
RESEARCH Open Access

Sleeve gastrectomy attenuates high fat
diet-induced non-alcoholic fatty liver
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Abstract

Background: A high-fat diet (HFD) is known to lead to obesity, and contributes to the progression of non-alcoholic
fatty liver disease. The objective of this study was to evaluate the effects of sleeve gastrectomy (SG) on the
progression of HFD-induced hepatic steatosis.

Methods: Fifteen 4-week-old, male Wistar rats were randomly assigned into three groups: NC, HFD + SHAM and
HFD + SG. Their body weight, glucose-lipid metabolism, inflammation indices, hepatic steatosis and fibroblast
growth factor 21 (FGF21) levels were measured.

Results: Postoperatively, body weights in the HFD + SHAM and HFD + SG group rats decreased during the first
week. Thereafter, HFD + SG rats regained their body weight. Differences in insulin, homeostasis model assessment
of insulin resistance, triglyceride, free fatty acid, tumor necrosis factor-α and monocyte chemotactic protein-1 levels
were statistically significant across the three groups (all P < 0.05). Interestingly, FGF21 levels in the HFD + SG group
were markedly lower than in the HFD + SHAM group (P = 0.015), however, there were no differences in the NC
group. Hematoxylin and eosin staining demonstrated that more vacuoles were present in the HFD + SHAM liver
when compared to the HFD + SG liver. Oil-red O staining showed less red dots in the HFD + SG liver.

Conclusions: Despite eating, surgical re-routing of the gut may prevent weight accumulation, regulate glucose-
lipid metabolism and insulin sensitivity, control a chronic inflammatory state, change the secretion pattern of FGF21
and alleviate the severity of fatty liver.
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Background
The rate of morbid obesity, defined by a body mass index
≥40 kg/m2, is expanding worldwide. In the last three de-
cades, rates of being overweight or obese have increased
27.5% for adults, and 47.1% for children [1]. Genetics, so-
cial economy, cultural influences, and other predisposing
factors are known to impact the development and pro-
gression of obesity [2]. One significant characteristic of
obesity is the high occurrence of comorbidities, including
coronary heart disease, type 2 diabetes mellitus and
non-alcoholic fatty liver disease (NAFLD) [3].

Bariatric surgery is an established treatment, which is
part of complex and interdisciplinary therapeutic ap-
proach, for patients with severe obesity and metabolic
syndrome [4], allowing for long term weight loss [5, 6].
Bariatric surgery not only reduces long-term mortality,
but also improves the histopathological aspects of
NAFLD [7, 8]. However, the exact mechanisms under-
lying this have not yet been elucidated.
The main histological characteristic of NAFLD is hep-

atic lipid accumulation/steatosis [9]. The exposure and
overload of fatty acids harm hepatocytes via the intracellu-
lar accumulation of lipid intermediates, which is defined
as lipotoxicity [10]. This hepatic lipid accumulation and
intracellular stressors activate the transcription and release
of pro-inflammatory factors, including interleukin (IL)-6
and tumor necrosis factor (TNF)-α [11]. The elevation in
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circulating levels of pro-inflammatory cytokines, and re-
duced anti-inflammatory factors, result in a chronic,
low-grade inflammatory state that is recognized as an im-
portant pathogenic mechanism of NAFLD [11, 12]. Fur-
thermore, this altered lipid metabolism is believed to be a
central mechanism in the development of insulin resist-
ance, by activating different kinases [13].
Fibroblast growth factor 21 (FGF21), a member of the

fibroblast growth factor family, has emerged as a leading
candidate in the regulation of energy homeostasis,
glucose-lipid metabolism and insulin sensitivity [14, 15].
FGF21 binds to β-klotho and fibroblast growth factor re-
ceptors (FGFRs) and induces the dimerization and auto-
phosphorylation of the FGFR [16]. Activated FGFRs
then initiate their biological functions. Mouse tissue is
reported to express FGF21 in regions including the liver,
adipose tissue [17, 18] and the acinar pancreas [19].
Generally, circulating FGF21 is largely derived from the
liver, and circulating levels correlate well with hepatic
expression [20]. The administration of FGF21 reverses
hepatic steatosis, prevents diet-induced obesity, and alle-
viates insulin resistance and dyslipidemia [15, 21].
Whilst bariatric surgery is effective in over 75% of pa-

tients, revisional surgeries are required in up to 20% of pa-
tients, and the reasons underlying suboptimal outcomes is
currently unclear [22]. One possibility is that patients who
require revisional surgery are not following the recom-
mendations regarding caloric and macronutrient intake.
Recent studies suggest that there is little, if any, reduction
in dietary fat intake in the months and years following sur-
gery [23, 24]. With these data in mind, we hypothesized
that bariatric surgery would alter gut physiology, and pre-
vent the expansion of HFD-induced hepatic steatosis in
obese rats. To test this hypothesis, we performed bariatric
surgery on obese rats, maintained the animals on a HFD,
and assessed the clinical diagnostic criteria of NAFLD as
well as cellular changes in FGF21.

Methods
Animals
Fifteen 4-week-old, male, Wistar rats weighing 52–65 g
were purchased from the Laboratory Animal Center of
Shandong University (Shandong, China). The rats were
individually housed in ventilated cages with a natural
light/dark cycle, at a constant ambient temperature (24 °
C–26 °C) and humidity (50 ± 2%). After a five-day period
of adaptation to laboratory conditions, rats were divided
into three groups: normal chow (NC), high fat diet with-
out sleeve gastrectomy (HFD + SHAM) and HFD with
sleeve gastrectomy (HFD + SG). The normal diet con-
sisted of 10% kcal from fat (D12450B diet, Research
Diets Inc., New Brunswick, NJ, USA), whereas the
HFD consisted of 60% kcal from fat (D12492 diet,
Research Diets Inc.).

Surgical procedures
Halfway through the experiment (3 months), animals
were fasted for 12 h, weighed, anesthetized (4% sevoflur-
ane; RWD Co., Shanghai, China), and placed in the su-
pine position on a surgical board with their extremities
immobilized. For rats in the HFD + SG group, the
greater curvature from the antrum to the fundus across
the forestomach and glandular stomach was incised and
~ 90% of the forestomach and 70% of the glandular
stomach were removed. The incision line in the stomach
was then closed using three layers of polydioxanone su-
tures. For rats in the HFD + SHAM group, laparotomy
was performed to expose the stomach, esophagus, and
small intestine. No other procedure was carried out. Fur-
thermore, operative time was prolonged to induce a
comparable degree of anesthetic stress experienced by
the HFD + SG rats. Following surgery, rats in the HFD +
SHAM and HFD + SG groups received a HFD for 42 d,
whereas rats in the control group received normal chow.

Collection of blood and liver samples
Forty-two d following the operations, the rats fasted over-
night. Blood samples were collected from the hearts of
rats into chilled EDTA tubes containing a dipeptidyl pep-
tidase IV inhibitor. After centrifugation (1000×g) at 4 °C
for 15 min, the supernatant was immediately collected.
The samples were stored at − 80 °C for future analysis.
Liver tissue samples were taken at the time of surgery. For
histochemical examination using hematoxylin and eosin
(H&E) staining, liver samples were embedded into paraffin
and were cut into 6 μm-thick slices. Staining was per-
formed using a commercial kit (#3500, BBC Biochemical,
Atlanta, GA, USA). The size of adipocytes was determined
with an optical microscope (ECLIPSE Ti, Nikon, Japan)
using an NIS-Elements imaging platform purchased from
Nikon Instruments Inc. (Melville, NY, USA). For Oil-red
O staining, liver samples were frozen in liquid nitrogen
and sectioned at 8 μm in thickness using a Cryostat. These
sections were stained by using Oil-red O (Electron Mi-
croscopy Sciences, Hatfield, PA) for 30 min.

Laboratory measurements
Postoperatively, the body weights were monitored
weekly. Serum lipid profiles, including total cholesterol,
triglyceride and free fatty acid (FFA) were measured
using enzyme-linked immunosorbent assay (ELISA,
R&D Systems, Minneapolis, Minnesota, USA).
Plasma insulin was quantified using ELISA, in accord-

ance with the manufacturer’s instructions (R&D Systems).
Prior to operating, and at 2 and 8 weeks postoperatively,
homeostasis model assessment of insulin resistance
(HOMA-IR) was calculated to evaluate insulin resistance
according to the following formula: HOMA-IR = fasting
insulin (mIU/L) × fasting glucose (mmol/L)/22.5.
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Plasma levels of IL-6, IL-1β, monocyte chemotactic
protein-1, TNF-α and FGF21 were assayed with ELISA,
in accordance with the manufacturer’s instructions
(R&D Systems).

Statistical analysis
Results are presented as mean ± the standard error. The
distribution of continuous variables was assessed for
normality using Levene’s test. Differences between
means were analyzed using one-way Analysis of Variance
combined with Bonferroni correction test (P = 0.05/3).
All statistical analyses were two sided, and P < 0.05 was
considered statistically significant. All statistical analyses
were performed using Statistical Analysis System soft-
ware (version 9.1.3, SAS Institute, Cary, NC, USA).

Results
Body weights
Postoperatively, body weights in the HFD + SHAM and
HFD + SG group rats decreased over the course of the
first week (P = 0.021, Fig. 1). Thereafter, HFD + SG rats
regained their body weight, but at a higher rate com-
pared to the HFD + SHAM rats.

Glucose-lipid metabolism
Briefly, differences in insulin levels across the three
groups was statistically significant (P = 0.033, Table 1).
Based on HOMA-IR calculations, the HFD + SG group
rats became significantly more insulin sensitive com-
pared to the HFD + SHAM group (P = 0.021, Table 1).
Triglyceride levels in the NC, HFD + SHAM and HFD

+ SG groups were 1.66 ± 0.42 mmol/L, 2.38 ±
0.26 mmol/L and 2.10 ± 0.38 mmol/L, respectively (P =
0.027, Table 1). FFA levels in the NC, HFD + SHAM and
HFD + SG groups were 472.96 ± 61.27 mmol/L, 737.76 ±
179.86 mmol/L and 716.50 ± 197.11 mmol/L, respect-
ively (P = 0.039, Table 1). However, there were no

statistically significant differences between the HFD +
SHAM and HFD + SG groups (both P > 0.05).

Inflammation
Differences in TNF-α and monocyte chemotactic
protein-1 levels across the three groups were statistically
significant (both P < 0.05, Table 1).

Hepatic steatosis
H&E staining showed that more vacuoles were present
in the HFD + SHAM liver compared to the HFD + SG
liver. Consistently, Oil-red O staining showed less red
dots in the HFD + SG liver (Fig. 2).

FGF21
Interestingly, FGF21 levels were markedly lower in the
HFD + SG group, compared to the HFD + SHAM group
(P = 0.015, Table 1). However, there was no difference
observed in the NC group (Table 1, Fig. 3).

Discussion
In this study, we investigated the effect of bariatric sur-
gery on NAFLD progression in obese rats maintained on
a HFD, which is known to produce metabolic dysfunc-
tion in the liver. We found that despite eating, bariatric
surgery could prevent weight accumulation, regulate
glucose-lipid metabolism and insulin sensitivity, and
control a chronic inflammatory state in this rat model of
bariatric surgery. Additionally, FGF21 levels in the HFD
+ SG group were markedly lower than in the HFD +
SHAM group. H&E staining and Oil-red O staining sug-
gested that the severity of fatty liver had been alleviated
after surgery. These data suggest that bariatric surgery
can relieve risk factors known to influence the develop-
ment of NAFLD in HFD rats.
FGF21 phosphorylates Akt and ameliorates insulin re-

sistance in peripheral tissues [25]. Reduced insulin resist-
ance decreases ChREBP-mediated de novo lipogenesis

Fig. 1 Body weight of rats 6 weeks after surgery. Data are mean ± standard deviation. *P < 0.05
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by promoting glucose utilization in the liver, and by inhi-
biting hepatic gluconeogenesis, decreasing the accumu-
lation of lipids [26, 27]. Interestingly, FGF21 gene
transfer has been shown to significantly reduce hyperin-
sulinemia and attenuate insulin resistance in mice fed a
HFD, leading to significant improvements in glucose tol-
erance [28]. Additionally, FGF21 infusion has been dem-
onstrated to improve insulin responsivity in wild-type,
and FGF21 gene transfer mice [21, 28]. This effect may
be explained by the insulin-independent activity of
FGF21 in enhancing glucose uptake in muscle and adi-
pose tissue [29], through the activation of ERK1/ERK2,
and through the induction of glucose transporter-1 ex-
pression [30, 31]. Furthermore, systemic administration
of FGF21 results in the amelioration of glucose and lipid
parameters in diabetic rodents, as well as nonhuman pri-
mates [15, 16, 32, 33].
FGF21 possesses potent activity in enhancing lipid oxida-

tion as well as suppressing triglyceride synthesis [30, 34]. A
recent study showed that FGF21 limits FFA accumulation
by potentiating the activation of long chain fatty acids to
acyl-CoA, and shunting them towards mitochondrial
β-oxidation. This leads to attenuated hepatic steatosis and

diminishes the lipotoxic effects [35]. Moreover, FGF21 has
been identified as a key modulator for adiponectin secre-
tion in white adipose tissue, which stimulates the deacetyla-
tion of ceramides and decreases lipotoxicity [36, 37]. Daily
injections of FGF21 inhibited the expression of a battery of
genes involved in fatty acid and triglyceride synthesis,
resulting in a dramatic reduction in hepatic triglyceride
levels [15]. Similarly, Gao et al. observed an acute effect of
FGF21 gene transfer in the livers of lean mice, and in mice
fed a high-fat diet, showing a marked attenuation in the ex-
pression of multiple key genes involved in lipogenesis,
resulting in a corresponding alleviation in fatty liver [28].
FGF21 overexpression reverses the upregulated ex-
pression of SREBP-1c and FAS, two key enzymes re-
quired for lipid synthesis, in fatty acid-treated human
liver-derived HepG2 cells [34].
A recent study revealed a novel functional interaction

between the FGF21 system and proinflammatory signal-
ing involved in the repressive effects of TNF-α on the
expression of β-Klotho, a pivotal molecule in the cellular
machinery that mediates the response to FGF21 [38]. It
is known that FGF21 also counteracts the negative
effects of TNF-α on adiponectin secretion [37]. The

Table 1 Effect of high fat diet on glucose-lipid metabolism and inflammation across the three groups

Variables NC HFD + SHAM HFD + SG P

total cholesterol (mmol/L) 6.57 ± 0.14 7.07 ± 0.30 6.85 ± 0.65 0.177

triglyceride (mmol/L) 1.66 ± 0.42 2.38 ± 0.26 2.10 ± 0.38 0.027

free fatty acid (μmol/L) 472.96 ± 61.27 737.76 ± 179.86 716.50 ± 197.11 0.039

Insulin (mIU/L) 44.9 ± 6.1 47.7 ± 6.5 36.86 ± 4.9 0.033

homeostasis model assessment of insulin resistance 10.62 ± 1.63 11.75 ± 2.14 8.71 ± 1.01 0.039

tumor necrosis factor-α (pg/mL) 270.03 ± 66.37 378.53 ± 25.34 317.31 ± 72.94 0.037

monocyte chemotactic protein-1 (pg/mL) 496.97 ± 38.16 634.29 ± 49.93 522.85 ± 65.12 0.003

interleukin-6 (pg/mL) 93.15 ± 12.70 96.37 ± 15.60 79.09 ± 29.58 0.419

interleukin-1β (pg/mL) 18.15 ± 5.32 13.11 ± 3.66 19.39 ± 6.87 0.203

fibroblast growth factor 21 (pg/mL) 103.29 ± 9.88 165.35 ± 29.24 112.43 ± 16.64* 0.001

Data are mean ± standard deviation. *P < 0.016, vs. HFD + SHAM

Fig. 2 Representative images of hematoxylin and eosin staining and Oil-red O staining of liver slice in three groups

Pei et al. Lipids in Health and Disease          (2018) 17:243 Page 4 of 7



complex cross-talk between the FGF21 system and in-
flammatory pathways is also highlighted by the fact that
FGF21 is capable of inhibiting NF-κB activity [39], is in-
duced by inflammatory stimuli, and protects animals
against the toxic effects of lipopolysaccharide [40]. In
line with these above studies, our data showed that after
surgery, rats in the HFD + SG group had lower FGF21
levels (Table 1, Fig. 3). Interestingly, we also observed an
improvement of body weight, glucose-lipid metabolism
and insulin sensitivity, and inflammatory state (Table 1).
Additionally, H&E staining and Oil-red O staining sug-
gested that the severity of fatty liver had been alleviated
after surgery (Fig. 2).
As noted previously, the treatment of obese mice with

FGF21 normalizes liver function, and reduces fibrosis
and inflammation. Similarly, it was recently reported at
the 2017 Meeting of the European Association for the
Study of Liver Disease that pharmacological treatment
with FGF21 reduces fatty liver. In humans, FGF21 serum
levels correlate with obesity and importantly appear to
reflect the degree of fatty infiltrations in the liver, sug-
gesting that levels could serve as a marker for NAFLD

[41]. Despite these beneficial effects, the application of
FGF21 in clinical practice is limited by its short half-life,
which is less than 2 h in mice [42], and potential toxicity
in skeletal homeostasis [43, 44].
There are some limitations in this study. Primarily, the

diets were freely available to all the mice in each group,
so the intake of each individual mouse may have been
unequal. Additionally, data from different mouse strains
are highly variable due to different genetic backgrounds
and lifestyles. Therefore, these results must be confirmed
in other animal models.

Conclusion
In summary, our data are consistent with our original hy-
pothesis that despite eating, surgical re-routing of the gut
can prevent weight accumulation, regulate glucose-lipid
metabolism and insulin sensitivity, control a chronic in-
flammatory state, change the secretion of FGF21 and alle-
viate the severity of fatty liver. Further studies on this
therapy are required to elucidate the molecular and cellu-
lar basis underlying NAFLD progression in obesity. Larger,
well-designed studies, including a diverse group of

Fig. 3 Plasma fibroblast growth factor 21 cconcentration in three groups. Data are mean ± standard deviation. *P < 0.05
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animals, should be performed to validate these results and
expand the understanding of the biological mechanisms
involved in the association between FGF21 and NAFLD
progression.
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