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Hypertriglyceridemia and atherosclerosis
Jia Peng, Fei Luo, Guiyun Ruan, Ran Peng and Xiangping Li*

Abstract

Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death and it has been confirmed that increased
low density lipoprotein cholesterol (LDL-C) is an independent risk factor for atherosclerosis. Recently, the increasing
evidence has showed that hypertriglyceridemia is associated with incremental ASCVD risk. But the proatherogenic
mechanism of triglyceride (TG) remains unclear. Therefore, this article focuses on the clinical studies and
proatherogenic mechanism related to hypertriglyceridemia, in order to provide reference for the prevention
and treatment of ASCVD.
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Background
Morbidity and mortality rates from ASCVD continue to
be extremely high in the world. Hypercholesterolemia is
known to be a major ASCVD risk factor and the LDL-C
lowering therapy has attracted extensive attention which
has become a cornerstone of primary and secondary pre-
vention in ASCVD. However, the substantial residual risk
of ASCVD often remains after adjustment for the certain
risk factors such as LDL-C [1] or intensive LDL-C lower-
ing with statins and other optimal therapies [2]. The Re-
sidual Risk Reduction Initiative (R3i) has previously
highlighted atherogenic dyslipidaemia, defined as the im-
balance between proatherogenic triglyceride-rich apolipo-
protein B-containing-lipoproteins and anti-atherogenic
apolipoprotein A1-lipoproteins (as in high density lipopro-
tein, HDL), as an important modifiable contributor to
lipid-related residual cardiovascular risk [3]. Recently,
evidences are accumulating to suggest that hypertri-
glyceridemia is causally associated with increased athe-
rosclerosis risk [4–7]. This article will review relevant
literature regarding the association between hypertri-
glyceridemia and atherosclerosis including clinical studies
and the researches of proatherogenic mechanism.

TG/TRLs and its atherogenic effects
TG and TRLs
On account of the hydrophobic nature of TG, it must
combine with associated proteins into lipoprotein particles
that allow it to transport in the plasma [5]. TG is major
component of triglyceride-rich lipoproteins (TRLs) which
include chylomicrons (CM), very low density lipoprotein
(VLDL) and their remnants created during metabolism of
TG [5, 8].
Chylomicrons which are large apolipoprotein B48

(apoB48)-containing lipoproteins with a large TG core
(80%–95%) [9], which are synthesized via enterocytes ab-
sorbing TGs from dietary fat and promoting the apoB48
[9] and enter the systemic circulation through the lymph-
atic system where they acquire apoC2, apoC3 and apoE.
VLDL particles incorporate the apolipoprtein B100

(apoB100) and the core of TG that are synthesized in
hepatocytes from fatty acids and glycerol [10], and se-
crete into systemic circulation where they provide a
source for energy for peripheral tissues. During the
process of secretion, VLDL particles combine with
apoC1, apoC2, apoC3 and apoE. Once in circulation,
CM and VLDL can be hydrolyzed by lipoprotein lipase
(LPL) along the luminal surface of capillaries, generating
the production of free fatty acids and chylomicron rem-
nants, and in succession progressively smaller VLDLs and
intermediate density lipoproteins (IDLs), respectively [10].
LPL is the key enzyme for the metabolism of TRLs,

bound to glycosylphatidylinositol high density lipopro-
tein binding protein 1 (GPIHBP1) which provides the
platform to allow lipolysis to occur at the endothelial cell
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surface [11] and is synthesized by the capillary endothe-
lial cells [12]. Remnants are generated when CM and
VLDL particles are catabolized during TG hydrolysis by
LPL and are concomitantly enriched in cholesterol esters
by the action of the cholesterol ester transfer protein
(CETP) [13].
And, microsomal triglyceride transfer protein (MTP)

transfers TG from the cytosol to endoplasmic reticulum
containing nascent apoB during the assembly of CM and
VLDL in enterocytes and hepatocytes, respectively [14].
The reduction of MTP expression or after taking the
MTP inhibitor can eliminate and inhibit its function,
therefore reducing the biosynthesis and plasma level of
both chylomicrons and VLDL, and consequently de-
creasing plasma levels of LDL and TG [15].

Atherogenic effects of TRLs
A recent study has indicated that lipoproteins in the cir-
culation normally flux into and out of the arterial wall
by transcytosis by which lipoproteins can be transported
across the endothelium [16]. Furthermore, the transcyto-
tic transport system is restricted to lipoproteins smaller
than approximately 70 nm in diameter, thereby exclud-
ing CM and larger VLDL particles [17]. However, their
remnants can infiltrate into sub-endothelial space. In
contrast to LDL, TRL remnants carry more cholesterol
per particles than LDL, due to their larger size [18]. And
each remnant particle contains approximately 40 times
more cholesterol compared with LDL [19]. And, they do
not need to be modified/oxidized to become atherogenic
[20] and be taken up directly by macrophages. As dis-
cussed above, compared with LDL, TRL remnants may
have a stronger atherogenic effect.
It was found that, in human and Watanabe heritable

hyperlipidemic rabbits, apoB48- and apoB100-containing
lipoproteins were detected in aortic intimal lesion impli-
cated to promote atherosclerosis [21, 22]. And, it has
been showed the presence of triglyceride-containing
remnant lipoproteins in human atherosclerotic plaque
[23] strongly indicated that TRLs take part in the devel-
opment and progression of atherosclerotic lesion. Fur-
thermore, it has been evidenced that elevated circulating
levels of triglycerides in the non-fasting state, a marker
for triglyceride (TG)-rich remnant particles, are associ-
ated with increased risk of premature cardiovasculardi-
seases [8, 24].

The evidences of clinical studies
Clinical observational studies and intervention trials
It has been believed that the residual risk of atherosclerosis
after LDL-C lowering therapy is significantly associated
with TRLs. A number of epidemiological or observational
studies showed that fasting or non-fasting hypertriglyc-
eridemia is a causal risk factor of cardiovascular diseases

[6, 7] even in individuals who have already achieved
guideline-recommended LDL-C target levels with lipid-
lowering therapy [25]. The non-fasting triglyceride has
gained more attention and investigation in patients with
cardiovascular heart disease (CVD). Most people eat regu-
larly throughout the day, therefore usually only fasting (de-
fined as at least 8 h since the last meal) for a few hours
before the breakfast, and non-fasting (defined as within 8 h
since the last meal) TG concentrations might be a better
indicator of average lipid concentrations in the blood ra-
ther than fasting concentrations. Moreover, postprandial
elevations of hepatic and intestinal lipoproteins are evident
in T2D patients, despite normal TG levels in the fasting
state [26]. Furthermore, Langsted et al. has found that after
normal food intake, individuals in the general population
have a maximum mean change from fasting levels of
+26 mg/dL for triglycerides at 1 to 4 h after the last meal
[27]. And, the only modest increase in triglyceride levels
during normal food intake, together with the recent dem-
onstration of high predictive ability of non-fasting triglycer-
ides for risk of cardiovascular events, suggest the possibility
that non-fasting rather than fasting triglyceride levels could
be used for cardiovascular risk prediction [27]. Addition-
ally, these studies usually have the participants complete
oral fat load test of 1 g of fat per 1 kg body weight and de-
tect increases in triglycerides of 86.7 to 173.3 mg/dL [28].
However, most studies found that 30 g fat in a meal has no
or very little effect on postprandial lipidemia including tri-
glyceride levels [27]. In spite of this, since 2009, a non-
fasting lipid testing (measured on a random blood sample
irrespective of time since last meal) has become the clinical
standard in Denmark [29], and another several clinical
guidelines (e.g. in the UK, Europe, and Canada) including
non-fasting lipid testing in the primary prevention setting
have been released successively [26]. In 2016, Nordestgaard
et al. supported to recommend flagging of abnormal con-
centrations of non-fasting triglycerides as ≥175 mg/dL, and
this cut-point was optimal for cardiovascular risk predic-
tion [30]. Non-fasting lipid measurement is a simple ap-
proach to assess postprandial lipids, however it does not
allow for a complete functional assessment of postprandial
lipid excursion and potential abnormalities in insulin resist-
ant states [26]. Assessment of lipid parameters at fixed
time points following ingestion of a high-fat meal (i.e. oral
fat tolerance test (OFTT)) is a preferred methodology to
ensure optimal comparability between test subjects. And,
non-fasting lipid responding to fat-containing meals have
been examined in research settings in human subjects for
the past 30 years [31]. Nevertheless, OFTT methodology
remains largely unstandardized. In addition, robust refer-
ence values, which are critical to interpret postprandial pa-
rameters, remain to be confirmed [26]. Thus, more studies
are required to develop standard procedures and further
determine the correlation between non-fasting triglycerides
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and the risk of CVD. In 2014, studies combining the
Copenhagen City Heart Study and the Copenhagen Gen-
eral Population Study with about 100,000 individuals
showed that high concentrations ≥495.6 mg/dL of non-
fasting triglycerides were associated with high risk of
ASCVD and all-cause mortality [20]. In addition, remnant
cholesterol is the cholesterol content of triglyceride-rich li-
poproteins, composed of VLDL and IDL in the fasting
state and of these two lipoproteins together with chylo-
micron remnants in the non-fasting state. Elevated
non-fasting plasma triglyceride is a marker of elevated
non-fasting remnant cholesterol. A well-designed pro-
spective study [24] of a total of 73,513 genotyped sub-
jects from Copenhagen, of whom 11,984 had ischemic
heart disease diagnosed between 1976 and 2010 to test
the hypothesis that elevated non-fasting remnant choles-
terol is a causal risk. In this study, non-fasting remnant
cholesterol was calculated as non-fasting total cholesterol
minus HDL-C minus LDL-C, and remnant cholesterol
can be calculated directly from a standard lipid profile.
Then, they illustrated that a non-fasting remnant choles-
terol increase of 39 mg/dL is associated with a 2.8-fold
causal risk for ischemic heart disease, independent of re-
duced HDL cholesterol. This implied elevated TRLs can
cause CVD because the remnant cholesterol levels directly
correlated with TRLs. Recently, Puri R et al. [32] analyzed
the data from 9 clinical trials involving 4957 patients with
coronary disease undergoing serial intravascular ultrason-
ography to measure coronary atheroma volume and inves-
tigated the relationship between achieved non-HDLC and
TG levels with coronary atheroma progression regression
rates in a large cohort of patients with established coron-
ary disease. It was demonstrated that coronary atheroma
progression overall was more closely tied with changes in
non-HDLC than that in LDL-C and appeared to associate
with TG levels only beyond 200 mg/dL, which supported
a more prominent role for non-HDLC and TG lowering
in combating residual cardiovascular risk.
However, the above observation studies remain some

limitations, one of which is that risk factors typically are
only measured once, therefore the observed association
will only represent a single point estimate and will entail
the problem of regression dilution bias. Another two
major limitations are in the form of potential confound-
ing and reverse causation. The randomized, double-
blind trials by design can overcome the problem of con-
founding simply by the randomization method and avoid
reverse causation to investigating that whether TG-
lowering therapies can decrease the risk of ASCVD. The
classical TG-lowering drugs containing niacin acid,
fibrates and omega-3 fatty acids can effectively decrease
the plasma levels of TG. Early clinical studies showed that
fibrate therapy can decrease the risk of cardiovascular
events, compared with placebo group [33]. Besides, during

the FIELD study [34], a multinational, randomized con-
trolled trial (RCT) with 9795 participants, some partici-
pants started other lipid-lowing therapy (statin), due to
the findings of HPS trial [35]. And, the study showed that
fenofibrate did not significantly reduce the risk of the pri-
mary outcome of coronary events (coronary heart disease
death or nonfatal myocardial infarction) and total cardio-
vascular events. Because of the different rate of starting
statin therapy, the higher rate of statin therapy in placebo
group might have masked a moderately larger treatment
benefit. However, it did not meet the standard of design-
ing RCT. And then this question was addressed directly in
the following ACCORD trial. Moreover, in study of niacin
acid, HATS trial [36] suggested that niacin acid plus
simvastatin therapy can reduce coronary atherosclerotic
stenosis progression and significantly decrease the inci-
dence of fatal cardiovascular events, nonfatal myocardial
infarction and cardiac revascularization. Unfortunately,
the results from two large clinical trials of AIM-HIGH
[37] and HPS2-THRIVE [38] indicated that there was no
incremental clinical benefit from the addition of niacin to
statin therapy, and the combination therapy may increase
the risk of side effects. And there were different findings
in studies about the combination therapy with fenofibrate
plus statin. ACCORD trial [39] involving 5518 subjects
who accepted fenofibrate plus simvastatin or single simva-
statin showed that the combination of fenofibrate and
simvastatin did not reduce the rate of primary endpoints
(fatal cardiovascular events, nonfatal myocardial infarc-
tion, or nonfatal stroke) compared with simvastatin
monotherapy (2.2% vs. 2.4%, P = 0.32). But, there was
nonsignificant heterogeneity in a subgroup, comparing
patients who had a triglyceride level in the highest third
(≥ 204 mg/dL) and an HDL-C level in the lowest third
(≤ 34 mg/dL) with all the other patients (P = 0.057 for
interaction). Furthermore, in this subgroup, the primary
outcome rate was 12.4% in the fenofibrate group, versus
17.3% in the placebo group, whereas such rates were
10.1% in both study groups for all other patients, and
they supported that there was a reduction of CVD risk
in patients with elevated TG levels and decreased HDL-
C. But, recent intervention studies and genetic studies
strongly indicated that on a population level low HDL-
C is not causally linked to atherosclerotic events low
HDL-cholesterol and seems to be a good marker of
atherosclerosis but not an appropriate target [40]. In
addition, in 2014, Davidson MH et al. [41] designed
FIRST trial which failed to demonstrate decreased ca-
rotid intima-media thickness progression and risk of
CVD events with fenofibric acid plus atorvastatin com-
pared with statin monotherapy in a higher risk patient
population with hypertriglyceridemia (≥ 150 mg/dL).
Some scholars thought the possible reasons of above
negative results are that trials have excluded individuals
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with triglycerides >396 mg/dL and duration of treat-
ment respectively. Therefore, it still needs more ran-
domized controlled trials to confirm who can benefit
from TG-lowering therapy or which treatment strategy
is safe and effective (Table 1).
According to the above studies or trials, we can get

that the individuals assigned in control or experimental
group, the baseline of TG did not exceed 1000 mg/dL.
And, what is the link between severe hypertriglyc-
eridemia and CVD? It has been found that moderately
elevated plasma triglycerides signalize increased risk for
cardiovascular diseases, and extremely elevated triglycer-
ides (> 1000 mg/dL) signalize increased risk for pancrea-
titis [42]. Additionally, the severe hypertriglyceridemia
mainly contains CM that leads to pancreatitis [43], and
the hydrolysis of CM via LPL results in the production
of free fatty acids and chylomicron remnants which can
contribute to pancreatitis [44]. Whether the severe
hypertriglyceridemia has none of association with ath-
erosclerosis or CVD, it still further investigates the com-
ponents of hypertriglyceridemia and mechanism which
contributes to atherosclerosis.
Another attractive viewpoint is the nutraceuticals,

such as red yeast rice, soybean proteins, plant sterols,
soluble fibres and others, which contains significant
lipid-lowering properties (decreasing level of LDL-C and
TG or increasing level of HDL-C). A relatively large
amount of epidemiological, clinical data and trials sup-
port the tolerability and safety of many nutraceuticals
with demonstrated lipid-lowering action, including in
patients intolerant to statins [45]. Moreover, a number
of nutraceuticals have shown promising effects in terms
of improving the lipid profile and modifying cardiovas-
cular risk [46]. Furthermore, the recent 2016 European
guidelines for dyslipidemia management consider the
possibility to use some lipid-lowering nutraceuticals
[47]. In general, a large number of nutraceuticals have
been tested in available trials, demonstrating their lipid-
lowering effects, and some clinical trials have reported
that many nutraceuticals have an additive effect to lipid-
lowering drugs, allowing the statin doses to be reduced
without diminishing the results in terms of LDL-C and
TG reduction. It is, however, important to emphasize
that nutraceuticals cannot replace lipid-lowering therapy
but may essentially help to optimize it (reducing cardio-
vascular residual risk) [48]. But, it has to be clearly
stressed that there are still no outcome studies proving
that nutraceuticals can prevent CVD morbidity or mor-
tality [48, 49].

Genetic studies and Mendelian randomization studies
In the genetic evidence [50], the fact that monogenic
disorders of TG metabolism, such hyperlipoproteinemia
type 3,edispose individuals to CVD suggested that raised

TG and remnant cholesterol levels contribute to the
process of atherosclerosis [51]. Then, a recent Mendelian
randomization study based on data from 10,208 individ-
uals included in the Copenhagen City Heart Study found
that subjects with genetically confirmed reduction in
non-fasting plasma TG levels had reduced all-cause mor-
tality [4]. Furthermore, Do R et al. [5] approved that the
strength of a variant effect on TG levels strongly corre-
lated with the magnitude of its effects on coronary artery
disease, even after adjustment for effects on LDL-C and
HDL-C through meta-analysis involving 188,578 geno-
typed individuals with 185 different single nucleotide
polymorphisms. Furthermore, Genome-wide association
studies (GWAS) have implicated numerous novel genes
in TG metabolism and coronary atherosclerotic diseases
(CAD) pathogenesis in humans, and the discovery of
rare variants in TG genes and the subsequent associ-
ation of these variants with CAD has strengthened both
mechanistic research and drug discovery relevant to lipi-
demic diseases [52]. Additionally, sequence variants in
several key genes involved in the metabolism of TRLs,
such as those encoding LPL and the proteins regulat-
ing it, appear to be strongly associated with CVD risk
[4, 24]. These results supported that the genes involved in
encoding key components of the TRLs and metabolism of
TRLs are strongly associated with CVD risk.
More recently, several Mendelian randomization

studies has been conducted to evaluate whether factors
involved in TRL metabolism are causally associated with
atherosclerosis and coronary heart disease (CHD), and
provide robust evidence for TG contributing to ASCVD.
Mendelian randomization studies are based on the seg-
regation and independent assortment of specific geno-
types according to the laws of Mendelian genetics. And,
Mendelian randomization studies of human genetics
have many similarities with randomized, double-blind
trials, which are not affected by confounding factors
seen in observational epidemiologic studies and thus ad-
vantages over observational studies in conventional epi-
demiology. Several Mendelian randomization studies
conducted using data from Copenhagen City Heart
Study found that genetic variants in LPL resulted in re-
duced triglyceride levels, and that a higher number of
triglyceride-decreasing LPL alleles was associated with in-
creased survival [4]. Moreover, a Mendelian randomization
meta-analysis was conducted using data from 17 studies
involving 62,199 participants and 12,099 CHD events
which suggested that triglycerides, both the unrestricted al-
lele score based on 67 single-nucleotide polymorphisms
(SNPs) and the restricted allele score based on 27 SNPs
were significantly associated with CHD [53].
Taken together, the genetic data for triglycerides and

TRLs align with the epidemiologic and clinical data, and
support a causative role for these lipids in ASCVD.
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Nevertheless, we still need evidences from randomized
intervention trials showing that lowering of TG and
remnant cholesterol can reduce the major adverse cardio-
vascular events. Fortunately, such studies have already
started: in individuals already receiving a statin, add-on
placebo-controlled, triglyceride-lowering omega-3 fatty
acids therapy to reduce residual risk is currently being
tested in 2 ongoing trials. (REDUCE-IT: NCT01492361,
STRENGTH: NCT02104817). These studies will provide
valuable information on the utility of omega-3 fatty acids
in combination with statin therapy in high-risk patients
with TG levels to guide the prevention and treatment of
ASCVD.

The possible mechanism of TRLs atherogenicity
The mechanism of TRLs atherogenicity has attracted
much attention, but it is still not very clear. The recent
researches supported that TRLs are easy to get deposited
on the wall of artery, which may damage the endothe-
lium and enter into the arterial intima via defect of
endothelium, the location of the atherosclerotic plaque,

and enhance recruitment and attachment of monocytes
to induce generation of foam cell. At the same time,
TRLs take part in the development and progression of
atherosclerosis by stimulating inflammation and regulating
various cytokines (Fig. 1).

TRLs and endothelial dysfunction
The dysfunction of endothelium has been demonstrated
to precede the formation of atherosclerotic lesion and is
one of the first steps involved in the pathophysiology of
atherosclerosis. TRL remnants have been suggested to pro-
mote endothelial dysfunction, which potentiates athero-
genesis [54]. It has been shown that the flow-mediated or
acetylcholine-induced vasodilatation is associated with ni-
tric oxide (NO) released by endothelium, which is one of
sensitive index of endothelium-dependent vasodilation.
Clinical studies found that the postprandial rapid rise in
serum TG levels after a high-fat meal was significantly re-
lated to endothelial dysfunction via evaluating the impair-
ment in flow-mediated vasodilatation [55]. It has also been
shown that the remnant lipoprotein contributes to the

Fig. 1 The possible mechanisms of TRLs in the process of the onset and progression of atherosclerosis. TRLs and its lypolitic products hydrolysed
by LPL and CETP, containing TRL remnants (TRL-R), sd-LDL, HDL3 (HDL remodeling), oxidized free fatty acids (ox-FFA) and others, can increase the
production of reactive oxygen species (ROS) and decrease nitric oxide (NO) released by endothelium and upregulate the endothelial expression
of some molecules (ICAM-1, VCAM-1 and NLRP-1), which promote endothelial dysfunction. And, TRLs and its products penetrate in intima and in-
duce inflammation contributing to monocyte activation, adhesion and migration. Meanwhile, the endometrial leukocytes can take up TG or chol-
esterol contents of TRL-R to form the foam cells, and then develop into core of atherosclerotic plaque. Additionally, a number of cytokines
(containing TNF-α, IL-1β and others) and T cells take part in process of atherosclerosis and the whole process of atherosclerosis involves in platelet
activation and aggregation to induce a procoagulant state and clot formation, in hypertriglyceridemia. Abbreviations: LPL lipoprotein lipase
CETP cholesterol ester transporter proteinTRL triglyceride-rich lipoproteins TRL-R triglyceride-rich lipoprotein remnants sdLDL small and dense
LDL HDL high-density lipoprotein ICAM-1 intercelluar adhesion molecule-1 VCAM-1 vascular cell adhesion molecule-1 NLRP-1 nucleotide-binding
domain-like receptor family pyrin domain-containing protein 1 TNF-α tumor necrosis factor-α IL-1β interleukin-1 β
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impairment of endothelium-dependent vasomotor func-
tion in human coronary arteries [56]. In 2016, Lucero D et
al. [57] analyzed the effect of circulating isolated TRLs
from subjects on endothelial function in 40 patients with
metabolic syndrome by means of the in vitro assay
from which dose-response curves, and highlighted that
the strong tendency to a positive correlation between
triglyceride content in TRLs and the grade of inhib-
ition of acetylcholine-mediated vasorelaxation exerted
by TRLs. Almost at the same time, another study [58]
involving in 4887 subjects who were enrolled in the
flow-mediated vasodilation (FMD)-Japan registry was
designed to investigate cross-sectional associations be-
tween serum triglyceride levels and endothelial func-
tion assessed by measurement of FMD of brachial
artery. Then they found that, serum triglyceride levels
of more than 98.4 mg/dL were independently associ-
ated with the low quartile of FMD (less than 3.9%)
after adjustment for age, sex, and cardiovascular risk
factors, including HDL-C which suggested that triglyc-
erides are an independent predictor of endothelial
function.
The similar results were also observed in animal ex-

periments. Matsumoto S et al. [59] used the postpran-
dial hypertriglyceridemic rabbits (PHT rabbits) as a
new dyslipidemic model showing remarkably high
levels of serum TG after feeding standard rabbit chow
with little increase in serum cholesterol and healthy
Japanese white rabbits (JW rabbits) as control group,
investigating the link between postprandial elevated
TG levels and endothelial dysfunction in the develop-
ment of atherosclerosis [59]. They found that JW rab-
bits (12-month-old, 35-month-old) did not show
atherosclerotic lesion, while hypertriglyceridemic rab-
bits (12-month-old PHT rabbits) showed significant
intimal thickening in aorta. In this study, it was
showed that the endothelial function in PHT rabbits
was diminished by the acetylcholine-induced vascular
relaxation, which is probably due to the decreased
production of NO. The results demonstrated that
hypertriglyceridemia can damage endothelial function
and take part in the process of the onset and progres-
sion of atherosclerosis.
In addition, it has been established that TRL remnants

can increase the production of reactive oxygen species
(ROS), which may increase vascular endothelial perme-
ability, and that high concentration ROS can cause cellu-
lar injury and death, in particular the endothelial cells
[60]. Remnant-like lipoprotein particles may impair
endothelial function by direct and indirect effects on ni-
tric oxide synthase [61]. The imbalance of reactive ROS
and nitric oxide may promote endothelial dysfunction,
and lead to cardiovascular complication [62], particu-
larly, in hypertriglyceridemia [63].

Finally, TRLs may suppress the atheroprotective and
anti-inflammatory effects of HDL [64], which have been
shown to significantly correlate with impairment of
endothelium-dependent coronary vasodilation.

TRLs and foam cells
It has been proved that activated macrophages, which
incorporate oxidized/ modified lipoproteins and trans-
form into lipid-rich foam cells, are abundant in the ath-
erosclerotic lesions [65]. Triglyceride accumulation in
macrophages, which is related to macrophage oxidative
stress, was shown to further increase the mitochondrial
generation of reactive oxygen species, promoting foam
cell formation [66]. Moreover, VLDL particles from pa-
tients with hypertriglyceridemia are rich in apoE, which
can lead to a conformational change in the VLDL parti-
cles that facilitate binding to the macrophage scavenger
receptor. CM remnants and IDL are also small enough
to enter the subendothelial space where they are taken
up in an unregulated fashion by scavenger receptors on
macrophages, leading to foam cell formation [15]. The
lipoprotein particles such as oxygenized LDL (oxLDL)
and TRLs bind to the scavenger receptor on macro-
phages and unregulated uptake of the modified lipopro-
tein particle causes macrophage accumulation of lipids,
which is the formation process of a foamy cytoplasm
and term foam cells [15]. Furthermore, it has been found
that CM remnants contribute to atherosclerosis by mi-
grating to the subendothelial space, where they induce
leukocyte activation and promote foam cell formation
similar to oxLDL [67], and induce monocyte activation
and enhance monocyte and postprandial neutrophils mi-
gration [68].

TRLs and inflammation
A number of the available literature has consistently in-
dicated inflammation to be an essential risk factor for
the onset and progression of atherosclerosis. The accu-
mulation of postprandial TRLs led to the retention of
remnants particles in the arterial wall [17] and
stimulated an inflammatory response and oxidative stress
[17, 69]. It has been discovered that TRLs participate in
the inflammation via direct and indirect ways. A high con-
centration of lipolytic products from LPL-mediated TRLs
hydrolysis, such as oxidized free fatty acids, along with
TRLs themselves, are deemed to activate a number of
proinflammation and proapoptotic signaling pathways
that play a fundamental role in the pathogenesis of athero-
sclerosis [18]. Multiple studies have suggested that the ox-
idized free fatty acids can increase the expression of
inflammatory interleukins and cytokines, leading to endo-
thelial inflammation [60, 69, 70] while TRL remnants have
been shown to upregulate the endothelial expression of
intercelluar adhesion molecule-1 (ICAM-1) and vascular
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cell adhesion molecule-1 (VCAM-1), facilitating the trans-
endothelial migration of leukocytes to sites of inflamma-
tion and enhancing inflammatory response [71]. Recently,
Bleda S et al. [72] attempted to observe the nucleotide-
binding domain-like receptor family pyrin domain-
containing protein 1 (NLRP1) inflammasome gene ex-
pression in human arterial endothelial cells (HAECs)
exposed to plasma with the elevated levels of TG and
VLDL-C. They found that TG and VLDL contribute
to plaque rupture and arterial inflammation through
various mechanisms, one of which is NLRP1 inflam-
masome pathway, and the NLRP1 inflammasome acti-
vation triggered by TG and VLDL-C may represent a
significant source of inflammation in endothelial cells.
TRLs can also impact HDL levels and its particle size.

At the setting of the higher TG levels, the greater ex-
change between TG of apoB-containing lipoproteins and
cholesterol ester (CE) of HDL via CETP results in the
TG-rich and CE-poor HDL particles which can be catab-
olized faster and more rapidly than large and CE-rich
HDL, and the process brings the consequence with
lower levels of HDL-C. And, a recent study also revealed
that high postprandial triglyceridemia induced a shift of
HDL size towards large particles, and cholesterol deple-
tion with TG enrichment of HDL3 subclasses [73]. The
change of HDL structure is related with their antioxi-
dant capacity that may be affected by HDL remodeling
[74]. In addition, the current view maintains that distinct
HDL particle subpopulations composed of unique clus-
ters of specific HDL associated proteins perform specific
biological functions, especially paraoxonase 1(PON1), an
athero-protective protein, which show improved anti-
oxidative, anti-inflammatory and lipid cargo carrying
functions [75]. Whether the TG-rich and CE-poor HDL
particles contain different content of PON1 or the
change of PON1 activity, by which contribute to athero-
sclerosis. However, a study found that PON-1 activity
did not decrease and significantly increase along the
postprandial stage [73]. And, the further studies will un-
doubtedly need to be conducted to investigate the roll of
such structural modifications (other components or pro-
teins, i.e. apo AI or myeloperoxidase and platelet-activating
factor acetylhydrolase,) on other HDL anti-atherogenic
functions as a result of sustained postprandial lipemia and
the mechanism TG enrichment of HDL3 subclasses
contribute to atherosclerosis. It has been discovered
that HDL carries apoB-bound sphingosine-1-phosphate
(S1P), a lipid mediator with anti-inflammatory proper-
ties, which promotes the development of inflammatory
T helper 1 cells while suppressing differentiation of
Treg cells [76]. Thus, the higher TG levels can alter
HDL concentration and size into the lower level of
large TG-rich HDL which cannot participate in the
process of anti-inflammation via T regulatory cells; on

the contrary, these can contribute to inflammation via
proinflammatory T cells [77].
In another side, mild-moderate hypertriglyceridemia

(TG levels between 200 and 800 mg/dL) are associated
with low levels of HDL-C, small and dense LDL (sd-
LDL) particles, atherogenic TG-rich remnants [78]. And,
sd-LDL is generated during the delipidation process by
hepatic lipase (HL) from VLDL1 (TG-rich lipoprotein)
to IDL and LDL particles and a number of clinical stud-
ies strongly suggest that a predominance of sd-LDL is
associated with CVD risk, in hypertriglyceridemia [79]
[80]. The possible mechanisms have been proposed for
the atherogenic potency of sd-LDL [80]. Because of the
small size and a lower affinity for LDL receptors than
LDL, sd-LDL particles penetrate easily into the arterial
wall and cannot be easily cleared from plasma, respect-
ively. Together with, sd-LDL has a high affinity for pro-
teoglycans in the arterial wall, which results in a
prolonged residence time in the subendothelial space
where it can contribute to the lipid storage and athero-
sclerosis plaque development. Moreover, sd-LDL particles
contain less anti-oxidative vitamins (vitamin E) and are
therefore more susceptible to oxidation than larger forms
of lipoproteins. Lastly, the other possible mechanisms
should be further study, for example, sd-LDL may induce
the stimulation of plasminogen-activator-inhibitor 1 and
accelerate thromboxane A2 synthesis [80].
Additionally, it has also been shown TRLs or TRL

remnants can induce early monocyte and neutrophil ac-
tivation resulting in inflammation [81, 82].

TRLs and regulation of cytokines
A number of cytokines are involved in the onset and
progression of atherosclerosis. TRL remnants have been
shown to induce endothelial cell apoptosis via increased
secretion of the proapoptotic cytokines, tumor necrosis
factor-α (TNF-α), and interleukin-1 β (IL-1β), a process
which can contribute to vascular injury and atheroscler-
osis [83]. It has been demonstrated that TNF-α has a
substantial effect on endothelial cell dysfunction and is
one of the most important molecules in cellular inflam-
mation, regulating the expression of nitric oxide syn-
thase (NOS) and thereby influencing the production of
NO which is involved in endothelial dysfunction [84].
Studies have also suggested that TNF-α concentrations
are positively associated with VLDL-C concentrations
[84], which also can be found in the PTH rabbits [59]. A
recent study has showed TNF-α overexpression increased
expression of JAM-1, which promoted the chemotaxis
and exudation of cells to cause atherosclerosis [85].
It is known that adipocytes can produce adipocyto-

kines such as adiponectin with anti-atherogenic and
anti-inflammation effects and leptin with lipolytic and
appetite suppressing effects [86]. Moreover, a recent
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study has reported that there was a low adiponectin
levels and the adiponectin mRNA was downregulated in
PTH rabbits [59].
It has also been found that TRLs and their remnants

can induce a procoagulant state, enhance platelet aggre-
gation and clot formation, and amplify the coagulation
cascade by following two ways: First, increasing the
levels of fibrinogen, factors VII and XII; Second, upregu-
lating the expression of plasminogen activator inhibitor-
1 and plasminogen activator inhibitor-1 antigen [87].
In brief, a large number of studies have shown that

hypertriglyceridemia contributes to the development
and progression of atherosclerosis. The proathero-
genic mechanism of TRLs seems rather complicated
and needs to be further explored. Based on current
knowledge and the evidence of clinical studies, con-
trolling and lowering plasm TG levels is one of the
important measures to further reduce the residual risk
of CVD events in ASCVD patients or at high risk for
ASCVD after achieving guideline-recommended LDL-
C target levels. We also expect more clinical trials de-
signed to support above view.
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