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Abstract

Background: It is unanimously recognized that the maternal nutritional status at the pregnancy onset influence
both short-term and long-term health of the mother and offspring. Among several nutrients, LCPUFA, particularly
from the omega-3 family, are of utmost importance. This study was carried out to determine fatty acids profile of
maternal erythrocyte membranes in early pregnancy and to identify potential determinants impacting on this
status.

Methods: A cohort of 122 healthy women with a singleton pregnancy was included. Fatty acids were analyzed
using gas chromatography. Because of the lack of cutoff values, reference ranges were used to determine fatty
acids categories.

Results: Of concern, our data revealed low monounsaturated and long-chain omega-3 fatty acid status in most
participants. More than 75% of Belgian pregnant women exhibited Pal, AO and EPA levels as well as IOM3 values
below the laboratory reference ranges. Higher DHA concentrations and IOM3 values were found among foreign-
nationality participants, non-smokers and physically active women. With regard to dietary factors, omega-3
supplements and diet seem to be complementary since DHA from supplements (but not from diet) and EPA from
diet (but not from supplements) were found to be associated with higher concentrations of DHA and EPA,
respectively.

Conclusions: Our study presents evidence demonstrating that the fatty acid status of most early pregnant women
is far from being optimal based on the admitted general reference values. Clinicians should be advice to carefully
evaluate and improve this status to guarantee the best possible outcome for both the mother and the baby.
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Background
Nutrition before and during pregnancy has a crucial im-
pact on maternal outcomes and fetal growth and devel-
opment. Considerable evidence has accumulated to
show that impaired nutritional environment in early life
exerts long-term health effects, a phenomenon known as
nutritional programming of disease [1, 2].

Fatty acids, especially their more unsaturated deriva-
tives, affect many physiological functions, involving a
wide spectrum of mechanisms of action [3]. Beyond
sources of metabolic and storage energy, polyunsatur-
ated fatty acids (PUFA) confer unique structural and
functional properties to cell membranes, regulate
inter- and intracellular communication as well as gene
expression [4, 5]. Several specific fatty acids regulate
transcription through the peroxisome proliferator-
activated receptors family (PPARs). Of particular
interest, studies revealed a possible role of PPARs in
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placental metabolism, fetal development and pre-
eclampsia [6, 7].
The brain is the second fattiest organ of the body with

over 60% of its structural material, a highly specialized
fat rich in phospholipids and cholesterol [8]. Most of its
development occurs during fetal life. While birth weight
is only 5% of an adult, the newborn brain is about 70%
of an adult size [9]. Long-chain polyunsaturated fatty
acids (LCPUFA) are selectively transferred from the
mother to the fetus and are accumulated in the fetal ner-
vous system as early as the second part of pregnancy. In
particular, docosahexaenoic acid (DHA) is the predom-
inant fatty acid in the brain tissue, particularly in the
synaptic membranes and retina [8, 10]. A large number
of studies have shown that sufficient LCPUFA availabil-
ity during fetal life can positively affect visual and neuro-
developmental outcomes [11–14].
In addition to the best known roles in neural develop-

ment of infants, several studies suggest implications of
PUFA in a number of pregnancy conditions and birth
outcomes: reduction of preterm birth and low birth
weight [15, 16], decreased risk of pre-eclampsia [15, 17,
18] and perinatal depression [19], as well as the primary
prevention of asthma and allergies in early childhood
and childhood [20].
During gestation, fatty acids accumulated in developing

tissues depend on placental transfer which in turn is influ-
enced by maternal diet and metabolism [21]. Maternal
PUFA supply is critical to determining PUFA status of
both the mother and the newborn [22, 23].
The Western pattern diet however suggests that

pregnant women may have difficulties to meet the
fetal PUFA requirements. Several studies examined
the fatty acid status of mothers by analyzing plasma
phospholipid fatty acid content. Focusing mainly on
the PUFA and their longer chain derivatives, they ob-
served a continuous decline of their relative amounts
throughout pregnancy suggesting that mothers may
be unable to meet the fetal demands for these fatty
acids [24, 25]. Subsequent depletion in maternal DHA
stores has been associated with an increased risk of
postpartum depression [26], which can negatively
affect mother-child interaction. Normalization of post-
partum levels is slow. Maternal DHA status seems to
turn to repletion over a period of 6 months to 1 year
after delivery [27]. Another specific focus of scientific
interest is the trans fatty acid (tFA) intake during
pregnancy since these tFA could alter the transplacen-
tal passage of LCPUFA by using the same binding
sites in placental membranes and affect the metabol-
ism of PUFA [28, 29]. Trans fatty acids could prevent
the conversion of linoleic acid (LA) and alpha-
linolenic acid (ALA) to arachidonic acid (AA) and
DHA, respectively [30]. A negative association has

been observed between tFA and plasma LCPUFA in
both the mother at different times of pregnancy [31]
and the newborn [32, 33].
While PUFA composition of plasma phospholipids re-

flects short-term intake of PUFA and is subject to high
biological variability, erythrocyte fatty acid composition
appears to be more appropriate to represent an integra-
tive measure of the fatty acid status over the previous
few months [34–37]. Moreover, it has been suggested
that maternal erythrocyte phospholipids are involved in
the placental transfer of DHA and AA to the fetus [38].
The assessment of the nutritional status of fatty acids

in the first trimester of pregnancy is highly relevant con-
sidering that the onset of neurogenesis occurs early after
conception. Vlaardingerbroek & Hornstra concluded
that neonatal essential fatty acid and LCPUFA status
might be predicted on the basis of essential fatty acid
and LCPUFA concentrations of maternal erythrocyte
phospholipids measured early in pregnancy [39]. All to-
gether, these data suggest that the fatty acid status at the
early stages of pregnancy may have a significant impact
on pregnancy outcomes. To our knowledge, no study
has undertaken a comprehensive evaluation of the ma-
ternal fatty acid status in early pregnancy or an explor-
ation of potential determinants that could influence this
status. This study was designed to address these ques-
tions and draw clinician’s attention to the importance of
these key nutritional parameters.

Methods
Study design and population
This study which took place between February and
August 2016 was initiated from a prospective cohort
study aimed to investigate the relationship between
maternal erythrocyte fatty acids and pregnancy and
birth outcomes. The study protocol was reviewed and
approved by the Ethics Committee of the CHR
Citadelle Hospital of Liège, Belgium (B412201526650).
Women were recruited from the Obstetrics and

Gynecology Department of the CHR Citadelle Hospital,
Liège, Belgium at their first antenatal appointment.
Inclusion criteria were (1) being between the 7th and
18th week of gestation; (2) being free from any chronic
diseases such as hypertension and diabetes; (3) present-
ing with singleton pregnancy. From all eligible subjects,
122 women agreed to participate and signed the in-
formed consent.
Sociodemographic, anthropometric and lifestyle char-

acteristics of participants, including age, nationality, level
education, smoking status and physical activity, were
collected by a self-administered questionnaire. Briefly,
level of education was expressed as low (primary and
lower and upper secondary) and high (non-university
degree and university degree). Body mass index (BMI)
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was calculated as weight (kg) divided by height squared
(m2). Gestational age and parity were obtained from the
medical record. Detailed information on use of omega-3
fatty acid supplements was also collected, including
product name, type of medication, dose, frequency and
duration of use. Daily intake from supplement for EPA
and DHA was calculated by multiplying the daily fre-
quency of use by the nutrient composition per dose. A
food survey was also conducted on a subsample of 29
pregnant women using a previously validated food
frequency questionnaire (FFQ) reporting the con-
sumption frequency and portion size of 167 food
items over the last 3 months [40, 41]. FFQ-estimated
daily intake of each fatty acid was calculated by
multiplying the consumption frequency of each food
item by the specific fatty acid content of selected por-
tions. Fatty acid contents were obtained from the
French ‘SUpplementation en VItamines et Mineraux
AntioXydants’ (SU.VI.MAX) Food Composition Data-
base [42]. Finally, fasting blood samples were taken
on each participant in EDTA-containing tubes, refrig-
erated and brought in an ice batch to a medical ana-
lysis laboratory within 24 h.

Sample preparation and erythrocyte fatty acid analysis
Plasma and erythrocyte were separated by centrifugation
at 3600 rpm for 5 min. The erythrocyte fraction was
washed twice with a normal saline solution and was
stored at − 80 °C until further analysis.
Erythrocyte fatty acids were analyzed by gas-

chromatography after their derivatization to methyl es-
ters (FAME), due to their higher volatility. Fatty acid
methyl esters were obtained in an acid catalyzed reac-
tion, using methanol as derivatization agent and hydro-
chloric acid as catalyst. An exact volume of 40 μl
washed erythrocytes was diluted into 0.4 ml hexane and
0.4 ml methanolic HCl. The solution was placed in an
oven at 95 °C for 2 h. After solution was cooled down at
room temperature, FAME were extracted into 3 ml n-
hexane, 0.8 ml saturated NaHCO3 solution and 1 ml
double-distilled water. The organic phase was com-
pletely evaporated to dryness under vacuum and the
residue was dissolved into 0.5 ml n-hexane. The result-
ing solution was poured into a brown glass flask before
injection through gas chromatograph. FAME were
quantified using an Agilent 7890A gas chromatograph
(Agilent Technologies Inc., USA).
Fifteen fatty acids were measured and expressed as

percentages of total fatty acids. The laboratory reference
values (RV) established on healthy adults were 0.16–0.
40% for myristic acid, 21.2–23.5% for palmitic acid, 13.
4–17.2% for stearic acid, 0.18–0.49% for palmitoleic acid,
0.67–0.96% for cis vaccenic acid, 12.0–14.7% for oleic
acid, 8.49–11.2% for linoleic acid, 0.04–0.09% for

gamma-linolenic acid, 1.28–2.20% for dihomo-gamma-
linolenic acid, 11.0–13.4% for arachidonic acid, 21.9–25.
4% for total n-6 PUFA, 0.08–0.17% for alpha-linolenic
acid, 0.75–2.34% for eicosapentaenoic acid, 5.27–8.87%
for docosahexaenoic acid, ≤ 0.17% for trans vaccenic
acid and ≤ 0.07% for elaidic acid. The omega-3 index as
well as n-6/n-3, AA/EPA and LA/DGLA ratios were de-
termined to describe the functional PUFA status. The
omega-3 index was defined as erythrocyte EPA plus
DHA expressed as weight percentage of total fatty acids
[43]. RV were 7.50–10.0% for omega-3 index, 1.00–4.00
for n-6/n-3, 5.00–10.0 for AA/EPA and ≤ 4.40 for LA/
DGLA.

Statistical analysis
Results were expressed as mean ± standard deviation
(SD) or as median and interquartile range (IQR) for
skewed data. For categorical variables, frequency ta-
bles were used. Pearson correlation, or the Spearman’s
rank correlation, was used to assess the associations
between two quantitative variables. Means between
groups were compared by the Student’s t-test and the
one-way analysis of variance (ANOVA). Chi-square
test was applied to compare proportions of categorical
variables between groups. Results were considered sig-
nificant at the 5% critical level (P < 0.05). All statis-
tical analyses were performed with SAS 9.4 (© SAS
Institute Inc., Cary, NC, USA).

Results
Subjects
The characteristics of the study subjects are described in
Table 1. Women were 28.3 ± 5.6 years old and 62.3% had
a low educational level. There were 68 (55.7%) Belgians,
19 (15.6%) came from North Africa or Middle East, 9 (7.
4%) from Central Africa, 8 (6.6%) from Asia, 7 (5.7%)
from West Africa, 7 (5.7%) from South Europe, 3 (2.5%)
from West Europe and 1 (0.8%) from East Africa. Of the
108 non-smokers, 19 pregnant women reported smoking
in the past. Nine participants stopped smoking due to
their pregnancy. A quarter (24.6%) reported omega-3
fatty acid supplementation with a mean EPA intake of
38.5 ± 88.7 mg per day as well as a mean DHA intake of
184.7 ± 29.1 mg per day. The 29 (23.8%) women who
completed the FFQ were comparable to the others, ex-
cept for physical activity which was higher (44.8% vs. 23.
7%, p = 0.028). Median n-6 and n-3 PUFA intake were,
respectively, 15.3 (11.2–22.0) and 1.72 (1.38–2.01) g/day,
yielding a dietary n-6/n-3 ratio of 8.78 (6.94–10.7).
Median daily intake of EPA and DHA were 120.0 (50.
0–230.0) and 150.0 (60.0–300.0) mg, respectively.
Twelve participants (41.4%) reported eating at least
200 g of fish per week. Median intake of oily fish was
63.0 (7.00–154.0) g/week.
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Maternal erythrocyte fatty acid status
The fatty acid status in maternal erythrocyte phospho-
lipids at early pregnancy is shown in Table 2. The pre-
dominant saturated fatty acid was palmitic acid, with a
mean concentration of 21.8 ± 1.02%. Oleic acid was the
most abundant monounsaturated fatty acid: 11.0 ± 0.
94%. Total n-6 PUFA was four times the total n-3 PUFA,
AA and LA being the predominant PUFA.
For more than 75% of women, levels of palmitoleic

acid, oleic acid and eicosapentaenoic acid fell below
the RV. By contrast, erythrocyte arachidonic acid was
above RV in 95 subjects (77.9%). The omega-3 index
(RV: 7.5–10%) was out of range for 90.1% of the par-
ticipants. Respectively 119 (97.5%) and 105 (86.1%)
pregnant women had high AA/EPA and LA/DGLA
ratios compared to the laboratory reference values.

Pearson correlation coefficients between polyunsat-
urated fatty acids as well as between trans fatty acids
and polyunsaturated fatty acids were included in
Additional file 1: Table S1. Significant and relevant corre-
lations were observed between EPA and DHA (r = 0.70),
EPA and omega-3 index (r = 0.77), as well as between
DHA and omega-3 index (r = 0.99).

Potential determinants of maternal erythrocyte
polyunsaturated fatty acid concentrations
Associations between maternal characteristics and
erythrocyte polyunsaturated fatty acid concentrations are
described in Table 3. Similarly, relations between the
omega-3 index and the three studied ratios are given in
Table 4.
Erythrocyte DHA and omega-3 index were influenced

by many factors. Higher concentrations of DHA were
found among foreign-nationality participants, non-
smokers and physically active women. The same trends
were observed for the omega-3 index. There was no sta-
tistically significant difference between fatty acid levels
of n-3 PUFA supplement users and non-users. But
among supplement users, DHA supplement intake was
positively correlated with EPA and DHA levels and
omega-3 index, and negatively correlated with LA levels
and n-6/n-3 and AA/EPA ratios.
Association between dietary intake of fatty acids and

their erythrocyte phospholipid composition was also in-
vestigated. Significant correlations were observed be-
tween erythrocyte EPA concentration and EPA intake
(rs = 0.47; p = 0.0101) as well as oily fish consumption (rs
= 0.49; p = 0.0064).

Discussion
The current study reports comprehensive fatty acid
composition of maternal erythrocyte in early pregnancy.
Fetal growth and development in this period are the
most active and erythrocyte membrane phospholipids is
a more reliable biomarker medium of fatty acid intake
[44]. To the best of our knowledge, this is the first as-
sessment of fatty acid status over a period of three
months in an urban community of pregnant women in
Belgium. It should be noted though that there were
slightly more foreign-nationality women than in Wal-
loon population (44% vs. 11%) [45] and the number of
subjects with a low educational level was also higher
(62% vs. 54%) than in the NESCaV survey [46].
Since no established cutoff values exist for fatty acid

status in pregnant women, erythrocyte fatty acid concen-
trations were compared to the reference values provided
by the laboratory and to those of the few studies which
reported maternal erythrocyte fatty acid levels early in
the pregnancy [39, 47–49]. Overall, Belgian pregnant
women exhibited similar mean fatty acid concentrations,

Table 1 Maternal characteristics (n = 122)

Variable Summary statisticsa

Age (years) 28.3 ± 5.6

Gestational age (weeks) 10.9 ± 2.6

Parity

Nulliparous 51 (41.8)

Primiparous 41 (33.6)

Multiparous 28 (23.0)

Not know 2 (1.6)

BMI class (kg/m2)

< 25 76 (62.3)

25–30 33 (27.1)

≥ 30 13 (10.7)

Nationality

Belgian 68 (55.7)

Other 54 (44.3)

Level of education

Low 76 (62.3)

High 46 (37.7)

Smoking status

Non-smoker 108 (88.5)

Smoker 14 (11.5)

Physical activity

Yes 35 (28.7)

No 87 (71.3)

n-3 PUFA supplement use

Yes 30 (24.6)

No 92 (75.4)

EPA supplement intake (mg/day) 38.5 ± 88.7

DHA supplement intake (mg/day) 184.7 ± 29.1
aData are presented as mean ± SD or number (%)
EPA eicosapentaenoic acid, DHA docosahexaenoic acid
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except for myristic acid and the three measured MUFA.
Trans vaccenic and elaidic acids composition was not
determined in these four studies. Levels of myristic and
MUFA were found to be lower than in the Scottish,
Dutch and British women. When reference ranges of
SFA and MUFA are used, it is interesting to note that a
majority of pregnant women did not reach the range
values defined for palmitoleic and oleic acids (75% and
89%, respectively). SFA and MUFA have attracted much
less attention as compared to PUFA in the extant litera-
ture. Mennitti et al. have recently reviewed that SFA and
MUFA maternal consumption seems to be related with
adverse (SFA) and beneficial (MUFA) metabolic conse-
quences in the offspring [50]. Two recent studies investi-
gated the relationships between erythrocyte MUFA
during first trimester of pregnancy and birth outcomes.
While one have observed that oleic acid and MUFA

predicted low birthweight [49], the other found no asso-
ciation between MUFA and birth outcome measures
(birth weight, birth length, head circumference and chest
circumference at birth) [51]. It is worth noting that
mean MUFA levels of the second study were similar to
those of our study, in contrast to the first which were
higher. Some studies have explored the impact of
Mediterranean diet, which is low in saturated and
omega-6 fatty acids but high in plant monounsaturated
fat, during pregnancy on health outcomes. Even if more
evidence is still required, the adherence to this eating
pattern has been associated with a lower incidence of
gestational diabetes [52], better fetal size parameters [53,
54], a decreased risk of asthma and atopy in childhood
[55] as well as a decreased risk of spina bifida in the off-
spring [56]. Because of their involvement in health in di-
verse populations [57, 58], the role of SFA and MUFA

Table 2 Maternal FA composition (% of total FA) and FA category defined by the reference values (RV)

Fatty acids (%) Mean ± SD Below RV Within RV Above RV

SFA

Myristic acid C14:0 0.29 ± 0.08 1 (0.8) 110 (90.2) 11 (9.0)

Palmitic acid C16:0 21.8 ± 1.02 27 (22.1) 89 (73.0) 6 (4.9)

Stearic acid C18:0 16.1 ± 0.76 0 (0.0) 114 (93.4) 8 (6.6)

MUFA

Palmitoleic acid C16:1n-7 0.15 ± 0.06 92 (75.4) 30 (24.6) 0 (0.0)

cis vaccenic acid C18:1n-7 0.85 ± 0.11 1 (0.8) 107 (87.7) 14 (11.5)

Oleic acid C18:1n-9 11.0 ± 0.94 109 (89.3) 13 (10.7) 0 (0.0)

n-6 PUFA

Linoleic acid C18:2n-6 8.43 ± 1.13 63 (51.6) 56 (45.9) 3 (2.5)

Gamma-linolenic acid C18:3n-6 0.05 ± 0.01 16 (13.1) 106 (86.9) 0 (0.0)

Dihomo-gamma-linolenic acid C20:3n-6 1.52 ± 0.35 30 (24.6) 85 (69.7) 7 (5.7)

Arachidonic acid C20:4n-6 14.3 ± 1.26 1 (0.8) 26 (21.3) 95 (77.9)

Total n-6 PUFA 24.3 ± 1.51 8 (6.6) 89 (73.0) 25 (20.5)

n-3 PUFA

Alpha-linolenic acid C18:3n-3 0.13 ± 0.05 10 (8.2) 90 (73.8) 22 (18.0)

Eicosapentaenoic acid C20:5n-3 0.51 ± 0.25 106 (86.9) 16 (13.1) 0 (0.0)

Docosahexaenoic acid C22:6n-3 5.27 ± 1.42 67 (54.9) 53 (43.4) 2 (1.6)

Total n-3 PUFA 5.92 ± 1.59 87 (71.3) 35 (28.7) 0 (0.0)

tFA

trans vaccenic acid C18:1n-7 t 0.13 ± 0.03 NA 115 (94.3) 7 (5.7)

Elaidic acid C18:1n-9 t 0.04 ± 0.01 NA 119 (97.5) 3 (2.5)

Omega-3 index 5.79 ± 1.60 108 (88.5) 12 (9.8) 2 (1.6)

n-6/n-3 ratioa 4.44 ± 1.36 0 (0.0) 53 (43.4) 69 (56.6)

AA/EPA ratio 34.5 ± 16.8 0 (0.0) 3 (2.5) 119 (97.5)

LA/DGLA ratio 5.82 ± 1.47 NA 17 (13.9) 105 (86.1)

Fatty acid composition of maternal erythrocyte phospholipids is presented as mean ± SD and maternal erythrocyte fatty acid category as number (%)
SFA saturated fatty acids, MUFA monounsaturated fatty acids, n-6 PUFA omega-6 polyunsaturated fatty acids, n-3 PUFA omega-3 polyunsaturated fatty acids, tFA
trans fatty acids
an-6/n-3 ratio = total n-6 PUFA/total n-3 PUFA
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on both short-term and long-term health of the mother
and offspring should be further investigated.
With regard to PUFA concentrations, another study re-

ported maternal erythrocyte fatty acid composition in first
trimester of pregnancy in Iceland, where community is
characterized by a traditional fish and cod liver oil con-
sumption [59]. Not surprisingly, the mean n-6/n-3 ratio ob-
served in our sample was much higher (more than 1.5
times) than in Icelandic pregnant women. The two families
of PUFA compete for metabolism by desaturation enzymes
and because they may influence the kind of eicosanoids that
will be formed, a balance between them is a critical factor
for health throughout the life cycle [60]. Prostaglandins play
a central role in many processes of initiation and regulation
of parturition including vasodilatation, placental blood flow,
cervical ripening, and onset of labor [15, 61]. Relaxation of
the uterine muscle and improvement of placental blood

flow induced by the preferential formation of anti-
inflammatory and vasodilating eicosanoids would delay the
onset of labor [1]. From the four studies conducted in early
pregnancy, only one study looked at omega-3 index
(erythrocyte EPA +DHA), which was similar to that ob-
served in our study. Consistent with what was obtained for
EPA, a majority (89%) of pregnant women in our study did
not reach 7.5% reference level for omega-3 index. In cardi-
ology, the omega-3 index was proposed as a marker, and
even as a risk factor, for cardiovascular events (e.g. sudden
cardiac death) and a level ≥ 8% was suggested as optimal
[62, 63]. When this threshold was applied to our results,
112 women (91.8%) exhibited a low long-chain omega-3
fatty acid status. With regard to pregnancy and birth out-
comes, omega-3 index has been associated with the risk of
post-partum depression [64] and low birthweight and pre-
term delivery [49, 65]. Additional trials are required to

Table 4 Potential determinants of maternal erythrocyte omega-3 index and n-6/n-3, AA/EPA and LA/DGLA ratios

Variable Index Ratio

IOM3 n-6/n-3 AA/EPA LA/DGLA

Age (years) r = 0.19 r = −0.16 r = − 0.19 r = − 0.29

Gestational age (weeks) r = 0.25 r = − 0.27 r = 0.06 r = − 0.01

Parity

Nulliparous 5.52 ± 1.08 4.50 ± 1.08 37.9 ± 17.7 5.95 ± 1.46

Primiparous 5.89 ± 1.67 4.40 ± 1.41 32.4 ± 16.6 5.97 ± 1.56

Multiparous 5.86 ± 2.00 4.54 ± 1.61 34.8 ± 16.8 5.53 ± 1.38

BMI class (kg/m2)

< 25 5.61 ± 1.45 4.57 ± 1.41 35.3 ± 17.9 5.74 ± 1.47

25–30 6.13 ± 1.99 4.22 ± 1.36 31.7 ± 15.5 5.98 ± 1.47

≥ 30 5.96 ± 1.25 4.21 ± 1.01 36.8 ± 13.1 5.91 ± 1.57

Nationality

Belgian 5.52 ± 1.50 4.59 ± 1.30 31.6 ± 12.1 5.48 ± 1.32

Other 6.12 ± 1.67 4.25 ± 1.43 38.1 ± 20.9 6.26 ± 1.55

Level of education

Low 5.70 ± 1.83 4.63 ± 1.54 37.2 ± 19.5 5.95 ± 1.47

High 5.93 ± 1.14 4.13 ± 0.93 29.9 ± 9.81 5.61 ± 1.46

Smoking status

Non-smoker 5.93 ± 1.61 4.33 ± 1.36 34.6 ± 17.1 5.87 ± 1.49

Smoker 4.68 ± 1.04 5.26 ± 1.15 33.7 ± 14.7 5.42 ± 1.28

Physical activity

Yes 6.39 ± 1.68 3.95 ± 1.15 28.9 ± 12.8 5.89 ± 1.68

No 5.54 ± 1.51 4.64 ± 1.40 36.7 ± 17.8 5.80 ± 1.39

n-3 PUFA supplement use

Yes 6.07 ± 1.51 4.21 ± 1.47 31.4 ± 17.8 5.76 ± 1.33

No 5.69 ± 1.63 4.52 ± 1.33 35.5 ± 16.5 5.84 ± 1.52

EPA supplement intake (mg/day) r = 0.03 r = − 0.01 r = − 0.08 r = − 0.14

DHA supplement intake (mg/day) r = 0.60 r = − 0.70 r = − 0.67 r = − 0.33

Data are presented as mean ± SD or as Pearson correlation coefficient
Bold font indicates P-values less than 0.05
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clarify if this threshold of ≥8% could also ensure optimal
maternal health as well as fetal growth and development.
To the best of our knowledge, no study has reported

erythrocyte AA/EPA and LA/DGLA ratios in pregnant
women. The ratio between EPA and AA was found to be
positively correlated with the ratio of inflammatory ei-
cosanoids [66], which serve important regulatory func-
tions as described above. An imbalance between EPA
and AA was found to be associated with health outcome
as described previously [66–68]. The ratio between LA
and DGLA, was used because a deficit of delta-6-
desaturase activity is accompanied by a decrease in the
conversion of LA to DGLA, resulting in higher LA/
DGLA values [69, 70]. Delta-6 desaturase is widely
regarded as the rate-limiting enzymatic step of this fatty
acid metabolic pathway. A deficit in its activity indicates
that the pregnant women are no longer able to convert
effectively LA and ALA, resulting in a deficiency of their
longer-chain derivatives. Conversion enzymes seems to
be present in the fetus, but their activity appears to be
low [71]. Worryingly, in our study population, only 3%
and 14% women showed AA/EPA and LA/DGLA ratios
in the reference range, respectively. Further studies are
required to extend the application of these ratios to the
area of pregnancy health.
Maternal erythrocyte trans vaccenic and elaidic acids

were measured in other studies but at delivery time [32,
72, 73]. Compared with their results, mean levels ob-
served in our study population were similar for trans
vaccenic acid but much lower (3 and 7 times lower ac-
cording to the study) for elaidic acid. Currently, the ef-
fects of excessive consumption of tFA during pregnancy
have been studied in great part in animals. It appears to
be associated with adverse effects related to fetal and in-
fant growth and development as well as complications in
pregnancy, probably due in part to an alteration in the
bioavailability of LCPUFA [50, 74] and/or a misbalance
in PPARs activation. In humans, Cohen et al. observed
that an excessive intake of 16:1(n-7 t) and 18:2(n-6tc)
during the second trimester of pregnancy was associated
with greater fetal growth, estimated by the birth-weight-
for-gestational-age. The authors suggested that the risk
of overweight and diabetes could thus be increased in
adulthood [75]. Maternal tFA was also associated with
an increased risk of fetal loss and preeclampsia [73, 76].

Correlation between maternal erythrocyte fatty acid
concentrations
As expected, there was a significant positive correlation
between EPA and DHA, and between these 2 fatty acids
and omega-3 index. As reported elsewhere [64], the as-
sociation was stronger between DHA and omega-3 index
than between EPA and omega-3 index. Contrary to pre-
vious studies [30, 31], we did not observe any inverse

association between trans fatty acids and both n-6 (e.g.
AA) and n-3 PUFA (e.g. DHA). However, since different
lipid fractions were used (e.g., plasma FA versus red
blood cell membrane FA) and different individual trans
fatty acids were investigated, comparison is difficult.

Potential determinants of maternal erythrocyte
polyunsaturated fatty acid status
Several maternal characteristics, including gestational
age, socioeconomic status, education, smoking and sup-
plement use, have already been shown to affect fatty acid
levels [63, 77]. In our study, nationality, smoking status,
physical activity and DHA supplement intake were
found to affect several erythrocyte fatty acid species.
One unexpected finding of this study was that higher
DHA concentrations, and consequently higher omega-3
index, were found among pregnant women of foreign-
nationality. Among all studied determinants, only smok-
ing practices were not the same between Belgian and
foreign-nationality participants and could explain the
differences observed in status. In fact, the percentage of
Belgian women was significantly higher in the smoker
group (17.7% vs. 3.7%, p = 0.16). Our results are in line
with previous studies that have suggested that a DHA
supplement intake of 200 mg/day is a suitable dose to
improve erythrocyte DHA concentrations of pregnant
women with a low habitual consumption of fish [78].
Despite the limited number of women who have com-
pleted the FFQ, it is worth noting that dietary EPA in-
take as well as oily fish consumption were found to have
an impact on erythrocyte EPA concentration. These re-
sults support guidelines which emphasize the import-
ance of consuming fish during pregnancy since dietary
intake of EPA would compensate the low EPA intake
from supplement observed in our study. Further re-
search is required to increase understanding of the fac-
tors that are associated with inadequate erythrocyte fatty
acid status. Identification of risk group could help to in-
form and target dietary recommendations for a popula-
tion with specific physiological needs.
Among the strengths of this study, we highlighted the

fact that the recruitment did not induce an overrepre-
sentation of subjects with a high educational level in
contrast to what is usually observed in most studies. All
data were collected by the same trained researcher. All
erythrocyte fatty acid analyses were performed in the
same medical laboratory. However, a number of limita-
tions should be also pointed out. Although this study re-
ported, by far, the most comprehensive data on the FA
status in pregnant women in Belgium, our sample was
not perfectly representative. A larger sample size would
have allowed for logistic regression model associating in-
adequate fatty acid status (defined by reference values)
and maternal characteristics. Because of the lack of
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established and validated cutoff values, we had to use
reference ranges determined from presumably healthy
adult individuals to define fatty acid categories. These
ones could be different in a pregnant population and are
limited by the fact that they do not have an underlying
relation to health status. Reference values have still the
advantage to be specific of laboratory protocol for the
analysis of erythrocyte fatty acids.

Conclusions
In conclusion, this study revealed a striking low mono-
unsaturated and long-chain omega-3 polyunsaturated
fatty acid status in maternal erythrocytes at the first
weeks of pregnancy. LCPUFA deficiencies at an early
time are critical not only because it is a crucial step for
fetal development but also because LCPUFA levels will
continue to decline throughout pregnancy. Cutoff values
are warranted to identify, as soon as possible, pregnant
women who are at increased risk of adverse maternal
and/or fetal health outcomes as a result of either under-
or overexposure to fatty acids and those who are not at
risk of these outcomes. This establishment of such
values will not be easy taking into account the variety of
methods of collection, biological samples and analytical
techniques used to measure fatty acid status. Even if
studies which investigated implications of fatty acid sta-
tus in maternal, fetal and infant health have multiplied
during the last few decades, there is still no consensus
regarding specific recommendations to provide to pa-
tients. Because metabolism of PUFA is competitive, the
evaluation of n-6 and n-3 PUFA should be considered
simultaneously. Data suggest also that tFA may be a
confounding variable in such studies. The influence of
fatty acid on pregnancy outcomes is probably not related
to a single unique fatty acid: it is the global profile that
is at stake. High prevalence of inadequate status for sev-
eral fatty acids in pregnant women, as observed in this
study, could become a public health issue, requiring
public health interventions. Finally, based on the demon-
strated health impact of fatty acids, particularly omega-3
LCPUFA, delivered from the mother to the foetus, we
strongly believe that both clinicians and patients should
be aware of the importance of an optimal fatty acid sta-
tus at the beginning of pregnancy.
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