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Abstract

During the twenty-first century, drug discovery is expanding rapidly and a large number of chemical moieties are
recognized. Many of them are poorly soluble and hence related biopharmaceutical constraints are to be addressed
systematically. Among novel approaches to resolving biopharmaceutical issues, micro- and nano-emulsified systems
serve as the best strategy for delivering both hydrophobic and hydrophilic drugs owing to their greater
solubilization and transportation capabilities. Of late, the unique physical and biopharmaceutical properties of these
liquid isotropic homogenous systems have gained substantive research importance. In addition nano/micro lipid
systems share structural and functional similarity with that of the physiological lipids which offer better tolerance
ability in the body. In this context, this article provides information on the historical emergence of particulate
emulsified systems, importance and rationale of selection of carriers. It also encompasses the physicochemical
principles that are responsible for the elevation of therapeutic outcomes of delivery systems. Detailed and
schematic absorption of these drug delivery systems is explained here. Gastro-intestinal biochemistry necessary in
the understanding of digestion process, lipolytic products formed, micellar structures, enzymes, transporters,
mechanism of cell uptake involved after subsequent oral absorption are also emphasized. In addition, this article
also explains disposition and pharmacokinetic properties of emulsified systems with real-time therapeutic research
outcomes. The influence of biochemical compositions and biopharmaceutical principles on absorption and
disposition patterns of ME/NEs was described in the article for the interest of readers and young researchers.

Keywords: Lipolysis, Lymph, Mucin, OELDS, Solubilization, Transporters, Triglycerides

Background
With the advent of several emerging novel chemical en-
tities, delivery of high molecular weight and poorly soluble
bioactive molecules remains a challenging task. Therapeutic
efficacy of low soluble molecules (BCS Class II and IV) is
generally high and hence the design of oral delivery systems
with improved dissolution and permeability characteristics
cannot be ignored [1] However, poor solubility characters
pose greater inter/intra subject variabilities and dose dis-
proportionalities. Yet, most of the novel strategies still re-
main open for developing versatile oral drug delivery
systems since the route of administration is salient [2, 3].

However, development of stable and acceptable dosage
forms for lipophilic drugs is an ever challenging task for the
researchers.
In times of yore, many attempts were made to deliver

lipophilic/hydrophobic moieties for better therapeutic out-
comes. Of late, Oral Emulsified Lipid Delivery Systems
(OELDS) was instigated with sulphonamide lipid emulsions
[4]. In such systems, incorporation of poorly water-soluble
drugs into the inert core of carriers composed of oils, surfac-
tants, and cosolvents, enables them to solubilize in GI fluids
by forming a colloidal dispersion. Microemulsions, nanoe-
mulsions, Self Microemulsifying/Nano emulsifying Drug
Delivery Systems (SMEDDS/SNEDDS), Solid lipid nanopar-
ticles (SLN’s), Nanoparticulate lipid structures (NLS) are
recognized as frontline approaches in OELDS [5, 6].
Amongst these, particulate micro/nanoemulsified systems
are particularly germane to communication are fundamental
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approaches for revolutionary strategies have gained good re-
search due to their potentials in increasing both lymphatic
and portal circulation [7]. Nevertheless, therapeutic out-
comes of OELDS are affected by particle/droplet size, the
rate of dispersion, emulsification time and precipitation of
drug in GIT. Moreover, dietary edible oils which exhibit typ-
ical food effect on absorption of drugs owing to structural
and functional similarities with that of the physiological
lipids, offer better tolerance.
Based on the potential considerations of ME/NEs as an

appealing substitute, the review was undertaken to
emphasize typical biopharmaceutical aspects of oral ab-
sorption, including enzymes, transporters, and carriers in-
volved therein. Distribution and elimination attributes of
ME/NEs are also discussed here. Although both the emul-
sified particulate systems differ in droplet size, compos-
ition, and physicochemical properties, there is a firm
connection in their in-vivo performance. Therefore, both
the emulsion systems and their subtypes, self-micro/nano
emulsifying drug delivery systems are explicated together.

Micro/Nanoemulsified systems
Findings of Hoar and Schulman in 1940’s have led to the
concept of the microemulsion, which formed a clear
homogenous fluid of milky emulsion with hexanol. Later,
the term microemulsion was coined by Schulman in
1959 based on the droplet size (100–600 nm). Since then
the term has modified and defined, according to, on
many occasions [8].
Micro/nanoemulsions (ME/NEs) share the similarities

in definition, as they are isotropic, homogenous liquid sys-
tems composed of oil, amphiphile and water contents,
very often included with a modifier like cosurfactant or
cosolvent [9] to constitute stability. Unfortunately, these
emulsified lipid systems are used as misnomers on several
occasions but they differ majorly in terms of droplet size.
Nanoemulsions as dispersed oil droplets with 10–100 nm
radii are thermodynamically non-equilibrium and kinetic-
ally stable systems [10]. Microemulsion composed of high
amphiphile concentration (> 20%) offers thermodynamic
stability. The relative size of ME/NEs droplets accounts
for their optical transparency, translucence, and stability
[11]. Owing to sub-micron droplet size, the solubility of
lipophilic drugs is enhanced and fortified with intra-
luminal processing [12]. The release of encapsulated func-
tional components from ME/NEs is potentiated by trigger
mechanisms such as pH, ionic strength, temperature and
presence of enzymes. It is characterized in terms of in-
crease in concentration in the continuous phase or target
location such as the mouth, nose, stomach, or gastrointes-
tinal tract with the function of time [11].
ME/NEs including SMEDDS and SNEDDS are strategic-

ally significant due to the protection of lipophilic drugs
against degradation in GIT, translocation across epithelial

barriers by extending transit time and specified absorptive
pathways. Performance of ME/NEs is typically depended
on the class/type of system and composition [13].

Components and classification of ME/NEs
Oils
Oils as carriers firstly meant for hydrophobic drugs to sink,
long, medium and short chain triglycerides (LCT, MCT,
and SCT) were predominantly used in the preparation of
ME/NEs with the rank order of MCTs>LCTs>SCTs [1].
Type of oil used in the formulation has a great impact on
solubilization, digestion of carrier lipid and drug release
with desired characteristics. Principally, LCTs and MCTs
are converted into free fatty acids by water dispersion dur-
ing digestion. Free fatty acids of MCTs are able to migrate
rapidly into surrounding medium whereas those produced
by LCTs accumulate at the oil-water interface thereby lip-
ase activity is inhibited [1, 11] Semisynthetic MCT’s are su-
perior over natural MCTs as it was proven in Naringenin
nanoemulsions [3, 14]. Combination of LCT’s and MCTs
was also promised with superior emulsifying and dissol-
ution profiles [15]. The success of MEs/NEs is affected by
molecular and lipid characters of MCT and LCTs such as
loading of drug and droplet size, chemical nature, and sta-
bility [16, 17]. As absorption of ME/NEs is governed by
Ostwald ripening principle, significant portal absorption of
crodomol GTCC, an MCT and lymphatic absorption of
corn and canola oils (LCT) were resulted [1, 18].

Amphiphiles
Due to typical structural significance, amphiphiles reduce
the interfacial tension and impart thermodynamic stability
in dispersions. Droplet size of hetero-dispersions is af-
fected by HLB value, type, and concentration of surfactant
[3]. Surfactants with high HLB (12–18) are suitable candi-
dates for ME/NE’s [19], since their ability to form smaller
droplets within the GI lumen that enables the absorption
maxima. In contrast, at higher concentrations, surfactants
hamper the absorption process due to increased apparent
weight on whole [1].
Being nonionic, polysorbate is less toxic and un-

affected by changes in pH, ionic strength and promotes
the formation of ultrafine droplets [20] whereas, poloxa-
mers display aggregation with Ostwald ripening. But in
combination with ionic surfactants, due aggregation of
poloxamers is minimized by imparting a positive charge
on the surface. A similar principle was noticed in a bin-
ary mixture of DDAB and C12E5 DDAB (cationic –non-
ionic) surfactants which had no obvious effect on
droplet structure and size, although it improved the sta-
bility of nanoemulsion [21]. Hence, the nonionic surfac-
tants are considered to be stable in the design of ME/
NEs and their subtypes [3]. Tween 80, cremophor EL
and cremophor RH40 had proven their superiority on
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digestion and increased absorption by inhibiting the ef-
flux transporters such as p-gp, breast cancer resistance
protein and MDR-protein [4, 22, 23]. A recent success
of amphiphiles was portrayed with a combination of
Gelucire®, sucrose ester, a non-digestable surfactant. The
substitution of the non-digestible surfactants with di-
gestible surfactants, sucrose esters S-1670 and Span® 60,
eliminated the digestion lag time with no change in the
formation of colloidal structures [24].

Cosurfactants /Cosolvents
Short-to-medium-chain (C3-C8) alcohols such as metha-
nol, ethanol, isopropyl alcohol, carbitol, PEG’s, glycerin,
propylene glycol, etc. have the potential to increase the
emulsification efficiency by reducing the bending stress
at an interface and allow film flexibility to different cur-
vatures for the formation of ME/NE’s. They primarily in-
crease the mobility of hydrocarbon tail and allow greater
penetration of oil at the interface [25, 26]. Transcutol, a
cosurfactant has efficiently increased the solubility of
paracetamol as a function of temperature over other
cosolvents and also combinations [27].

Biochemistry of gastrointestinal tract
Mucins, long (200–1000 nm) heterogenous polydis-
persed filaments of glycosylated proteins are protecting
GI mucosa from pH fluctuations, pathogens, mechanical
irritation and toxins [28, 29]. They are categorized into
membrane-bound and secretory mucins [30]. Majority
of mucins are linked with proline, rich in serine and /or
threonine glycosylation sites repeated in tandem (named
as tandem repeats). These repeated units are widely var-
ied between mucin types in terms of length (5–375
amino acids) and in number (5–395 repeats) [31]. Each
epithelial mucin gene discovered was named as MUC in
1990. Currently, in humans, 20 mucin-type glycopro-
teins have been assigned to the MUC gene family, as ap-
proved by the Human Genome Organization- Gene
Nomenclature Committee (HUGO/GNC). MUC1,
MUC3A, MUC3B, MUC4, MUC12, MUC13, MUC15,
MUC16, MUC17, MUC18, and MUC20 mucins have
trans-membrane domains in their C-terminus and thus
are type 1 membrane proteins [32]. Stomach epithelia
contain MUC1, which is present on the apical mem-
branes of parietal cells in fundic glands [33]. MUC2 con-
tains four conserved cysteine-rich domains that have
sequence similarity to the D-domains of pro-von Willeb-
rand clotting factor expressed in goblet cells of the intes-
tine [34, 35]. The other large gel-forming cysteine-rich
secretory mucins are MUC5AC, MUC5B, MUC6, and
MUC19 [36]. The MUC 3 gene was essentially expressed
in the epithelial cells of small intestine especially in gob-
let cells and in enterocytes [37]. Majorly, MUC 5 AC
and MUC 6 gene are expressed in gastric tracts. Mucins

affect the absorption of ME/NEs in terms of their bio-
chemical composition, viscosity, diffusivity, dipole mo-
ment, zwitterion profiles, ionic strength and interaction
with the dispersion medium. Overall, ME/NEs undergo
absorption at various sites of GIT such as gastric lumen,
stomach, and small intestine as their biomembrane dif-
fusion is proportional to the reciprocal of mucin concen-
tration [36].

In-vivo drug solubilization process
The solubility of lipophilic drugs at absorption site de-
pends on selected lipid vehicles as they enhance solv-
ation capacity of the GI fluids by forming swollen
colloidal micelles. These solubilized forms of drugs (in-
tact micelles) undergo certain mesomorphic transforma-
tions which are due to during dispersion of GIT
contents, dilution of contents by various endogenous se-
cretions and effect of drug-chemical stability by various
digestive processes. Absorption of ME/NEs takes place
from the free drug concentration that is in equilibrium
with the solubilized colloidal reservoir rather than from
intact micelles [4].

Absorption of ME/NEs
Mostly, absorption of ME/NEs is high in small intestinal
lumen rather than in other parts of GIT since it contains
biliary lipids (bile salts, phospholipids, and cholesterol).
MCTs with amphiphilic nature present in particulate
emulsified systems undergo lipolysis at lumen of the in-
testine into free fatty acids and monoglycerides. These
products have the ability to coalesce readily with bile
lipids and form micelles. Further, fatty acids of 10–12
carbon atoms and drugs with lop P < 5 passively diffused
from the lumen into the systemic circulation by entero-
cytes [38–41]. Fatty acids of more than 10–12 carbon
atoms and drugs with log P > 5 are re-esterified to tri-
glycerides in enterocytes as represented in Fig. 1. Chol-
esterol also undergoes esterification by luminal enzymes
into cholesterol esters. The formed triglycerides and
cholesterol esters are then covered by a layer of proteins
and phospholipids to form chylomicrons, which leaves
the cell through exocytosis and enter the lymphatics
owing to apparent molar volume increase. Therefore,
drugs undergo either portal or lymphatic absorption de-
pending on molecular features and diffusion coefficient
of API [42–47].
A pH-stat automatic titration unit model demonstrated

the lipolysis of ME/NEs and subsequent phases which al-
ters the release profile and fate of a drug in GIT. The fur-
ther extent of digestion affects release profiles of the drug
located in the core of ME/NEs rather than shell [18, 48].
Carriers of ME/NEs transport the drug present in oil core
to mucus layer while the drug available in surfactant shell
get separate out as free molecules from carriers and
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diffuse directly to the epithelium. Though lipophilic com-
pounds readily diffuse across the apical plasma membrane
of intestinal epithelium the subsequent passage across the
basolateral membrane and into blood are by no means
guaranteed [49]. Thus, ME/NEs facilitate improved trans-
port across the intestinal wall and lead to lowering the ef-
fect of protease, an intestinal enzyme and sustained
plasma uptake [50, 51], this attribute was proven to be
successful with the sustained release of rhPTH1–34, a
peptide drug by opening tight junctions [52, 53].
ATP-binding cassette (ABC) transporters and solute

carriers are notable intestinal transporters which regulate
the transport of molecules into and out of enterocytes.
Cytochrome P-450 3A4 (CYP3A4), multidrug efflux pump
and P-glycoprotein (P-gp) are present high levels at villus
tip enterocytes of the small intestine. P-gp is ABC trans-
porter and highly expressed on the brush-border mem-
brane of columnar epithelial cells. The efflux transport of
particulate emulsified systems into enterocytes is affected
by these local transporters. However, efflux inhibition is
anticipated with membrane fluidization, induced conform-
ational changes and cholesterol depletion [54]. PEG 400,
Cremophor EL, RH40 and combinatorial surfactants are
successful in inhibiting P-gp by forming the micelles dur-
ing emulsification which can masquerade drug thereby
not exposing core drug molecules to the efflux trans-
porters [55–60].
Cellular surfaces are dominated by negatively charged

sulfated proteoglycans that play an important role in cellu-
lar proliferation, migration, and motility. Particulate emul-
sified systems with higher surface charge, bind strongly to
the cell membrane with electrostatic interactions between

the anionic membrane and cationic nanodroplets, thus
increasing the cellular uptake. After adsorption onto the
cellular membrane, the uptake occurs possibly via pinocyt-
osis, nonspecific or receptor-mediated endocytosis or
phagocytosis [61–63]. Absorption of particulate emulsified
systems is affected by surface charges (either positive or
negative) present on ME/NEs and this phenomenon was
evidently demonstrated by griseofulvin emulsions. There-
fore, the zeta potential of ME/NEs certainly affects the
pharmacokinetics of isotropic systems [64].

Lymphatic transport of ME/NEs
M cells of the lymphoid follicle-associated epithelium rep-
resent a potential portal for intestinal drug delivery because
of their high transcytotic capacity and ability to transport
particulates [65]. Particle uptake involves contact with
microvilli on the M cell surfaces, which is followed by rapid
phagocytosis through an extension of apical membrane.
The phagocytic vesicle fuses with basolateral membrane be-
fore transferring its contents to the intraepithelial compart-
ment. Alternately, the particles are engulfed by phagocytic
cells into compartments or pass through basal lamina to
the subepithelial region and thus the particulate emulsified
systems drained into lymph [48].

Lymphatic uptake
As demonstrated in Fig. 2, a fraction of particulate drug,
encapsulated by triglycerides is restructured in the endo-
plasmic reticulum and then released into the mesenteric
lymph duct as chylomicrons [66]. Thereafter it reaches
the systemic circulation via thoracic lymph [67–69].
Lymphatic uptake becomes ever effective since the drug

Fig. 1 Steps in intestinal absorption of ME/NEs
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molecules are bypassed. But, the chain length of triglyc-
erides and solubility of the drug in oil determines the
outcome of lymphatic uptake of orally administered lipo-
philic moieties.

Distribution of ME/NEs
Being submicron sized systems, ME/NEs exhibit pro-
longed circulation [70]. A major portion of orally admin-
istered ME/NEs undergo intestinal lymphatic absorption
followed by biodistribution and finally ended up with
lymphatic drainage to capillaries. An extent of the bio-
distributed drug is affected by the macrophages of liver,
spleen, and lungs with the result of RES uptake [71].
HCO-60, a pharmaceutically modified castor oil in con-
jugated linoleic acid microemulsion was effective as co-
surfactant against RES uptake [72]. Combination of car-
riers such as capmul and myvacet oil used thereof in
particulate systems accounts largely for biodistribution
of emulsified systems [73, 74]. A potential intestinal P-
gp inhibitor tween 80 was also reported to produce
higher indinavir distribution levels in plasma. However,
highly hydrophilic drug undergo rapid uptake by organs
of the reticulo-endothelial system (RES) lead to lowering
of drug levels [75].

Elimination of ME/NEs
Emulsions poor in cholesteryl ester but rich in free choles-
terol show remnant-like behavior, whereas emulsions with
rich cholesteryl ester but poor in free cholesterol were me-
tabolized like nascent chylomicron particles. Emulsions of
defined composition and with known metabolic behavior

should be of value not only to probe lipoprotein metabol-
ism but perhaps also as vehicles for the delivery of hydro-
phobic drugs to targeted organs. Subsequent dosing of
emulsion, droplets acquire apoproteins (apo-E, apo-CI,
apo-CII, apo-CIII, and apo-AIV) from high-density lipo-
proteins and very low-density lipoproteins of blood. Apo-
CII acts as lipoprotein lipase (LPL) activator, which leads
to hydrolysis of triglycerides, whereas apo-E helps in hep-
atic removal of remnants [76].
ME/NEs, being prolonged circulation entities display

regular elimination patterns with increased half-life gen-
erally. Droplet sizes of 50–100 nm were removed by the
liver and spleen, polymeric micelles smaller than 5 and
5–10 nm were easily eliminated through the renal glom-
eruli [77]. Such kind of variability in elimination process
is attributed due to diminished bile flow, poor gastric
emptying, and disturbances in intestinal and hepatic
functions [78].

Molecular actions and outcomes of ME/NEs
Particulate emulsified delivery systems are being grad-
ually more used to protect bioactives against the intense
environment, to improve molecular targets, stability and
to increase bioavailability. Molecular action of selected
lipophilic drugs when associated with oil core or amphi-
philes of the ME/NE systems is ascribed to transfer the
drug molecules into the targeted cells by fusion of oil
droplet with the cell membranes through lipid exchange
or by endocytosis of the oil droplets [79]. If the targeting
moieties (folate, thiamine, etc.) with corresponding cell
surface receptors are anchored to ME/NEs to adapt

Fig. 2 Lymphatic uptake of ME/NEs
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multifunctional property, they can directly target a tissue
of interest and remain longer at the disease site to allow
the total transfer of the drug molecules. Different mole-
cules owned by anti-inflammatory agents, insulin, cancer
etc., were rationalized herein.
Essential PUFA transporters of an abluminal mem-

brane of the endothelial cells of BBB allowed the CNS
acting essential PUFA (omega-3 and omega-6), a lipo-
philic moiety into the brain [80]. Nonionic surfactants
(tween 80 and poloxamer) augmented brain targeting es-
sential PUFA through lipoprotein receptor-mediated up-
take owing to the affinity of apolipoprotein E for LDL
receptor in the BBB enabled uptake by RME (receptor-
mediated endocytosis). In another instance, enhanced
brain uptake of doxorubicin resulted with drug- loaded
MEs with principal interaction of ME entities with
plasma apolipoprotein A–I facilitated scavenger receptor
in BBB endothelium [81].
Curcumin encapsulated by a combination of cationic

surfactants such as cetyl and dodecyl trimethylammo-
nium bromide was found to be intact even against alka-
line hydrolysis [82] and bioaccessible with use of
triacylglycerols (medium chain) [83]. Polymeric micelles
of curcumin were bestowed with over 55-fold increase
in bioavailability [84]. In similar lines, tamoxifen loaded
NEs (size < 47 nm) inhibited cell proliferation 20-fold
greater and increased cell apoptosis 4-fold greater in the
HTB-20 breast cancer cell line [85].
Oral administration of ME of cyclosporine A resulted

in increased bioavailability with not many side effects in
hepatic impaired patients [86] and stable plasma drug
concentrations were maintained in renal impaired pa-
tients [87]. Oral application of carvedilol loaded NEs has
displayed two-fold faster release profile and several folds
increase in Cmax and AUC [88]. Thus the particulate
emulsified systems are proven to be superior in the
treatment of certain ailments though they were orally
administered.

Conclusion
ME/NEs are the most dynamic and novel appealing plat-
forms for poorly soluble moieties with expected thera-
peutic outcomes. In view of the fact, development of
ME/NEs is not an easy task for the formulators wherein,
they require utmost attention on selection and usage of
carriers/integrants of the delivery system. Thus, this art-
icle prolifically presents the information on carriers,
composition and their in-vitro and in-vivo functions. It
was successful to illustrate on the micellization of partic-
ulates with luminal contents and subsequent intestinal/
lymph absorption. Impact of biochemical and bio-
pharmaceutical principles on absorption and disposition
patterns of ME/NEs was presented well herein for the
interest of readers and young researchers.
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