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Abstract

Background: The pharmacological inhibitor of phosphodiesterase 5 (PDE5), sildenafil, is a promising candidate for
antioxidant therapy that can result in cardiovascular protection. In addition to its known effects on the
cardiovascular system, hypercholesterolemia leads to increased oxidative stress and DNA damage in the bone
marrow, which is a non-classical target organ of atherosclerosis. In the present study, we evaluate oxidative stress
and assess the effect of genomic instability on cell cycle kinetics in atherosclerotic animals and determine if
sildenafil reverses these detrimental effects in bone marrow cells.

Methods: Experiments were performed in male wild-type (WT) and apolipoprotein E knockout mice (apoE−/−)
(9 weeks of age). apoE−/− mice were randomly distributed into the following 2 groups: sildenafil-treated
(40 mg/kg/day for 3 weeks, n = 8) and vehicle-treated (n = 8), by oral gavage. After treatment, bone marrow cells
were isolated to assess the production of superoxide anions and hydrogen peroxide, determine cell cycle kinetics
and evaluate the presence of micronucleated cells.

Results: Sildenafil treatment reduced the cytoplasmic levels of superoxide anion (~95 % decrease, p < 0.05) and
decreased hydrogen peroxide (~30 % decrease, p < 0.05). Moreover, we observed protective effects on the DNA of
bone marrow cells, including normal cell cycling, decreased DNA fragmentation and a diminished frequency of
micronucleated cells.

Conclusion: Our data reveal that the excessive production of ROS in atherosclerotic mice overcome the DNA repair
pathways in bone marrow cells. The novelty of the present study is that the administration of sildenafil reduced
ROS to baseline levels and, consequently, reverted the DNA damage and its outcomes in bone marrow cells.
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Background
Hypercholesterolemia remains one of the most import-
ant risk factors for cardiovascular morbidity and
mortality [1–4]. High plasma cholesterol levels trigger
a cascade of events, including inflammation [5], oxida-
tive stress [6] and cell damage [7, 8], particularly in the

cardiovascular system [3]. Additionally, we have previously
shown that hypercholesterolemia increases oxidative stress
in different cell types [6, 7, 9, 10], including bone marrow
mononuclear cells [8].
To understand the mechanisms underlying atheroscler-

osis development and progression and how it impacts cell
function, we use apolipoprotein E deficient (apoE−/−) mice
[1–3, 11], which show high levels of plasma cholesterol
and develop atherosclerotic lesions that resemble human
disease. Emerging evidence suggests the beneficial effects
of phosphodiesterase 5 (PDE5) inhibition with sildenafil
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on cardiovascular diseases and other target organs [6, 7,
10, 12–14]. However, the effects of sildenafil on oxidative
DNA damage in bone marrow cells from apoE−/− mice
have yet to be characterized.
Our study is the first work attempting to characterize the

anti-oxidant effect of sildenafil on bone marrow cells as a
means of protecting the main source of adult stem cells
from damaging reactive oxygen species (ROS). This study
has important implications for cardiovascular diseases, in-
cluding atherosclerosis, a known risk factor for the develop-
ment of cardiac, renal and vascular morbidities [6, 10].
In the present work, we assess oxidative stress and the

link between genomic instability and cell cycle kinetics in
atherosclerotic animals. Additionally, we evaluate the abil-
ity for sildenafil to prevent the damage incurred by ROS
in bone marrow cells. To our knowledge, this is the first
report demonstrating that chronic sildenafil administra-
tion prevents oxidative stress, genomic instability and cell
cycle arrest in bone marrow cells in atherosclerotic mice.

Methods
Animals
The experiments were performed in 9-week-old male
wild-type C57BL/6 (WT, n = 8) and apolipoprotein E-
deficient (apoE−/−) mice. The animals were bred and
maintained in the animal care facility at the Laboratory of
Translational Physiology at the Federal University of
Espirito Santo, Brazil. Mice were housed in individual
plastic cages with a controlled temperature (22–23 °C)
and humidity (60 %) and were exposed to a 12:12-h light-
dark cycle. All mice were fed a standard chow diet and
had access to water ad libitum. apoE−/− mice were distrib-
uted into the following 2 groups: (n = 8 per group) silden-
afil (Viagra®, Pfizer Laboratory, São Paulo, Brazil)-treated
by oral gavage, 40 mg/kg/day for 3 weeks (Sil) and vehicle
(saline)-treated. All experimental procedures were per-
formed in accordance with the guidelines for the care and
handling of laboratory animals as recommended by the
National Institutes of Health (NIH), and the study proto-
cols were previously approved by the Institutional Animal
Care Committee (CEUA-UFES, Protocol # 008/2015).

Analysis of plasma cholesterol and triglycerides
The total serum cholesterol and triglycerides from blood
samples were determined using commercial colorimetric
assay kits (Bioclin, Belo Horizonte, Brazil).

Isolation of bone marrow cells
Bone marrow cells were obtained from the femurs and
tibias of mice euthanized with a sodium thiopental over-
dose (100 mg/kg, i.p.). After cleaning all soft tissue,
epiphyses were removed to gain access to the marrow
cavities. Whole bone marrow was flushed out with
DMEM, and the resultant cell suspension was incubated

twice with a lysing buffer for 5 min at 37 °C to remove
erythrocytes. The cell suspension was subsequently cen-
trifuged for 10 min at 1200 rpm. The cells were counted
and assessed for viability in Neubauer chamber [15].
The samples were considered viable when ≥ 90 % were
found to be alive.

Measurement of intracellular ROS
ROS analysis was performed by flow cytometry using
dihydroethidium (DHE) and dichlorofluorescein diacetate
(DCF) to detect intracellular •O2

− and H2O2, respectively,
as previously described [8,16]. Briefly, DHE (160 mM) and
DCF-DA (20 mM) were added to a cell suspension of 106

cells and incubated at 37 °C for 30 min in the dark. The
cells were kept on ice until flow cytometric acquisition
(10,000 events; FACSCanto II, Becton Dickinson, San
Juan, CA). The data were analyzed using FACSDiva soft-
ware (Becton Dickinson) and were expressed as median
fluorescence intensity (MFI).

Cell cycle analysis
Cell cycle distribution in bone marrow cells was deter-
mined by flow cytometry analysis using propidium iodide
(PI), as previously described [15]. Briefly, bone marrow
cells were fixed, for 2 h, in cold 70 % ethanol and then in-
cubated, for 30 min, with staining solution (20 mg/mL
RNAse A, 500 mg/mL PI, 1 % Triton X-100). For deter-
mination of cell cycle distribution, samples were processed
in triplicate (10,000 events; FACSCanto II flow cytometer).
The cell cycle profile was determined via data analysis per-
formed with FACSDiva software. The data are expressed
as the percentage of cells in each cell cycle phase (sub-G0,
G0/G1, S and G2/M).

Micronucleus analysis
To evaluate the genotoxic risk of atherosclerosis and the
anti-genotoxic activity of sildenafil in mice, the micronu-
cleus test was performed on bone marrow cells. The ex-
periments were performed according to von Ledebur
and Schmid [17]. Briefly, bone marrow cells were flushed
out from the humerus with foetal bovine serum. After
centrifuging (1000 rpm, 10 min), cells were resuspended
and a drop was smeared on individual glass slides. The
samples were then fixed in methanol for 24 h and subse-
quently stained with Leishman stain. Slides were
analyzed under a light microscope (×1000) to detect
micronuclei in young red blood cells from each experi-
mental group. The number of micronucleated polychro-
matic erythrocytes (PCE) was determined using two
slides per animal and 1000 PCE per slide. The genotoxi-
city and antigenotoxicity were determined by comparing
the number of micronucleated PCE in each group. In
addition, cytotoxicity was evaluated by the ratio of PCE
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to normochromatic erythrocytes (PCE/NCE) in the first
200 cells observed [18].

Statistical analysis
All data are shown as the mean ± SEM. The normality of
the variables was previously analyzed using the
Kolmogorov-Smirnov test. Because the data exhibited a
Gaussian distribution, the statistical analysis was performed
using the one-way analysis of variance (ANOVA). When
the ANOVA showed significant differences, the Tukey’s test
was performed as a post hoc analysis. The differences
between the means were considered significant at p < 0.05.

Results
Plasma cholesterol and triglycerides
Table 1 shows the average values of total plasma cholesterol
and triglycerides in WT and apoE−/− mice treated with
sildenafil or vehicle. As expected, cholesterol and triglycer-
ide levels in apoE−/− mice were ~5- and ~3-fold higher, re-
spectively, than those in WT mice (p < 0.001). Sildenafil
treatment did not change the values of these parameters.

Bone marrow cell counting and viability
Figure 1 summarizes the average number of bone marrow
cells counted in WT, apoE−/− and Sil treated mice. apoE−/−

mice showed a decreased number of cells (110 ± 5, p <
0.01), in contrast with Sil mice, which exhibited an in-
creased number of cells (173 ± 3 cells, p < 0.05) compared
with WT mice (157 ± 5 cells). Cell viability (the total num-
ber of cells minus the number of dead cells) was ≥ 95 % in
all three groups.

ROS levels
Figure 2 summarizes the MFI values of bone marrow
cells •O2

− (Fig. 2a) and H2O2 (Fig. 2b) production, deter-
mined by flow cytometry, using DHE and DCF-DA
fluorescent dyes, respectively. As expected, apoE−/− mice
exhibited a markedly augmented (+96 %, p < 0.01)
production of •O2

− (2218 ± 360 MFI) compared with WT
animals (1128 ± 28 MFI). These increased values were
reduced to a level comparable to those found in WT
controls upon treatment with sildenafil (1126 ± 190
MFI). The production of H2O2 was also significantly
higher in the apoE−/− group (30 %, p < 0.01) compared
with WT animals (2181 ± 107 MFI) but was reduced
upon sildenafil treatment to a level comparable with that
found in WT mice (2107 ± 80 MFI).

Evaluation of cell cycle distribution
Considering that augmented ROS is known to cause
damage to DNA, we evaluated cell cycle distribution by
PI staining and flow cytometric analysis. We determined
the percentage of cells with fragmented (sub-G0; × < 2n),
interphasic (G0/G1; × = 2n), duplicating (S; 2n < × > 4n)
and duplicated (G2/M; × = 4n) DNA. Figure 3 shows the
percentage of cells in different phases of the cell cycle,
including sub-G0 (Fig. 3a), G0/G1 (Fig. 3b), S (Fig. 3c)
and G2/M (Fig. 3d). The percentage of bone marrow
cells in sub-G0 and G0/G1 phases was significantly aug-
mented in apoE−/− mice compared with WT animals;
these parameters returned to control group values in in
apoE−/− mice chronically administered with sildenafil
(Sub-G0 – WT: 1.6 ± 0.10 % vs. apoE−/−: 2.2 ± 0.12 % vs.
Sil: 1.3 ± 0.1 %, Fig. 3a; and G0/G1 – WT: 68 ± 0.5 % vs.
apoE−/−: 75 ± 0.7 % vs. Sil: 67 ± 1.6 %, Fig. 3b). The per-
centage of bone marrow cells in S and G2/M phases was
significantly diminished in apoE−/− mice compared with
WT animals; chronic administration with sildenafil
returned these parameters to WT levels (S – WT:24 ±
2 % vs. apoE−/−: 17 ± 2 % vs. Sil: 25 ± 2 %, Fig. 3c; and
G2/M – WT: 7 ± 0.2 % vs. apoE−/−: 5.5 ± 0.2 % vs. Sil: 8
± 0.3 %, Fig. 3d).

Micronucleus test
In the present study, the micronucleus test was per-
formed on bone marrow samples to investigate the pro-
tective effects of sildenafil on the DNA of apoE−/− mice.
Figure 4a shows typical images of PCE, NCE and
micronucleated PCE (MNPCE) in bone marrow. A sig-
nificant increase in micronuclei incidence was observed
in apoE−/− mice (6.4 ± 0.35 MNPCE) compared with WT
mice (3.5 ± 0.27 MNPCE), and sildenafil treatment (5.0
± 0.41 MNPCE) was able to reduce the frequency of
micronucleated cells (Fig. 4b). In addition, the ratio of
PCE/NCE reveals that atherosclerosis, per se, yields a
cytotoxic effect compared with WT mice (WT: 0.52 ± 0.01
vs. apoE−/−: 0.28 ± 0.03). Additionally, sildenafil treatment
protected bone marrow cells of apoE−/− mice from the
cytotoxic effect of hypercholesterolemia (0.42 ± 0.02).

Discussion
This study shows, for the first time, that chronic inhib-
ition of PDE5 with sildenafil restores cell cycle kinetics/
progression and prevents genomic instability by decreas-
ing ROS production in bone marrow cells of apoE−/−

mice. We have previously demonstrated the link be-
tween increased ROS production and DNA damage in
bone marrow cells from apoE−/− mice [8]. We have also
demonstrated that sildenafil treatment was able to re-
duce DNA damage in blood, renal and liver cells [7, 12].
However, there is no evidence of sildenafil’s antioxidative
effect on bone marrow cells and, consequently, on DNA

Table 1 Plasma cholesterol and triglycerides

Parameter WT apoE−/− Sildenafil

Total cholesterol (mg/dL) 113 ± 7 542 ± 10* 554 ± 15*

Triglycerides (mg/dL) 66 ± 4 192 ± 14* 184 ± 16*

The values are the means ± SEM
*p < 0.05 vs. WT group (one-way ANOVA and Tukey’s test)
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damage. To explore this phenomenon, we evaluated the
effects of sildenafil as an antioxidant, anti-genotoxic and,
consequently, anti-mutagenic drug in the bone marrow
cells of apoE−/− mice.
Atherosclerotic mice showed higher plasma choles-

terol and triglyceride levels than WT mice, corroborat-
ing recent findings [6, 7, 10]. The chronic administration
of sildenafil did not change the plasma lipid profile in
atherosclerotic animals, which is in agreement to previ-
ous results [6, 7, 10].
Oxidative stress has been implicated as a causative fac-

tor in cardiovascular diseases [18]. During atheroscler-
otic plaque development, cells accumulate high levels of
ROS, which play an important role in disease initiation
and progression [1–3]. Excess of ROS can trigger toxic
effects by damaging biomolecules, which leads to cell
death [7, 8, 12, 16]. In the present study, superoxide

anion and hydrogen peroxide levels were augmented in
bone marrow cells from apoE−/− mice. These findings
are in agreement with Tonini et al. [8], likely due to the
hyperactivation of ROS-producing enzymes and the de-
creased activity of ROS-scavenger enzymes [19–23]. In
addition, we demonstrated, for the first time, that
chronic treatment with sildenafil was able to restore
ROS production to a baseline level in bone marrow cells
from apoE−/− mice. It is known that sildenafil regulates
NO/cGMP signaling, which has been implicated in the
pathogenesis of atherosclerosis [6, 10]. Taken together,
these data show that sildenafil reduces ROS production,
without modifying the lipid profile of apoE−/− mice.
ROS are well-known genotoxins that have been associated

with DNA damage in cardiovascular diseases [8, 9, 12, 15].
It has been postulated that atherosclerosis leads to oxidative
stress and could, indirectly, cause genomic instability, as

Fig. 1 Number of bone marrow cells counted in WT, apoE−/− and Sil mice using a Neubauer chamber. The values are the means ± SEM. *p < 0.05
vs. WT group; #p < 0.05 vs. apoE−/− group (one-way ANOVA)

Fig. 2 Levels of ROS in bone marrow cells using dihydroethidium (DHE) and dichlorofluorescein diacetate (DCF) to detect intracellular superoxide
anion (a) and hydrogen peroxide (b), respectively, in WT, apoE−/− and Sil mice. The values are the means ± SEM. *p < 0.05 vs. WT group; #p < 0.05
vs. apoE−/− group (one-way ANOVA)
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excessive ROS lead to double-strand DNA breaks [7, 8]. The
micronucleus test is a simple and quick technique com-
monly used for the detection of genotoxicity and cytotox-
icity induced by chemical substances [24]. However, in the
present study, we used the micronucleus test to investigate
the mutagenic effects of hypercholesterolemia in bone mar-
row cells from atherosclerotic mice. The micronuclei are
formed during anaphase due to a mismatch repair of
double-strand breaks, which is the most common form of
oxidative damage to DNA [25, 26]. We demonstrate a

concurrent increase in ROS production and in MNPCE fre-
quency in apoE−/− mice compared with WT animals. Taken
together, these data suggest that atherosclerosis is potentially
genotoxic. On the other hand, the animals chronically
treated with sildenafil exhibit MNPCE close to control
levels, suggesting that sildenafil could be an anti-mutagenic
drug due to its antioxidative activity. In addition, apoE−/−

mice showed higher cytotoxicity, evaluated by the ratio of
PCE/NCE, compared with WT mice, suggesting that hyper-
cholesterolemia presents cytotoxic action in bone marrow

Fig. 3 Effects of sildenafil treatment on cell cycle distribution in bone marrow cells from WT, apoE−/− and Sil mice. The cell cycle distribution was
monitored via PI staining and flow cytometric analysis. Statistical analysis of the percentage of cells in sub-G0-phase (a), G0/G1-phase (b), S-phase
(c) and G2/M-phase (d). The values are the means ± SEM. *p < 0.05 vs. WT group; #p < 0.05 vs. apoE−/− group (one-way ANOVA)

Fig. 4 Evaluation of cytotoxicity and genotoxicity. a Typical photomicrographs of polychromatic (a; PCE) and normochromatic (b; NCE)
erythrocytes, and micronucleated PCE (c; MNPCE) in bone marrow. b Table showing the effects of sildenafil treatment on the bone marrow of
apoE−/− mice based on MNPCE and PCE/NCE frequency. The values are the means ± SEM (n = 7 per group). *p < 0.05 vs. WT. #p < 0.05 vs. apoE−/−

(one-way ANOVA). Scale bar: 10 μm
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cells of atherosclerotic mice and sildenafil treatment com-
pletely abolishes this toxicity. The results of the micronu-
cleus test suggest that chronic administration of sildenafil
has anti-genotoxic, anti-cytotoxic and, consequently, anti-
mutagenic effects due to its antioxidant activity in the bone
marrow cells of atherosclerotic mice.
It is well known that elevated ROS levels alter cell cycle

progression [27–32]. In the present study, we have found
that oxidative stress change cell cycling in the bone mar-
row cells of atherosclerotic mice, as the bone marrow cells
in apoE−/− mice were less proliferative than in WT mice
(more cells in G0/G1 phase, and less in S phase), suggest-
ing that hypercholesterolemia induces a G0/G1 arrest in
bone marrow cells. In addition, the percentage of bone
marrow cells in S phase decreased in apoE−/− mice and
this was accompanied by a simultaneous increase in per-
centage of cells in G0/G1 phase, suggesting an inhibition
in the progression of G1 to S phase.
The cells arrested in G0/G1 phase may die or they may

be repaired and re-enter into the next phase of the cell
cycle [33–36]. We observed more cells in the sub-G0

phase, due to DNA fragmentation, suggesting an increase
in apoptosis in atherosclerotic mice [7, 8]. Interestingly,
sildenafil treatment rescued cells from G0/G1 growth ar-
rest and decreased DNA fragmentation [7], restoring the
normal cell cycle distribution and protecting cells from
undergoing apoptosis. Mammalian cells are subject to
cycle checkpoints that allow DNA damage repair by slow-
ing or arresting cell cycle progression, thereby preventing
the transmission of damaged chromosomes [36–38]. We
therefore suspect that the G0/G1 arrest observed in our
apoE−/− mice may be triggered by oxidative-DNA damage,
which was prevented by sildenafil treatment.
To our knowledge, we are the first to use flow cytome-

try to show that chronic sildenafil treatment by oral gav-
age, in addition to its vasoactivity, indirectly prevents
damage to bone marrow cells by reducing ROS produc-
tion and genomic instability which, consequently, pre-
serves cell cycle kinetics in different cell types from
atherosclerotic and hypertensive mice [7, 10, 12–14].
Considering that the bone marrow is the primary stem
cell source in adults and that autologous transplantation
is the preferred therapy in clinical applications, our data
provide insights into therapeutic potential of bone mar-
row stem cells from patients with cardiovascular disease.

Conclusions
In conclusion, our data reveal that the excessive produc-
tion of ROS in atherosclerotic mice overcome the DNA
repair pathways in bone marrow cells. The novelty of the
present study is that the administration of sildenafil re-
duced ROS to baseline levels and, consequently, reverted
the DNA damage and its outcomes in bone marrow cells.
Of note, there is a lot of efforts to discover a promising

pharmacologic strategy to avoid tissue damage induced by
oxidative stress. Therefore, further studies are needed to
clear the mechanisms by which sildenafil acts as an anti-
oxidant and anti-genotoxic drug.
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