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LpA-II:B:C:D:E: a new immunochemically-
defined acute phase lipoprotein in humans
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Abstract

Background: Previous studies of lipoproteins in patients with sepsis have been performed on density fractions
isolated by conventional ultracentrifugation that are heterogeneous and provide no information about the cargo of
apoproteins present in the immunochemically distinct subclasses that populate the density classes. Since
apoproteins are now known to have important roles in host defense, we have separated these subclasses
according to their apoprotein content and characterized their changes during experimental endotoxemia in human
volunteers.

Methods: We have studied apoB- and apoA containing lipoprotein subclasses in twelve healthy male volunteers
before and for 8 h after a single dose of endotoxin (ET; 2 μg/kg) to stimulate inflammation.

Results: After endotoxin, TG, TC, apoB and the apoB-containing lipoprotein cholesterol-rich subclass LpB and two
of the three triglyceride-rich subclasses (TGRLP: Lp:B:C, LpB:C:E+ LpB:E) all declined. In contrast, the third TGRLP,
LpA-II:B:C:D:E (“complex particle”), after reaching a nadir at 4 h rose 49% above baseline, p = .006 at 8 h and became
the dominant particle in the TGRLP pool. This increment exceeds the threshold of > 25% change required for
designation as an acute phase protein. Simultaneous decreases in LpA-I:A-II and LpB:C:E + LpB:E suggest that these
subclasses undergo post-translational modification and contribute to the formation of new LpA-II:B:C:D:E particles.

Conclusions: We have identified a new acute phase lipoprotein whose apoprotein constituents have metabolic
and immunoregulatory properties applicable to host defense that make it well constituted to engage in the APR.
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Background
The acute phase reaction (APR) is an integral compo-
nent of host defense that contributes to the initiation,
activation, and propagation of events that are integral
features of innate immunity [1]. This highly conserved
transcriptional response is driven by inflammatory
cytokines released from mononuclear cells that activate
expression of multiple genes [2] that alter the hepatic se-
cretion of a number of plasma proteins and lipoproteins
that have pathophysiological actions [3]. One of these
many changes is a rise in triglyceride-rich lipoproteins
(TGRLP) that frequently is observed during sepsis. The
lipid contents of lipoproteins involved in this response
are believed to protect the host both by sequestering and

neutralizing microbial toxins and delivering vital nutrients
to cells actively engaged in the immune response and
tissue repair [4, 5]. The fact that both the structural and
exchangeable apoprotein components of lipoproteins are
now known to have a wide range of immunoregulatory
functions indicates that the protein moieties also serve to
protect the host in the presence of infection and inflam-
mation [6–8].
Each lipoprotein density fraction isolated by conven-

tional ultracentrifugation has been considered to be rela-
tively homogeneous. Application of immune-based
lipoprotein separation methods has instead revealed a
more complex picture. Density fractions in fact are very
heterogeneous and contain several discrete subclasses
that differ in their apoprotein and lipid composition,
function, density, and metabolism and are not detected
when conventional density fraction fractions are mea-
sured [9].
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Separating lipoproteins into immunochemically-defined
subclasses is feasible because their major apoproteins are
retained during intravascular lipolysis even though their
physicochemical properties [10] and distribution within
the conventional the density fractions changes. Lipopro-
teins containing apoB separated in this way have been
grouped into two major subclasses – those that are
TG-rich (LpB:C, LpB:C:E, LpAII:B:C:D:E) and those that
are cholesterol-rich (LpB, LpB:E). Each of these is dis-
persed widely in VLDL, IDL, and LDL and has differing
atherogenic properties and clinical relevance [11]. The
apoC-III-containing subclasses LpB:C and LpAII:B:C:D:E
for example have been shown to be associated with
progression of coronary atherosclerosis [12] and the
lipoprotein density classes (VLDL, LDL) containing these
subclasses found to predict cardiovascular events [13, 14].
Two major apoA-containing subclasses (LpA-I, LpA-I:A-II)
populate the HDL2 and HDL3 subfractions [9].
When endotoxin (bacterial lipolysaccharide: LPS) is

released from the cell walls of gram-negative bacteria
into the circulation, it binds to the Toll-like receptor
(TLR4) on immune cells, which then release cytokines
and other inflammatory mediators that activate the APR
and initiate the host innate immune response [15].
For this reason, endotoxin has become a convenient
experimental tool to investigate the APR [16].
Most previous studies of lipoproteins from patients

with sepsis [17, 18] and during experimental endotoxe-
mia in human volunteers [19] have been performed on
lipoprotein density fractions. Since no information is
available about the transport of apoprotein-defined lipo-
protein subclasses during the APR, we have character-
ized these subclasses in a group of normal volunteers
following endotoxin exposure.

Methods
Study population
Subjects were recruited for study in Vienna,
Copenhagen, and New York. The study was performed
according to the Declaration of Helsinki. Subjects were
informed about the possible risks and discomfort before
giving their written consent to participate. The protocol
was approved by the Ethical Committee(s) of the Medical
University of Vienna, Austria and of Copenhagen and
Fredriksberg Communities, DK and by the Institutional
Review Boards of Rockefeller University and the
Oklahoma Medical Research Foundation. Inclusion
criteria: healthy young, non-obese, non-smoking sub-
jects. Exclusion criteria: recent intake of prescription
or non-prescription medications.

Protocol
All subjects were admitted to the clinical research unit
at 0800 after an overnight fast. After voiding, they were

placed at bed rest which was continued throughout the
entire study period. The twelve male participants in
Vienna (age 23 +/− 1 yr.; BMI 23.4 ± 0.5 kg/m2; mean ±
SEM) received a single i.v. bolus dose of endotoxin
containing 2 ng/kg LPS (National Reference). Blood was
obtained from these subjects at 0, 2, 4, 6, 8 h. Control
subjects received an i.v. bolus dose of saline followed by
saline infusions and were studied at three different sites:
four subjects were part of the Vienna cohort and had
also received endotoxin; an additional six male subjects
were studied at the University of Copenhagen (age 24 ±
1 yr.; BMI 23.5 ± 0.8 kg/m2); and six subjects studied at
Rockefeller University in New York (three males, three
females (age 30+/− 1.9 yr.; BMI 25.0 +/− 1.0 kg/m2) that
participated in earlier studies, in which lipoproteins had
been isolated immunochemically and measured during
saline infusion [19, 20]. In the subjects from
Copenhagen, blood was drawn at 0, 2, 3, 6 h. All
samples were processed immediately at each site by
centrifugation at 2000 g at 4 °C for 15 min and plasma
stored at − 80 °C before analysis. Since there was no
difference between the 3 h values in the Copenhagen
subjects and the 4 h values in the New York and Vienna
control subjects, the results were combined into a single
4 h measurement.

Analytical methods
Total cholesterol (TC), TG and HDL-Cholesterol
(HDL-C) were determined in frozen blood samples [21]
and LDL-cholesterol (LDL-C) calculated using the
Friedewald formula as previously described [22]. Apolipo-
proteins (apo) A-I, A-II, B, C-III and E were determined
by employing the immunoturbidimetric procedure of
Riepponon et al. [23] using corresponding monospecific
polyclonal antisera. Quantitative determination of LpB,
LpB:C, LpB:E + LpB:C:E and LpA-II:B:C:D:E subclasses
was performed by sequential immunoprecipitation of
whole plasma by polyclonal antisera to apoAII, apoE and
apoCIII, respectively, as previously described [24]. To
determine the distribution of apoC-III and apoE between
the apoB- and apoA- lipoproteins following endotoxin or
saline treatment, the binding of each was measured by
electroimmunoassay in heparin soluble (HS; apoA) and
heparin precipitate (HP; apoB) fractions and changes in
their apoE content expressed as apoE-HS (HDL)/HP
(VLDL+ LDL) ratios. LpA-I, LpA-I:A-II were measured
according to the method of Marz et al. [25]. The between
assay CVs for immunoprecipitation with anti-serum to
apo CIII was 6–7%.

Statistical analysis
Data were analyzed by 2-way ANOVA for main effect of
time vs. ET treatment with posthoc analyses of signifi-
cant main effects. A one-way ANOVA was used for
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comparison of the changes in the apoB-subclasses within
each treatment group. In order to better visualize a full
8 h pattern of changes in the TGRLP subclasses in the
saline-infused controls in whom these parameters were
measured from 0 to 6 h only, regression lines were
determined by least squares estimation for the plasma
lipids and each subclass from 0 to 6 h and from each
line values were estimated at 8 h [26].

Results
All subjects who received endotoxin manifested one or
more of its side effects: typical flu-like symptoms, chills,
fever, headache, nausea, and myalgia [27, 28].

Baseline measures and changes from baseline
The physical characteristics of the two experimental
groups are indicated in the Methods section. At baseline
the subjects who received ET had significantly lower TG
(p = .003; Fig. 1a), LpAII:B:C:D:E (p = .016; Fig. 2e), and
apoE levels (p = .004; Fig. 4a) than the saline controls. The
directional changes in TG, TC, LDL-C, and HDL-C, how-
ever, were similar in the two groups until 6 h (Fig. 1) when
TG in the ET subjects had declined significantly from
baseline and was significantly less than the TG in the
saline controls (p = .0001; Fig. 1a) and HDL-C was lower
overall with time in the ET group (p = .003).

ApoB and apoB-subclasses
In the ET group apoB, LpB, and LpB:C declined within
6 h to levels significantly less than baseline (Figs. 2a-c)
and their pattern of change differed from those of the
saline group. The behavior of LpA-II:B:C:D:E in the ET
group, however, differed from that of apoB and other of
their apoB- containing subclasses. After declining to a
nadir at 4 h, Lp-AII:B:C:D:E then increased progressively
over the next 4 h and reached a level at 8 h that was
almost two-fold above baseline (p = .006); Fig. 2e). While
the plasma TG declined from baseline and the
TGRLP pool size contracted in the ET group, the
number of Lp-AII:B:C:D:E particles relative to LpB:C
and LpB:C:E + LpB:E increased and LpA-II:B:C:D:E:
became the predominant TGRLP subclass at 6 h and
8 h (p = .001; Fig. 2f ). The percentage of each TGRLP
subclass in the saline group was unchanged through-
out the study.

ApoA-I and apoA-subclasses
From 0 to 6 h, there was no significant change in apoA-I
and LpA-I in either group. (Fig. 3a, b). At 8 h, however,
both apoA-I and LpA-I:A-II in the ET subjects declined
significantly from baseline (p = .0001). Since LpA-I levels
remained stable from 6 to 8 h, these findings indicate
that the decrease in apoA-I was due to a specific decline
in the LpA-I:A-II subclass.
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Fig. 1 Changes in plasma lipids in response to endotoxin. Fasting plasma (a) triglycerides, (b) total cholesterol, (c) LDL-cholesterol, and (d)
HDL-cholesterol concentrations (mean +/− SE) were measured in subjects at baseline and for 8 h after an intravenous dose of endotoxin (closed
circles, n = 7–12) or saline (open circles, n = 4–9). Data were analyzed by 2-way repeated measures ANOVA (time x LPS treatment) with Dunnett’s
posthoc analysis for time points compared to group baseline with saline (+; p < 0.05) or LPS (#; p < 0.05). A Sidak’s multiple comparison test was
used to compare treatment groups at each time point (*; p < 0.05)
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Distribution of apoE and apoC-III
Apo E concentration at 0 h in the ET subjects was
significantly lower than in the saline-treated controls
and levels in both groups were stable until 6 h after ET.
At 8 h, however, total apoE in the ET group trended
upward from baseline and this small increment (+ 10%)
was reflected by increases in the apoE content of HDL
(apoE-HS; Fig. 4b) which rose significantly (+ 27%; p = .01)
above baseline and in the apoE HS/HP ratio (+ 40%;

p = .0001; Fig. 4d). In both the saline and ET-treated
subjects, the apoE content of apoE-HP (VLDL+LDL)
declined from baseline from 4 to 8 h (Fig. 4c).
ApoC-III levels at baseline were similar in the two

groups (Fig. 5a), thereafter declining in plasma and in
the apoB-containing lipoproteins (apoC-III HP; Fig. 5c)
and increasing at 8 h in HDL (apoC-III HS; Fig. 5b) in a
pattern similar to that of apoE. These changes, however,
were not statistically significant.
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Fig. 2 Endotoxin alters the quantity and distribution of apo B-containing lipoprotein subclasses. Plasma (a) apoB and apoB-containing lipoprotein
subclasses: (b) LpB, (c) LpB:C, (d) LpB:C + LpB:E and (e) LpA-II:B:C:D:E concentrations measured at baseline and for 8 h after an intravenous dose of
endotoxin (closed circles, n = 11) or saline (open circles, n = 9). Data were analyzed by 2-way repeated measures ANOVA (time x LPS treatment)
with Dunnett’s posthoc analysis for time points compared to baseline in saline (+; p < 0.05) or LPS (#; p < 0.05) groups. A Sidak’s multiple comparison
test was used to compare treatment groups at each time point (*; p < 0.05). (f) The percent change from baseline in TGRLP subclass distribution at 6 h
and 8 h after an intravenous dose of LPS or saline. To compare group changes within each subclass, data were analyzed by 2-way ANOVA (TGLRP
composition vs. time) with Tukey post hoc analysis. * p < 0.05 compared to saline within subclass. Significant difference (P < 0.05) between subclasses
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Fig. 3 Endotoxin reduces the quantity of apo A-containing particles. The concentration of plasma (a) apoA-I and apoA-I containing lipoprotein
subclass, (b) LpA-I, (c) LpA-I:A-II were measured in subjects at baseline and for 8 h after an intravenous dose of endotoxin (closed circles, n = 12)
or saline (open circles, n = 4) groups. Data were analyzed by 2-way repeated measures ANOVA (time x LPS)
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Discussion
Disturbances in plasma lipids have been observed for
many years in patients during sepsis [17, 18, 28]. In the
most comprehensive sepsis-related study of lipoprotein
transport to date, sequential changes in the concentra-
tion of lipoprotein density fractions were measured and
correlated with levels of cytokines, inflammatory
markers, and acute phase reactants during experimental
endotoxemia in human volunteers [19]. Hudgins et al.
[19] observed an early and rapid increase in TG and
VLDL lipids that peaked at 3 h and was synchronous
with maximum levels of IL-6 and TNF-alpha.
Previously, we examined immunochemically-defined

lipoprotein subclasses in human volunteers during an
IL-6 infusion to investigate lipoprotein subclasses during
systemic inflammation [20]. In that project, we found
that the concentration of the TGRLP subclasses LpB:E +
LpB:C:E,which are distributed in the apoB-containing
VLDL, IDL, and LDL density classes increased signifi-
cantly at 30 min and 60 min with no change in plasma
TG. Since IL-6 is only one of several inflammatory me-
diators released during the acute phase reaction [29],
this observation suggested that simulating inflammation
with endotoxin may impact the transport of this and other
immunochemically-separated lipoprotein subclasses. Our
current results confirm this hypothesis.

Except for the lack of an early increase in plasma TG,
the directional changes we observe in the major plasma
lipids and apoB in the ET group from 0 to 6 h resemble
those described by Hudgins et al. [19]. As previously re-
ported, we too find that individual TG responses during
systemic inflammation and sepsis are variable [1, 18, 30].
While the changes in the apoB-subclasses from 0 to 4 h
did not differ in our two experimental groups, their sub-
sequent responses differed significantly. Notably, as the
plasma TG and the TGRLP subclasses LpB:C and LpB:C:
E continued to decline in the ET subjects, their LpA-II:
B:C:D:E (LpA-II:B complex) particle number increased
progressively and this particle which normally is only a
minor component (7%) of the TGRLP pool [9, 10]
became the most abundant TGRLP particle.
By increasing more than 25% above its baseline value

(+ 27% at 6 h and + 48% at 8 h), the LpAII:B complex
particle meets the definition of an acute phase reactant
[1, 29] and therefore is a previously unrecognized
positive acute phase protein. Even though the overall
changes in plasma TG and TGRLP pool size after
endotoxin were modest, we believe that the increase in
number of this specific particle is biologically significant
because it contains several multifunctional apolipopro-
teins that have immunomodulatory properties. There-
fore, the fact that these particles increase in number
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Fig. 4 Endotoxin alters distribution of ApoE among plasma lipoproteins. The concentration of (a) apoE in plasma, (b) apoE associated with HDL
(ApoE heparin soluble [HS]), (c) apoE associated with apoB-containing lipoproteins (ApoE-heparin precipitate [HP]) was measured at baseline and
for 8 h after an intravenous dose of endotoxin (closed circles, n = 11) or saline (open circles, n = 4). (d) Changes in distribution of apoE in heparin
soluble (HS) and heparin precipitate (HP) is expressed as the apoE HS/apoE HP ratio. Data were analyzed by 2-way repeated measures ANOVA
(time x LPS treatment) with Dunnett’s posthoc analysis for time points compared to baseline in saline (+; p < 0.05) or LPS (#; p < 0.05). A Sidak’s
multiple comparison test used to compare treatment groups at a single time point (*p < 0.05)
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during inflammation makes it likely that they contribute
actively to host defense. Alaupovic first identified the
LpAII:B complex particle in the plasma of patients with
Tangier disease and showed that it differed metabolically
from other TGRLP by being lipolysis resistant and a
poor substrate for LPL [31]. More recent kinetic studies
showing that it has a prolonged residence time in plasma
are consistent with his earlier observations [32].
The concentration of most acute phase proteins is

regulated by APR genes [33] at the transcriptional level
through changes in hepatic production [34]. The alter-
ations we observe in lipoproteins, however, are too rapid
to be ascribed to changes in production. Rather, our
findings suggest that changes in LpA-II:B particle num-
ber was a post-translational event involving the coordi-
nated activity of lipases and lipid transfer proteins that
normally play integral roles in the remodeling of TGRLP
and HDL [32]. Indeed, Alaupovic et al. speculated earlier
that LpA-II:B particles were formed in plasma by the
transfer of apoA-II from the HDL subclass LpA-I:A-II
particles to LpB:C:E [31]. The concomitant increase we
observe in LpA-II:B and decline in both the LpA-I:A-II
and LpB:C:E + LpB:E from 4 to 8 h after endotoxin sup-
ports this mechanism.
Based on its apoprotein content and kinetic behavior

[32], we suggest that the LpAII:B complex particle is

well suited to engage in the APR and plays an important
role in host defense. Being resistant to lipolysis and hav-
ing a prolonged residence time in plasma during inflam-
mation may be useful because this property enhances its
capacity to deliver nutrients and apoproteins to immune
cells that support their activation [35]. For example,
apoA-II can upregulate and then modulate the host
response during sepsis [36]. Although better known for
its role in cholesterol transport and macrophage biology,
apoB-100 also can act as an immune suppressor by lim-
iting the release of cytokines [37]. Because LpA-II:B:C:D:
E, has apoB-100 as its major structural apoprotein, it
would under normal circumstances facilitate its internal-
ization by LDL B,E receptors in both hepatic and extra-
hepatic tissues throughout the body. During infection,
however, LDL receptors are down-regulated in the liver
and upregulated in macrophages [38], changes thought
to benefit the host by promoting the uptake of apoB-
containing subclasses by immune cells. Not surprisingly,
two of the three apoC isoforms present on LpA-II:B:C:D:
E also are involved in host defense (7). Quite apart from
their regulatory roles in lipoprotein transport [39],
apoC-I has been shown to enhance the inflammatory
response to LPS [40] and apoC-III to actively participate
in the inflammatory components of atherosclerosis
development [41].
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Fig. 5 Endotoxin does not significantly change the distribution of ApoC-III among plasma lipoproteins. The concentration of (a) apo C-III in
plasma, (b) apo C-III associated with HDL (C-III heparin soluble [HS]), (c) apo C-III associated with apo B-containing lipoproteins (C-III heparin
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compared to baseline in saline (+; p < 0.05) or LPS (#; p < 0.05). A Sidak’s multiple comparison test was used to compare treatment groups within
each time point (*; p < 0.05)
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Despite apoD being structurally dissimilar from other
apolipoproteins [42], it too has immunoregulatory, anti-
stress, and antioxidant properties that contribute to host
defense [43]. Alaupovic suggested earlier that apoD was
acquired from LpA-I:A-II HDL particles when LpAII:B
complex particles are formed from the interaction of
LpA-I:A-II with LpB:C:E [31]. While apoE is a key ligand
that facilitates transport of the apoE-containing apoB
subclasses, most apoE (50–75%) in humans is associated
with circulating HDL [44]. Like many other HDL con-
stituents [6], apoE is involved in both immunoregulation
and host defense [45]. During infection, for example,
apoE can multi-task and simultaneously neutralize LPS
and modulate lipoprotein trafficking [46].
Since atherosclerosis is accelerated in a number of

chronic inflammatory diseases [35], it is relevant to the
present study that LpA-II:B:C:D:E particle number is
increased and associated with progression of atheroscler-
osis in patients with rheumatoid arthritis [47]. Because
our study indicates that this particle is an acute phase
reactant closely linked to inflammation, it seems likely
that it poses a similar risk in patients with Tangier dis-
ease who also develop cardiovascular disease prema-
turely [48].
The behavior we observe of the two major

immunochemically-defined HDL subpopulations, LpA-I
and LpA-I:A-II, after endotoxin add to the growing body
of information about the changes that HDL undergoes
during inflammation [49, 50]. Despite the extensive re-
modeling of HDL surface and core constituents and the
decline in HDL-C and apoA-I that is known to occur dur-
ing the APR [19, 50], we show that the same percentage
distribution of 25% LpA-I and 75% LpA-I:A-II present at
baseline was maintained for 8 h after endotoxin.
We also provide preliminary information about the

transport of the exchangeable apoproteins apoE and
apoC-III during the APR. For the first 6 h, apoE asso-
ciated with HDL and the apoB lipoproteins (VLDL, IDL,
and LDL) declined to a similar degree in both the ET
and saline groups. By 8 h, however, the apoE present in
HDL in the ET group increased 28% above baseline as
first reported in septic patients and identified as an acute
phase protein by Li et al. [51]. In contrast to most other
acute phase proteins that involve de novo hepatic syn-
thesis, these workers found that the increase in apoE
during sepsis resulted from a combination of inhibition
of apoE degradation and down-regulation of hepatic
LDL receptors [38, 51].
The movement of apoC-III from the apoB lipoproteins

(HP) to HDL (HS) resembled that of apoE but the mag-
nitude was small, the number of observations limited,
and the changes were not statistically significant. In light
of heightened awareness of the proinflammatory proper-
ties of apoC-III and the key role that it and other HDL-

associated proteins having immunomodulatory properties
(A-IV, C-III, C-IV, L-I, M, F, H, J [clusterin]) play in host
defense, their distribution among the HDL subclasses and
fate during the APR require further study [6].
The strength of our study is that we have employed an

underutilized immunochemical method of measuring
lipoproteins to demonstrate for the first time changes in
the TGRLP subclasses during inflammation that are not
revealed by conventional methods of lipoprotein isolation.
A limitation of this study is that our measurements

are limited to the first 8 h after ET. While a longer
period of observation would be desirable, it was still pos-
sible within this time to discern changes in lipoproteins
during the APR with a new level of precision and to
identify LpA-II:B:C:D:E as a new acute phase reactant.
Longer studies are needed to determine the duration of
LpAII:B:C:D:E elevation, the extent to which it and other
immunochemically-defined lipoprotein subclasses con-
tribute to the APR, and the degree to which changes
in their concentration correlate with inflammatory
mediators.
Other concerns are that our control subjects were

studied at different sites, their 8 h data was incomplete,
and some of their baseline lipid measures differed from
those of the ET group. While demographic differences
likely account for the disparity in baseline lipids, the
changes exhibited in their plasma lipids during saline
infusion correspond closely to those reported by
Hudgins under identical experimental conditions [19].
Importantly, neither these site differences or our esti-
mating 8 h TG and TGRLP subclass values influenced
our conclusions.

Conclusion
Employing an underutilized immunochemical method of
measuring lipoproteins according to their apoprotein
content, we have identified a new acute phase lipopro-
tein whose apoprotein constituents have metabolic and
immunoregulatory properties applicable to host defense
that make it well constituted to engage in the APR.
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