endogenously. However, TFA serum
concentration is largely influenced by the FA compos-
ition of the latest meals ingested, and tissue concentra-
tions are thought to better reflect the long term dietary
FA intake. Thus by only including serum levels in the
present study, the risk-associations may have been
underestimated. Other limitations include the single
baseline measurement of TFAs and biomarkers, which
may underestimate associations through regression dilu-
tion bias [33]. By the same token, the method by which
TFAs were analyzed was not ideal, as there may have
been a slight risk of omega-3 FAs co-chromatographing
with TFAs. Including omega-3 FAs in the Cox regression
analyses did not, however, alter any results (data not
shown). Finally, given a low event rate, the statistical
power was low.

Conclusion
In the current study of Norwegian men and women under-
going coronary angiography for suspected CHD there was
a positive correlation between serum TFA levels and
plasma ADMA levels. We did observe significant positive
associations between serum TFA levels and CV death and
all-cause mortality in simple models; however after adjust-
ment for possible confounders, no significant associations
were detected. Plasma ADMA levels had no significant in-
fluence on the observed associations between TFA and out-
comes. Further studies are needed to explore the possible
underlying mechanisms and consequences of the observed
association between serum TFA and plasma ADMA levels.
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