
RESEARCH Open Access

Eicosapentaenoic acid ethyl ester improves
endothelial dysfunction in type 2 diabetic
mice
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Abstract

Background: Eicosapentaenoic acid (EPA) is thought to have many beneficial effects, such as anti-atherosclerogenic
and anti-inflammatory properties. However, few studies have reported its effects of endothelial dysfunction in diabetes
and its direct effects on the aorta. Here, we investigated the effects of EPA treatment on impaired endothelium-
dependent relaxation of the aorta in KKAy mice, a model of type 2 diabetes.

Methods: Male KKAy mice were fed a high-fat (HF) diet for 8 weeks to induce diabetes, after which they were
divided into two groups. One group was fed a HF diet, and the other group was fed a HF diet containing EPA
ethyl ester (EPA-E, 10 mg/day) for 4 weeks. Then, the vascular reactivities of prepared aortic rings were measured
in an organ bath to determine if EPA-E administration changed vascular function in these diabetic mice. In addition,
we examined effect of EPA-E and its metabolites to vascular action using aorta separated from C57BL/6 J mice.

Results: Although EPA-E administration did not change the plasma glucose and insulin levels in diabetic mice, total
cholesterol levels were significantly decreased. The aorta extracted from EPA-E untreated diabetic mice showed
impaired endothelium-dependent relaxation in response to acetylcholine (ACh). However, EPA-E administration
improved the relaxation response to ACh to the control levels observed in non-diabetic C57BL/6 J mice. On the
other hand, endothelium-independent relaxation in response to sodium nitroprusside did not significantly differ
among these three groups. The enhanced contractile response by phenylephrine in diabetic mice was not altered by
the administration of EPA-E. In addition, the direct administration of EPA-E metabolites such as EPA, docosahexaenoic
acid, and docosapentaenoic acid led to vasodilation in the aortic rings of C57BL/6 J mice.

Conclusion: These results showed that chronic EPA-E administration prevented the development of endothelial
dysfunction in KKAy mice, partly via the direct action of EPA-E metabolites on the aorta.
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Background
Eicosapentaenoic acid (EPA) is an n-3 polyunsaturated
fatty acid (n-3 PUFA) that is abundant in fish oils. Epi-
demiological and clinical trials have shown that n-3
PUFA, including EPA, reduces cardiovascular disease
risk [1–3] and delays the progression of atherosclerosis
in patients with coronary disease [4]. Many studies have
demonstrated that n-3 PUFAs have a variety of bioactive

actions such as anti-inflammatory properties [5, 6], anti-
oxidant effects [7, 8], and improvement of endothelial
function [9, 10], which explains their anti-atherogenic
effects. In a previous experiment, we reported that fish
oil feeding combined with food restriction improved
dyslipidemia and serum levels of adiponectin [11] and
decreased lipid contents in the liver [12]. However, the
effects of EPA-associated cardiovascular protection in
diabetes mellitus are not completely understood.
Type 2 diabetes mellitus (T2DM) is a dominant risk

factor for the development and progression of athero-
sclerosis. Usually, endothelial dysfunction precedes the
onset of atherosclerosis and occurrence of cardiovascular
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complications, and patients with long-term T2DM have
pronounced endothelial dysfunction, leading to increased
cardiovascular disease risk [13, 14]. Endothelial dysfunc-
tion is defined as reduced endothelium-dependent vaso-
dilator function, and decreased levels of bioavailable nitric
oxide (NO) in the arteries. It has been suggested that the
improvement of endothelial dysfunction prevents athero-
sclerosis [15]. KKAy mice develop obesity, elevated plasma
glucose, and insulin resistance, all of which are character-
istics of T2DM [16, 17].
In the present study, we investigated the effects of

EPA on the aorta of KKAy mice fed a high-fat (HF) diet.

Methods
Reagents
EPA, docosapentaenoic acid (DPA), docosahexaenoic acid
(DHA), N-ω-nitro-L-arginine (L-NNA), and phenyleph-
rine hydrochloride were purchased from Sigma Chemical
Co. (St. Louis, MO, USA). Sodium nitroprusside dehy-
drate (SNP) was from Wako Chemical Company (Osaka,
Japan). Acetylcholine chloride (ACh) was from Daiichi
Pharmaceuticals (Tokyo, Japan). Eicosapentaenoic acid
ethyl ester (EPA-E) was from Tokyo Chemistry Industry
(Tokyo, Japan). EPA, DPA, and DHA were dissolved in
methanol, and the other reagents were dissolved in saline.
All concentrations are expressed as the final molar con-
centration in the organ bath.

Experimental design
Male KKAy and C57BL/6 J mice were obtained from
Tokyo Laboratory Animals Science (Tokyo, Japan) at
6 weeks of age and fed a standard pelleted diet (CE2;
CLEA, Tokyo, Japan) for 1 week. Mice were exposed to a
12-h light–dark cycle and maintained at a constant
temperature of 22 ± 2 °C and humidity of 55 ± 10%. KKAy
mice were fed a HF diet consisting of 38.9 energy% lard
oil as the fat source for 8 weeks. These mice with HF diet-
induced obesity were subsequently divided into two
groups (n = 6 in each group). For another 4 weeks, one
group was fed a HF diet (KKAy-HF), and the other group
was fed a HF diet containing EPA-E (10 mg/day; KKAy-
HF + EPA-E). C57BL/6 J mice were fed a Normal diet.
These Normal, HF and HF + EPA diets were made based
on the modified version of the AIN-93G [18]. The compo-
sitions of these diets are indicated in Table 1. The mice
used for the experiments of Fig. 4 were C57BL/6 J male
mice fed a CE2 at 6–8 weeks of age. The animal experi-
ments were approved by the Institutional Animal Care
and Use Committee of Josai University (Saitama, Japan).

Measurement of plasma levels of glucose, insulin, and
cholesterol
Plasma parameters were measured as previously described
[19]. Blood samples were centrifuged (1000 g for 20 min at

4 °C), and the plasma was stored at −20 °C until subsequent
assays. Briefly, plasma levels of glucose, triglyceride and
total cholesterol were determined with each commer-
cially available enzyme kit (Wako Chemical Company,
Osaka, Japan). Plasma insulin was measured by enzyme-
linked immunoassay kit (Shibayagi, Gunma, Japan).

Measurement of isometric force
Each aorta was separated from the surrounding connect-
ive tissue and cut into rings of 3 mm long, as previously
described [19–21]. For the vasorelaxation studies, aortic
rings were precontracted with an equieffective concentra-
tion of prostaglandin F2α (PGF2α) (1 × 10− 6–3 × 10− 6 M).
When the PGF2α-induced contraction had reached a
plateau level, ACh (10− 9–10− 5 M) or SNP (10− 10–10− 5 M)
was added in a cumulative manner, then EPA (10− 5 M),
DPA (10− 5 M), or DHA (10− 5 M) were administered in a
single dose. To elucidate the effects of NO, a NO synthase
(NOS) inhibitor (L-NNA) (10− 4 M) was added to the bath
30 min before vascular contraction reaction in the same
experiments.

Statistical analysis
All results are expressed as the mean ± standard error of
the mean (SEM). Plasma parameters and body weight
were compared by analysis of variance (ANOVA) followed
by Scheffe’s post hoc test. Statistical comparisons of con-
centration–response curves were performed using two-
way ANOVA with the Bonferroni post hoc test to correct
for multiple comparisons. These statistical analyses were
performed using the StatView program (SAS institute,

Table 1 Compositions of experimental diets

Ingredients Normal HF HF + EPA-E

Corn starch (g) 479.5 339.5 339.5

Sucrose (g) 150 150 150

Casein (g) 200 200 200

L-Cystein (g) 3 3 3

Cellulose (g) 50 50 50

Soybean oil (g) 40 40 40

Lard (g) 30 160 158

Cholesterol (g) 0 10 10

Mineral mix (AIN-93G) (g) 35 35 35

Vitamin mix (AIN-93G) (g) 10 10 10

Choline bitartrate (g) 2.5 2.5 2.5

Tert-Butylhydroquinone (g) 0.01 0.01 0.01

Eicosapentaenoic ethyl ester (g) 0 0 2

Total (g) 1000 1000 1000

kcal 4159.9 4859.9 4859.9

Fat % (Calories) 15.1 38.9 38.9
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Cary, NC, USA). A P value < 0.05 was deemed statistically
significant.

Results
Plasma levels of glucose, insulin, cholesterol, and
triglyceride and body weight
As shown in Fig. 1, non-fasting plasma levels of glucose,
insulin, and total cholesterol and body weight were signifi-
cantly elevated in KKAy-HF diabetic mice compared to
age-matched C57BL/6 J mice. The increase in total choles-
terol was decreased by administration of EPA-E for 4 weeks
(Fig. 1c). However, plasma levels of glucose and insulin and
body weight were not affected by EPA-E (Fig. 1a, b, e). In
addition, plasma levels of triglycerides were not significantly
different among the three groups (Fig. 1d).

Vascular reactivity in aorta
The ACh-induced relaxation of aortic rings extracted from
KKAy mice was significantly weaker than that of C57BL/6 J
mice (Fig. 2a). This attenuated relaxation was significantly
improved by chronic EPA-E treatment (Fig. 2a). The relax-
ation induced by SNP was not significantly different
among the three groups (Fig. 2b). Phenylephrine caused
concentration-dependent contractions that reached a
maximum at 10− 5 M in aortic rings. Phenylephrine-
induced contraction was significantly greater in KKAy-
HF mice than in C57BL/6 J mice (Fig. 3a). The increase
in contraction in KKAy-HF mice was not affected by
the chronic administration of EPA-E (Fig. 3a). Next, the
effects of a NOS inhibitor (L-NNA) (10− 5 M) on the
response to phenylephrine were examined. The contraction

Fig. 1 Plasma glucose (a), insulin (b), total cholesterol (c), and triglyceride (d) levels and body weight (e) in the three experimental groups. The
increase in total plasma levels of cholesterol was significantly decreased by the administration of EPA-E (c). However, other parameters were not
affected by the administration of EPA-E (a, b, d, e). Data are expressed as mean ± SEM for eight mice. *P < 0.05 **P < 0.01, ***P < 0.001 vs. C57BL/
6 J, #P < 0.05 ##P < 0.01 vs. KKAy-HF mice
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induced by phenylephrine was increased in C57BL/6 J mice
and reached the levels observed in KKAy-HF and KKAy-
HF + EPA-E mice (Fig. 3b). Then we observed the direct
actions of EPA-E and its metabolites on the aorta. When
each metabolite was administered to the organ bath in
a single dose, as shown by the representative tracings in
Fig. 4a and b, EPA-E and methanol (a solvent of all
fatty acids) did not relax the C57BL/6 J aortic ring pre-
contraction with PGF2α. Interestingly, EPA, DPA, and
DHA induced vasodilation in the aortic rings (Fig. 4c, e, f).
Furthermore, the vasodilation induced by EPA was sup-
pressed in the presence of L-NNA (Fig. 4d).

Discussion
The results of the present study showed that chronic
dietary EPA-E supplementation improved the endothelial

dysfunction seen in type 2 diabetic mice fed a HF diet.
Furthermore, EPA-E metabolites (including EPA, DHA,
and DPA), but not EPA-E itself, had beneficial effects on
vascular function in mice aortic rings.
Metabolic disorders including obesity, hyperglycemia,

dyslipidemia, and hyperinsulinemia were seen in KKAy
mice (Fig. 1), indicating that these mice are suitable models
for T2DM with obesity. Among these unusual parameters,
the increase in total plasma levels of cholesterol was signifi-
cantly decreased by the chronic administration of EPA-E.
Although the measurement of flow-mediated dilation

(FMD) is a standard method for measuring endothelial
function in humans, the measurement of isolated vascular
reactivity in the organ bath is used in animals because of
technical limitations of doing these experiments in
mice [22]. To examine the endothelium-dependent and

Fig. 2 Concentration–response curves following ACh (a) and SNP (b) treatments of mice aortic rings. a Compared to C57BL/6 J mice, ACh-induced re-
laxation of aortic rings extracted from KKAy-HF mice was significantly weaker. This attenuated relaxation was significantly improved by chronic EPA-E
treatment. b The relaxation induced by SNP was not significantly different among the three groups. Data are expressed as mean ± SEM;
n = 6; *P < 0.05 **P < 0.01 vs. C57BL/6 J, #P < 0.05 ##P < 0.01 vs. KKAy-HF mice

Fig. 3 Concentration–response curves of phenylephrine-induced contraction of aortic rings (a) and contraction in the presence of L-NNA (b). a
The increase in contractions in KKAy-HF mice was not affected by chronic administration of EPA-E. b In the presence of L-NNA, the contractions
induced by phenylephrine were increased in C57BL/6 J mice and reached levels found in KKAy-HF and KKAy-HF + EPA-E mice. Data are expressed
as mean ± SEM; n = 6–8; **P < 0.01 ***P < 0.001 vs. C57BL/6 J
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endothelium-independent relaxation of the isolated
aorta, we used ACh and SNP (Fig. 2). We found that
the ACh-induced endothelium-dependent relaxation
was impaired in KKAy-HF compared with wild type
C57BL/6 J mice (Fig. 2a). Because the endothelium-
independent relaxation of aortic rings induced by SNP
was not different between C57BL/6 J and KKAy-HF
mice (Fig. 2b), the activity of soluble guanylate cyclase
in the smooth muscle of the aorta was not altered in
KKAy-HF mice. Clinical studies have demonstrated
that endothelial impairment in diabetes is the initial
step of atherosclerosis [3]. Our results indicated that
EPA-E can effectively improve endothelial function in
the thoracic aortas of diabetic mice. Previous FMD ex-
periments demonstrated that n-3 PUFA (including EPA

and DHA) supplementation improved vascular function
or coronary vasomotion [23–25]. However, pure EPA in
the diet is very unstable and very easily oxidized. Therefore,
the more stable ethyl-esters EPA is usually administered to
patients in clinical studies [26]. Thus, it is possible that
EPA-E administration reduces the progression of athero-
sclerotic disorders in humans.
In a previous report, dietary supplementation with fish

oil or EPA was shown to reduce contractile responses
evoked by noradrenaline and arachidonic acid in the rat
aorta [27]. However, the enhanced contractile response
by phenylephrine in KKAy-HF was not altered by the
administration of EPA-E in our experiments, and con-
tractions induced by phenylephrine in the presence of L-
NNA did not significantly differ among the three groups

Fig. 4 Effects of EPA-E, the metabolites and the solvent, methanol on the aortic rings extracted from C57BL/6 J mice in vitro. Original tracings
showing that these reagents stimulated relaxation of the aorta after precontraction with prostaglandin F2α. EPA-E and methanol (a solvent of all
fatty acids) did not relax the C57BL/6 J aortic rings (a, b). The EPA-E metabolites EPA, DPA, and DHA induced vasodilation in the aortic rings (c, e, f). In
the presence of L-NNA, the relaxation induced by EPA was decreased in the aortic rings (d). Data are expressed as mean ± SEM; n = 8; ***P < 0.001
vs. Vehicle
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(Fig. 3b). Phenylephrine, an α-adrenergic receptor
agonist, stimulates Ca2+ entry through voltage-gated
and store-operated Ca2+ channels [28], and activates
Ca2+-sensitization pathways such as protein kinase C
(PKC) and Rho-kinase [29, 30]. NO reduces Ca2+ entry
into vascular smooth muscle [31] and c-GMP-dependent
protein kinase causes phosphorylation and inactivation
of myosin light-chain kinase leading to inactivation of
Ca2+-sensitive pathways such as PKC and Rho-kinase
[29]. In these experiments, although chronic EPA-E
administration improved endothelial dysfunction in KKAy-
HF mice, the vascular contractile response in KKAy-HF +
EPA-E mice showed no change compared with KKAy-HF
mice. Further investigations on the vascular contractile re-
sponse are needed.
EPA-E administration did not change plasma glucose

or insulin levels in our experiments. Our data showed
that chronic EPA-E administration improved endothelial
dysfunction independently of glucose homeostasis. It has
been speculated that the vascular protective effects of
EPA-E administration are attributable, at least in part, to
the enhanced endothelial function of vasoprotective factors
such as endothelium-derived relaxation factor including
NO and prostacyclin. To clarify the vasoprotective effects
of EPA-E, the relaxation of aortic rings following the direct
administration of EPA-E in an organ bath was observed.
Despite the beneficial effects of endothelial function in a
previous in vivo study, EPA-E did not directly affect the
vascular reaction. It has been postulated that the improve-
ment of endothelial dysfunction in type 2 diabetic mice by
chronic EPA-E administration is partly due to a decrease in
total cholesterol levels and anti-platelet actions [32]. In
addition, we speculated that EPA-E metabolites may have
vasoprotective effects. In an EPA-E metabolism study,
it was reported that when labeled 14C-EPA-E was orally
administered to rats, EPA, DPA and DHA were identified
as metabolites of EPA-E [33]. In this study, we found that
these metabolites directly affected vascular reactivity.
Our present observations clarified that EPA, DPA, and

DHA as EPA-E metabolites caused vasodilation in C57BL/
6 J mice aortic rings. It has been reported that EPA in-
duces vascular relaxation in both endothelium-dependent
[10] and endothelium-independent [34] manners. Here,
we found that EPA-induced relaxation partly occurred via
eNOS activation because relaxation was attenuated in the
presence of a NOS inhibitor. Further investigations are
needed to clarify the mechanisms underlying vascular re-
laxation by these EPA-E metabolites.

Conclusions
We demonstrated that impairment of endothelium-
dependent relaxation in aortas from type 2 diabetic mice
was prevented by chronic EPA-E administration partly by
the direct vasodilative action of EPA-E metabolites.
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