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Abstract

Background: While epidemiological studies have reported a potential role for hypercholesterolemia (HCE) in
osteoarthritis (OA), the association between HCE and OA has yet to be clarified. Adipose tissue is a primary locus for
cholesterol metabolism and the presence of HCE reportedly causes adipose dysfunction. The knee joint contains
adipose tissue in the form of the infrapatellar fat pad (IPFP), which has been shown to contribute to the
pathophysiology of OA in the knee via the secretion of inflammatory mediators. However, the effect of HCE on the
expression of inflammatory mediators in the IPFP has not been elucidated.

Methods: IPFP and synovial tissues (ST) were extracted from 145 subjects with OA, diagnosed by radiography,
during total knee arthroplasty. OA patients were divided into three groups according to their total cholesterol levels
(Desirable, Borderline high and High) based on the National Cholesterol Education Program Adult Treatment Panel
III (NCEPATP III). We examined the expression of cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-1
(mPGES1), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 using real-time polymerase chain reaction and
compared results among the Desirable, Borderline high and High groups.

Results: The mRNA expression levels of TNF-α, IL-1β, and IL-6 in ST and the IPFP were not significantly different
among the three groups. COX-2 mRNA expression in ST and IPFP was likewise not different among the three
groups. While the mRNA expression level of mPGES1 in ST was also not significantly different, that of mPGES1 in
the IPFP was significantly lower in the High group than in the Desirable and Borderline high groups.

Conclusion: mRNA levels of mPGES-1 are reduced in the IPFP of knee OA patients with HCE. Additional studies are
need to clarify the effect of mPGES-1 down-regulation in OA pathology.
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Background
Numerous reports have suggested that osteoarthritis
(OA), rather than simply being a mechanical stress-related
joint disorder, is also a metabolic syndrome wherein vari-
ous risk factors function together to cause disease initi-
ation and/or development. While hypercholesterolemia
(HCE) is an established risk factor for cardiovascular dis-
orders, epidemiological studies have also reported a

possible role for HCE in OA [1–4]. HCE is associated with
both unilateral and bilateral knee OA independently of
obesity [5]. High serum cholesterol levels are associated
with both knee and generalized OA [4]. However, the as-
sociation between HCE and OA has yet to be clarified.
Adipose tissue is a primary locus for cholesterol me-

tabolism, and the presence of HCE reportedly causes
adipose dysfunction. The knee joint contains adipose tis-
sue in the form of the infrapatellar fat pad (IPFP), which
is intracapsularly and extrasynovially positioned near the
synovium, cartilage and bone [6]. Its location within the
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joint makes it possible for the IPFP to play a role in the
pathophysiology of OA in the knee via the secretion of
inflammatory signals such as interleukin (IL)-6 and
tumor necrosis factor-a (TNF-α) [7, 8]. However, the ef-
fect of HCE on inflammatory cytokine expression in the
IPFP has not been elucidated.
Prostaglandin E2 (PGE2) is synthesized by the arachi-

donic acid cascade, which is formed by the concerted ac-
tion of cyclooxygenases-2 (COX-2) and the specific
terminal synthase microsomal prostaglandin E2 synthase-1
(mPGES-1) [9, 10]. PGE2 is a major PG implicated in in-
flammatory reactions [11–13] and contributes to adipose
tissue metabolism [14]. The IPFP releases higher levels of
PGE2 than subcutaneous adipose tissue in vitro [15]. Sev-
eral studies have reported that mPGES-1 expression and
PGE2 production are lower in human adipocytes derived
from obese patients and adipose tissue harvested from high
fat diet (HFD) mice than those from their non-obese and
control counterparts, respectively [16]. Investigation of the
arachidonic acid cascade in the IPFP of OA patients with
HCE may unveil a possible mechanism for HCE in the initi-
ation and/or development of OA.
Here, we examined the expression levels of various inflam-

matory meditators in the IPFP of OA patients with HCE.

Methods
We studied samples from 31 men and 114 women (mean
± standard deviation [SD] age = 73.2 ± 7.7 years; body mass
index [BMI] = 26.2 ± 4.2 kg/m2) with knee OA diagnosed
by radiography (unilateral Kellgren/Lawrence grades 2 [n =
3/145, 2%], 3 [n = 56/145, 40%], and 4 [n = 86/145, 58%];
serum total cholesterol (TCHO): = 207 ± 39 mg/dl; serum
triglycerides [TG] = 129 ± 70 mg/dl; and serum hemoglobin
1Ac [HbA1c] = 6.0 ± 0.5%). All participants received total
knee arthroplasty at our institution from March 2015 to
June 2017. IPFP and synovial tissue (ST) specimens were
extracted from each operated knee during the surgery. A
piece of each IPFP and ST specimen was instantly frozen in
liquid nitrogen at − 80 °C until RNA extraction.
This study was approved by the Ethics Review Board

of Kitasato University (reference number: KMEO B13–
113). Informed consent was obtained from all partici-
pants the day before surgery for participation in this
study and the extraction and use of their ST.

Real-time (RT)-polymerase chain reaction (PCR) analysis
OA patients were divided into three groups according to
their TCHO levels (Desirable, Borderline high and High)
based on the National Cholesterol Education Program
Adult Treatment Panel III (NCEP ATP III) (Table 1).
Clinical characteristics of patients in each group are
shown in Table 2. Total RNA extraction, cDNA synthe-
sis and real-time PCR methods were conducted as de-
scribed previously [17]. Primers used are listed in

Table 3. We examined the expression of COX-2,
mPGES1, TNF-α, IL-1β, and IL-6 in the IPFP and ST
using real-time PCR and compared these among the
three groups. We also divided the patients into three
groups (normal, overweight, obese) based on the World
Health Organization Body Mass Index (BMI) classifica-
tion (Additional files 1 and 2: Tables S1 and S2).
However, we observed no differences in COX-2 or
mPGES1 expression in the IPFP among the BMI groups
(Additional file 3: Figure S1).

Statistical analysis
Statistical analysis was performed using the SPSS 19.0
statistical package. Analysis of variance and Tamhane’s
T2 test were used for continuous variables, and the
Fisher exact test was used for categorical variables. A p
value of 0.05 was considered statistically significant.

Results
Patients divided into three groups according to their
TCHO based on ATP III showed no differences in age,
male/female ratio, KL grade ratio, BMI, TG, or HbA1c
(Table 1). The expression levels of TNF-α, IL-1β, and
IL-6 in ST and the IPFP were not significantly different
among the three groups (Fig. 1a–f ). COX-2 mRNA ex-
pression in ST and the IPFP was likewise not different
among the three groups (Fig. 2a, c). While the mRNA
expression level of mPGES1 in ST was also not signifi-
cantly different (Fig. 2b), that of mPGES1 in the IPFP
was significantly lower in the High group than the Desir-
able and Borderline high groups (Fig. 2d).

Table 1 NCEP ATP III classification of total cholesterol

Total cholesterol (mg/dl) Classification

< 200 Desirable

200–239 Borderline high

≥240 High

Table 2 Clinical characteristics of patients classified into three
groups according to total cholesterol level

Desirable
(n = 60)

Borderline high
(n = 61)

High
(n = 24)

P

Age (years) 73.5 ± 7.3 72.9 ± 8.6 73.6 ± 6.8 0.912

Male/Female, n 16/44 11/50 4/20 0.453

KL (2/3/4) 1/24/35 1/24/36 1/8/15 0.861

BMI (kg/m2) 26.6 ± 4.2 26.2 ± 4.4 25.1 ± 3.5 0.360

TCHO (mg/dl) 173 ± 22 218 ± 12 267 ± 32 < 0.001

TG (mg/dl) 124 ± 83 127 ± 49 145 ± 81 0.436

HbA1c (%) 6.0 ± 0.5 6.0 ± 0.5 5.8 ± 0.3 0.287

All values indicate mean ± standard deviation unless otherwise indicated
KL Kellgren and Lawrence grade, BMI body mass index, TCHO total cholesterol,
TG triglyceride, HbA1c hemoglobin A1c
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Discussion
Several studies have reported that inflammatory cytokine
levels in the IPFP are affected by obesity. Elevated TNF-α
expression has been observed in the IPFP of HFD mice
[18]. Moreover, TNF-α levels are increased in the
fat-conditioned medium (FCM) obtained from the IPFP of
patients with high BMI (BMI > 30) compared to that from
patients with low BMI (BMI ≤25) [19]. We observed no dif-
ference in the mRNA expression of TNF-α, IL-1β, or IL-6
among Desirable, Borderline high and High cholesterol
groups. HCE in HFD mice is commonly accompanied by

obesity and hyperlipidemia, and HFD models are used to
examine the development of obesity. Taken together, our
results and those of previous studies suggest that elevated
inflammatory cytokine production in the IFPF may be af-
fected by BMI rather than HCE.
Several studies have reported that the arachidonic cas-

cade is altered in several metabolic conditions [14, 16].
Cultured adipocytes from obese rats release PGE at
lower rates than those from lean rats [14]. Further, a
higher degree of adipocyte differentiation in culture is
correlated with reduced basal PGE synthesis for cells de-
rived from obese compared to lean rats [14]. The release
of PGE2 by adipocytes from human visceral and sub-
cutaneous abdominal adipose tissues is markedly re-
duced in excessively obese individuals (BMI > 45 kg/m2).
The expression of mPGES1 is selectively reduced in
WAT of HFD mice [16]. We similarly observed a de-
crease in the expression of mPGES1 in the IPFP of OA
patients with HCE, although no difference was observed
in mPGES1 levels among normal, overweight, and obese
patients. HCE may therefore affect the production of
PGE2 in the IPFP.
A number of studies on articular cartilage or chondro-

cytes have concluded that the inhibition or stimulation
of PGE2 concentration by various molecules or factors
indicates chondro-protective or chondro-destructive ef-
fects by those molecules or factors, respectively [20].
PGE2 has similarly been implicated in inflammation and

Table 3 Primer sequences

Primer Sequence (5′–3′) Product size (bp)

COX-2-F TGGCTGAGGGAACACAACAG 74

COX-2-R AACAACTGCTCATCACCCCA

mPGES1-F GGAGACCATCTACCCCTTCCT 81

mPGES1-R AAGTGCATCCAGGCGACAAA

TNF-α-F CCCATCCCATCTTCCACAGG 74

TNF-α-R GGTGGTCTTATCCCCAACCC

IL-1β-F GTACCTGTCCTGCGTGTTGA 153

IL-1β-R GGGAACTGGGCAGACTCAAA

IL-6-F GAGGAGACTTGCCTGGTGAAA 199

IL-6-R TGGCATTTGTGGTTGGGTCA

GAPDH-F TGTTGCCATCAATGACCCCTT 202

GAPDH-R CTCCACGACGTACTCAGCG

Fig. 1 Effect of cholesterol level on inflammatory cytokine expression in synovial tissues (ST) and the infrapatellar fat pad (IPFP). Tumor necrosis
factor (TNF)-α expression in ST (a) and the IPFP (d). Interleukin (IL)-1β expression in ST (b) and the IPFP (e). Interleukin (IL)-6 expression in ST (c)
and the IPFP (f). GAPDH, glyceraldehyde-3-phosphate dehydrogenase
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joint destruction in animal arthritis models [21, 22].
mPGES-1 expression by inflammatory stimuli correlates
with increased PGE2 production [23]. mPGES-1 is lo-
cated in cartilage in OA patients [24]. Further, mPGES-1
mRNA and protein levels in OA cartilage were increased
compared to normal cartilage [24]. Recent studies have
reported that inhibition of mPGES1 relieves pain in mice
and canine OA models, suggesting that mPGES1 might
be a therapeutic target in OA [13, 25, 26]. In contrast, a
few reports have shown that continuous inhibition of
PGE2 using nonsteroidal anti-inflammatory drugs accel-
erates OA progression [27, 28]. Moreover, PGE2 report-
edly has both anabolic and catabolic functions in
chondrocytes [29, 30]. Continuous suppression of
mPGES-1 in the IPFP of HCE patients may reduce
PGE2 production. Further studies are required to con-
firm this and to clarify how this affects the knee joint.
There are two main limitations of this study. First, we did

not examine the expression levels of inflammatory media-
tors in a control, non-OA patient population; further stud-
ies comparing OA and non-OA populations are needed to
confirm our findings. Second, we did not examine the rela-
tionship between OA pathology and mPGES1 expression.

Conclusions
Expression levels of mPGES-1 are reduced in the
IPFP of knee OA patients with HCE. Additional

studies are needed to clarify the effect of mPGES-1
down-regulation in OA pathology.

Additional files

Additional file 1: Table S1. World Health Organization Body Mass Index
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cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1
(mPGES1) expression in synovial tissues (ST) and the infrapatellar fat pad
(IPFP). OA patients (n = 145) were divided into three groups (normal,
overweight, obese) according to the WHO BMI classification. We exam-
ined the expression of COX-2 and mPGES1 in the IPFP and ST using real-
time PCR and compared these among normal, overweight, and obese
groups. There were no differences in COX-2 or mPGES1 expression in the
IPFP or in ST among the groups. GAPDH, glyceraldehyde-3-phosphate de-
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