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Abstract

Background: Several mutations in leucine rich repeat kinase 2 (LRRK2) gene have been associated with pathogenesis of
Parkinson’s disease (PD), a neurodegenerative disorder marked by resting tremors, and rigidity, leading to Postural
instability. It has been revealed that mutations that lead to an increase of kinase activity of LRRK2 protein are significantly
associated with PD pathogenesis. Recent studies have shown that some Rab GTPases, especially Rab8, serve as substrates
of LRRK2 and undergo phosphorylation in its switch II domain upon interaction. Current study was performed in order to
find out the effects of the phosphorylation of Rab8 and its mutants on lipid metabolism and lipid droplets growth.

Methods: The phosphorylation status of Rab8a was checked by phos-tag gel. Point mutant construct were generated
to investigate the function of Rab8a. 3T3L1 cells were transfected with indicated plasmids and the lipid droplets were
stained with Bodipy. Fluorescent microscopy experiments were performed to examine the sizes of lipid droplets. The
interactions between Rab8a and Optineurin were determined by immunoprecipitation and western blot.

Results: Our assays demonstrated that Rab8a was phosphorylated by mutated LRRK2 that exhibits high kinase activity.
Phosphorylation of Rab8a on amino acid residue T72 promoted the formation of large lipid droplets. T72D mutant of
Rab8a had higher activity to promote the formation of large lipid droplets compared with wild type Rab8a, with increase
in average diameter of lipid droplets from 2.10 μm to 2.46 μm. Moreover, phosphorylation of Rab8a weakened the
interaction with its effector Optineurin.

Conclusions: Y1699C mutated LRRK2 was able to phosphorylate Rab8a and phosphorylation of Rab8a on site 72 plays
important role in the fusion and enlargement of lipid droplets. Taken together, our study suggests an indirect relationship
between enhanced lipid storage capacity and PD pathogenesis.
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Background
Rabs are a group of about 70 eukaryotic proteins located
on different membranes that play important roles in all
stages of vesicle trafficking including budding, motility
and fusion [1, 2]. The most important feature of Rab pro-
teins is that they can switch from inactive GDP-bound
form to active GTP-bound form and recruit unique effec-
tors which play their roles in vesicle trafficking [3]. The
binding of GTP or GDP changes the conformation in Rab
Switch I and Switch II zones which are crucial for main-
taining the specific conformation of Rab proteins. The

switching of Rab GTPases is mediated by four classes of
proteins and the inhibition of Rab pathway results in dis-
eases like immunodeficiency or neurological disorders [4].
Many Rabs can undergo phosphorylation on serine or
threonine residues [5]. Rab5a has been reported to be
phosphorylated by PKC (Protein kinase C) on Thr (threo-
nine)-7 site. Rab5a phosphorylation is functionally neces-
sary for Rac1 activation, actin rearrangement and T-cell
motility [6]. Rab24 can undergo tyrosine phosphorylation
and this modification may influence Rab24 targeting and
interactions with effector protein complexes [7].
Rab8 has shown to play important roles in membrane

trafficking. It plays irreplaceable roles in multiple biological
processes including cellular morphology, cell polarity, cell
movement, neural differentiation and ciliogenesis [8].
Knocking down of Rab8 or its effector Optineurin results
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in the inhibition of transportation of transferrin protein
from membrane to intracellular part while transferrin
protein receptor fails to return to ERC (endocytic recycling
compartment) [9, 10]. Furthermore, Rab8 is recruited by
Rab6 onto the vesicles responsible for exocytosis where it
controls exocytosis activity [11, 12]. Rab8 could also regu-
late the fusion between vesicles and cell membrane [13].
LRRK2 (leucine rich repeat kinase 2) has been a hot spot

in the field of neurology as its mutations have been associ-
ated with Parkinson’s disease (PD) [14, 15]. PD is a com-
mon neurodegenerative disease affecting approximately 1%
of the elderly population and is marked by resting tremors,
rigidity, and akinesia [16, 17]. The progression of the dis-
ease results in postural instability. While the causative
mechanisms of PD remain elusive, the findings that more
than twenty mutations on LRRK2 gene are related to PD
have brought LRRK2 into main focus of research [18].
LRRK2 is a large protein consisting of central kinase and
GTPase domains which are surrounded by several protein-
protein interaction regions. PD pathogenic LRRK2 muta-
tions (G2019S, I2020T, R1441C/G/H, Y1699C) are primary
causes for PD pathogenesis. Till now, it remains unclear
how LRRK2 mutations occurring in different functional do-
mains predispose to PD. The most powerful PD-associated
LRRK2 mutation is G2019S, which increases LRRK2 kinase
activity two to three fold [19, 20]. Since LRRK2 is a kinase,
its substrates may have important role in pathogenesis.
Recently, a subset of Rab GTPases has been identified as

key LRRK2 substrates. Through a combination of phos-
phoproteomics and molecular genetics approaches, it has
been proved that several Rab GTPases especially Rab8 can
be phosphorylated by LRRK2 on an evolutionary con-
served residue in switch II domain [21]. Since switch II
domain plays crucial role in maintaining Rab protein con-
formation, the phosphorylation may alter the behavior of
Rab proteins. Considering this, we have tried to find more
evidences about the consequences of the phosphorylation
of Rab8 and have found out an important relationship be-
tween lipid storage and PD pathogenesis.

Methods
Cell culture
Two hundred ninety-three T cells and 3 T3-L1 pre-
adipocytes were cultured in DMEM (Invitrogen, USA)
containing 10% FBS (Invitrogen, USA), 2 mM L-glutam-
ine, 100 U/mL penicillin and 100 μg/ml streptomycin at
37 °C in humidified incubators containing 5% CO2.
Methods for 3T3L1 preadipocytes differentiation and elec-
trotransfection were similar as previously described [22].

Cell transfection
DNA plasmids were transfected into 293 T cells and
3 T3-L1 pre-adipocytes using Lipofectamine 2000 fol-
lowing manufacturer’s instructions (Invitrogen, USA).

Plasmids construction
Human LRRK2 and its mutant (LRRK2 Y1699C) plasmids
were purchased from Addgene (code #17609 and #25364).
Full-length cDNAs encoding mouse Rab8a and Optinurin
were amplified from cDNA of 3 T3-L1 adipocytes. These
cDNAs were subcloned into pCMV5-HA or pCMV5-
FLAG using specific restriction sites. Point mutations of
Rab8a were cloned by a PCR-based site-directed muta-
genesis method (Stratagene, USA). The accuracy of each
plasmid DNAs was tested by sequence analysis.

Western blot
Methods for immunoprecipitation and western blot sam-
ple preparation were same as previously described [22].
Anti-FLAG M2 agarose beads (cat: A2220) were pur-
chased from Sigma. The antibody against Fsp27 was used
as described previously [22]. Antibodies against Actin
(A5441, Sigma), FLAG (mouse source, F1804, sigma),
MYC (sc-40, Santa Cruz), LRRK2 (5559, Cell signaling),
Rab8a (6975, Cell signaling) and HA (sc-7392, Santa Cruz)
were used for western blot analysis. The blots were de-
tected using HRP-conjugated secondary antibodies (GE
Healthcare, UK) and the ECL-Plus system.

Phos-tag gel
Phos-tag acrylamide and MnCl2 were added to a stand-
ard gel solution to the final concentration of 50 mM and
100 mM, respectively. Then gels were polymerized by
ammonium per-sulfate and TEMED. Cell lysates used
for Phos-tag SDS-PAGE were supplemented with MnCl2
at 10 mM to neutralize the effect of EDTA in the lysates.
After running SDS-PAGE, gels were washed 3 times
with transfer buffer containing 10 mM EDTA followed
by a wash with transfer buffer (10 min each). Blotting to
nitrocellulose membranes was carried out by following a
standard protocol. Phos-tag acrylamide was kept at 4 °C
in black tubes blocking out light because Phos-tag acryl-
amide is light-sensitive.

Imaging
Images for analyzing lipid droplets sizes were acquired
under an LSM710 confocal microscope (Carl Zeiss) with
63× oil immersion objective. Images were exported out
in 16-bit TIFF format. Further processing of single im-
ages (e.g., amplifying a certain region) was performed in
Photoshop (CS2; Adobe).

Lipid droplet size analysis
Quantitative analysis of LD size in 3 T3-L1 preadipo-
cytes was performed as described by Sun et al. [23]. For
quantitative analysis of cells containing large LDs, DNA
plasmids were transfected into 3 T3-L1 preadipocytes
using Lipofectamine 2000. Cells were incubated with
200 mM OA complexed with albumin for 15 h before
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they were fixed. The largest LDs’ sizes were measured in
each cell. Approximately 150 cells from three independ-
ent experiments were analyzed. Images were obtained
under an inverted microscope Axiovert.

Statistics
All statistical analyses were performed in GraphPad Prism
Version 5 (GraphPad Software). Significance was estab-
lished using a two-tailed Student’s t-test. Differences were
considered significant at P < 0.05. *** indicated P < 0.001.

Results
Rab8a is phosphorylated by LRRK2
In order to confirm whether Rab8a could be phosphory-
lated by LRRK2, we overexpressed FLAG-tagged Rab8a
(Wild-type form and T72A form. “T” represent threo-
nine and “A” represent alanine) and MYC-tagged LRRK2
(Wild-type form and Y1699C form) in 293 T cells. The
phosphorylation form of Rab8a was detected using
phos-tag gel. As shown in Fig. 1a, Y1699C mutation of
LRRK2, but not wild-type LRRK2, could phosphorylate
Rab8a as indicated by the shift in the band. The T72A
mutant of Rab8a could not be phosphorylated by LRRK2
(Y1699C), indicating that the phosphorylation of Rab8a
by LRRK2 Y1699C exclusively occurs on T72 site. Next,
we wondered whether endogenous Rab8a could be
phosphorylated by LRRK2. We first checked the expres-
sion level of Rab8a and LRRK2 in differentiated
adipocytes. The expression of Rab8a was found to be
higher compared with that in brain. The expression of
LRRK2 was detected in adipocytes, although the expres-
sion level was low compared with that in brain (Fig. 1b).
We transfected LRRK2 (Y1699C) in differentiated
adipocytes. Then we performed immunoprecipitation of
Rab8a using Rab8a antibody, and later ran the phos-tag
gel to check the phosphorylation status of Rab8a. Overex-
pression of LRRK2 in adipocytes could dramatically in-
duce the phosphorylation of endogenous Rab8a (Fig. 1c).

Phosphorylated Rab8a on site 72 promotes lipid droplets
fusion and enlargement
Our previous data has shown that Rab8a plays im-
portant role in Fsp27 mediated lipid droplet fusion
and enlargement [22]. Here, we wanted to investigate the
role of phosphorylated Rab8a on lipid droplet enlarge-
ment. We overexpressed Rab8a (wild-type, T72A), LRRK2
(wild-type, Y1699C) together with Fsp27-Cherry and
relative controls in 3 T3-L1 pre-adipocytes and the lipid
droplets in the cells were stained with Bodipy 493/503.
Overexpression of Rab8a, LRRK2 (Y1699C) could not en-
hance the size of lipid droplets compared with the
controls. However, overexpression of Fsp27 could dramat-
ically induce lipid droplets’ size compared with control
cells. Rab8a could enhance Fsp27’s ability in promoting

lipid droplets enlargement. Co-overexpression of
LRRK2 (Y1699C) and Rab8a resulted in the formation
of enlarged lipid droplets compared with Rab8a over-
expression alone (Fig. 2a-d), with increase in average
diameter of lipid droplets from 2.26 μm to 2.69 μm.
However, co-expression of wild-type LRRK2 with
Rab8a showed no significant impact on the size of
lipid droplets when compared with Rab8a overexpres-
sion alone. The size of lipid droplets in cells overex-
pressing Rab8a (T72A) together with LRRK2
(Y1699C) was similar with the cells overexpressing
Rab8a alone. These data indicate that the phosphoryl-
ation of Rab8a on site 72 plays important role in the
fusion and enlargement of lipid droplets.

a

b c

Fig. 1 Phos-tag analysis of LRRK2 Y1699C mediated Rab8a
phosphorylation. a 293 T cells were transfected with MYC-LRRK2 (Wild
type or Y1699C), and FLAG-Rab8a (WT or T72A mutant). Anti-FLAG M2
beads were used for immunoprecipitation. The immunoprecipitated
products were detected by using antibody against FLAG. Phosphorylation
of overexpressed Rab8a was analysed by a Phos-tag assay (top panel).
Equal levels of expression of FLAG-Rab8a and MYC-LRRK2 were
confirmed by immunoblotting on normal gels using an anti-FLAG
(second panel from the top) and anti-MYC (third panel from the top)
antibodies respectively. Actin was used as a loading control (bottom
panel). L represents light chain. ○ represents phosphorylated Rab8a.
● represents non-phosphorylated Rab8a. Similar results were obtained
in at least two separate experiments. b The expression level of Rab8a
and LRRK2 in adipocytes. c The phosphorylation of endogenous Rab8a
in adipocytes. Differentiated adipocytes were transfected with
LRRK2 (Y1699C)
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T72D/E form of Rab8a promotes the formation of large
lipid droplets
Since point mutation from threonine (T) to aspartic acid
(D) or glutamic acid (E) can mimic phosphorylation, dif-
ferent mutations on the T72 site of Rab8a were gener-
ated (T72A, T72D and T72E). T72A represents the non-
phosphorylated form of Rab8a while T72D/E mimics the
phosphorylated form of Rab8a. We wanted to investigate
the role of above mentioned Rab8a mutants in lipid
droplets enlargement. Overexpression of WT Rab8a

could enhance Fsp27’s ability to promote the formation
of large lipid droplets. Our results showed that overex-
pression of Rab8a (T72D) and Rab8a (T72E) increased
the size of LDs from 2.27 μm to 2.87 μm when
compared with overexpression of Rab8a or Rab8a
(T72A) (Fig. 3). According to our previous findings [22],
the GDP-bound form of Rab8a (T22 N) could signifi-
cantly enhance the formation of large lipid droplets as
compared to wild-type Rab8a. Interestingly, the effects
of T72D and T72E resemble the effect of Rab8a
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Fig. 2 Rab8a phosphorylation promotes lipid droplets enlargement. 3 T3-L1 pre-adipocytes were transfected with MYC-LRRK2 (Wild type or
Y1699C), FLAG-Rab8a (WT or T72A mutant) and Fsp27-Cherry. Oleic acid was added to promote the formation of LDs for 15 h. LDs were labeled
with Bodipy 493/503 (Green). a Expression levels of LRRK2, Rab8a and Fsp27 were detected by western blot. b Co-expression of LRRK2 Y1699C
with FLAG-Rab8a increases the sizes of LDs when over-expressing Fsp27. Scale bars represent 20 μm. c-d Statistical analysis of (b). Significance
was established using a two-tailed Student’s t-test. Differences were considered significant at P < 0.05. ***P < 0.001
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(T22 N), indicating that the phosphorylation of Rab8a on
site 72 may affect the GTP/GDP binding status of Rab8a.
We then introduced T22 N/T72A and T22 N/T72D, two
double mutants of Rab8a. The T22 N/T72A mutant dem-
onstrated effect similar to that of T22 N on the size of
lipid droplets. The T22 N/T72D mutant showed slightly
increased effect in promoting lipid droplets enlargement
when compared with T22 N, with an increase in size of
lipid droplets from 2.84 μm to 3.17 μm.
Next, we investigated whether the phosphorylation of

Rab8a on 72 site affects its GTP/GDP binding status.
Optineurin has been reported to be the effector of Rab8a
which binds to the GTP form but not to the GDP form

of Rab8a [9]. We co-expressed FLAG-Rab8a and its dif-
ferent mutations (containing wild-type, T72A, T72D,
T72E, T22 N, T22 N/T72A, T22 N/T72D) together with
HA-Optineurin, then immunoprecipitated down FLAG-
tagged Rab8a. As shown in Fig. 4, Rab8a-T22 N showed
nearly no interaction with Optineurin compared with
wild-type Rab8a. Interestingly, Rab8a-T72D and Rab8a-
T72E also showed weak interactions with Optineurin
which resembles the Rab8a-T22 N interaction. T22 N/
T72A and T22 N/T72D mutants also lost the binding
with Optineurin. These results show that phosphoryl-
ation of Rab8a weakens its interaction with its effector
Optineurin.
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Fig. 3 Overexpression of mimic phosphorylated Rab8a (Rab8a T72D and Rab8a T72E) increases the size of LDs. 3T3L1 pre-adipocytes were transfected with
FLAG-Rab8a (WT, T72A, T72D, T72E, T22 N, T22 N/T72A, T22 N/T72D) and Fsp27-Cherry. Oleic acid was added to promote the formation of LDs for 15 h.
LDs were labeled with Bodipy 493/503 (Green). a Western blots showing protein levels of FLAG-tagged Rab8a and its mutations. b & c Overexpression of
Rab8a T72D and T72E increases the sizes of LDs under the circumstances of over-expressing Fsp27 while overexpression of wild-type Rab8a or
phosphorylation defective Rab8a (T72A) shows no such effects. Scale bars represent 20 μm. d Statistical analysis of (b). Significance was established
using a two-tailed Student’s t-test. Differences were considered significant at P < 0.05. ***P < 0.001
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Discussion
In this study, we have shown that Rab8a could be phos-
phorylated by Y1699C mutated LRRK2. Previous studies
showed that there had been an increase in enzyme activity
of LRRK2 Y1699C compared with WT LRRK2 [20, 24, 25].
The Rab8a 72 Tyrosine was the only site phosphorylated by
mutated LRRK2. We also found out that T72 phosphoryl-
ation significantly enhanced the lipid storage activity of
Rab8a. Our previous work has already shown that GDP
form of Rab8a (T22 N) has higher activity in promoting
lipid storage [22]. T72D/E mutation stabilizes the GDP
form of Rab8a.
Earlier studies have shown that LRRK2 mutations

(Y1699C, G2019S) which increase the activity of LRRK2
are the most common causes of the inherited form of PD
pathogenesis [26], however, it is still unclear why over-
activation of LRRK2 is harmful and what role it plays in-
side cells. Moreover, LRRK2 knockout models studies
have manifested Rabs as primary substrates of LRRK2 as
LRRK2 knockout rats and mice have shown deformed
lungs and kidneys due to possible defects in the autopha-
gosome pathway regulated by activated Rab proteins [27].
Recent studies have shown that both Rab8a and Rab10 are
the substrates of LRRK2, indicating that LRRK2-Rabs
circuit plays important role in the pathogenesis of PD.
Overexpression of Rab8a, Rab1 and Rab3a proteins allevi-

ate PD through reduced α-synuclein-induced cytotoxicity
[28, 29]. As α-synuclein is a lipid droplet bound protein, its
dysfunction or overexpression can cause PD as well as lipid
droplet formation [30–32]. Some recent studies have
identified the presence of lipid droplets in neurons and in
glia under certain disease conditions which suggest some
association of disrupted lipid-droplet function with

neurodegeneration [33, 34]. The size of LDs reflects lipid
storage capacity and has been linked to the development
of obesity, diabetes, hepatic steatosis and atherosclerosis
[35]. The LRRK2-Rab8a mediated LDs enlargement may
play important role in PD pathogenesis. Other kinases
found mutated in PD pathogenesis, such as PINK1, could
also regulate the phosphorylation of Rab8a at site Serine
111 [36]. Some studies have begun focusing on the role of
lipid metabolism in PD. A recent study has demonstrated
that many sphingolipid, glycerophospholipid and choles-
terol species were found altered in the visual cortex of PD
patients [37, 38]. Here, we have proposed that Rab8a
phosphorylation by LRRK2 alters the ability of lipid stor-
age in PD. Normalization of lipid metabolism may present
a novel route for treatment of some types of PD patients.
Another study has established that change in Rab

homeostasis may contribute towards development of
PD. As LRRK2 is the main regulator of Rab proteins,
overactive LRRK2 results in increased Rab phosphoryl-
ation, altering the balance between cytosolic and
membrane bound Rab, which in turns disturbs intracel-
lular trafficking. In PD-associated LRRK2 mutations, the
membrane-cytosol balance of Rabs is shifted towards the
membrane causing accumulation of inactive Rabs in the
membranes [21]. Moreover, pathogenic LRRK2
mutations outside the kinase domain can also increase
Rab phosphorylation which, according to our study,
would result in the formation of enlarged lipid droplets,
a manifestation of PD pathogenesis.

Conclusion
Our findings have proved that Y1699C mutated LRRK2,
but not wild-type LRRK2, could phosphorylate Rab8a
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and that phosphorylation of Rab8a on site 72 plays im-
portant role in the fusion and enlargement of lipid drop-
let. Furthermore, our results show that phosphorylation
of Rab8a weakens its interaction with its effector
Optineurin. It will be interesting to investigate the direct
role of lipid droplets accumulation with pathogenesis of
PD in order to explore therapeutic interventions against
this disease.
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