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Abstract

Background: The rabbit is widely used as an important experimental model for biomedical research, and shows
low adipose tissue deposition during growth. Long non-coding RNAs (lncRNAs) are associated with adipose
growth, but little is known about the function of lncRNAs in the rabbit adipose tissue.

Methods: Deep RNA-sequencing and comprehensive bioinformatics analyses were used to characterize the
lncRNAs of rabbit visceral adipose tissue (VAT) at 35, 85 and 120 days after birth. Differentially expressed (DE)
lncRNAs were identified at the three growth stages by DESeq. The cis and trans prediction ways predicted the
target genes of the DE lncRNAs. To explore the function of lncRNAs, Gene Ontology (GO) enrichment and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed on the candidate genes.

Results: A total of 991,157,544 clean reads were generated after RNA-Seq of the three growth stages, of which,
30,353 and 107 differentially expressed (DE) lncRNAs were identified. Compared to the protein-coding transcripts,
the rabbit lncRNAs shared some characteristics such as shorter length and fewer exons. Cis and trans target gene
prediction revealed, 43 and 64 DE lncRNAs respectively, corresponding to 72 and 20 protein-coding genes. GO
enrichment and KEGG pathway analyses revealed that the candidate DE lncRNA target genes were involved in
oxidative phosphorylation, glyoxylate and dicarboxylate metabolism, and other adipose growth-related pathways.
Six DE lncRNAs were randomly selected and validated by q-PCR.

Conclusions: This study is the first to profile the potentially functional lncRNAs in the adipose tissue growth in
rabbits, and contributes to our understanding of mammalian adipogenesis.
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Background
Obesity is becoming increasingly prevalent in both devel-
oped and developing countries, and the proportion of over-
weight and obese individuals is expected to reach 89 and
85% in men and women respectively,by 2030 [1, 2]. Since
excessive weight gain is associated with diseases of the meta-
bolic syndrome, including hyperglycemia, dyslipidemia,

hypertension, atherosclerosis [3, 4], diabetes and cardiovas-
cular disease, the global rise in obesity poses a considerable
threat to human health [5, 6]. Obesity manifests as
over-accumulation of fat in white adipose tissue (WAT), due
to an increase in the size and number of adipocytes [7].
WAT is categorized into two types based on its distribution:
the visceral adipose tissue (VAT) which is located within
specific regions of the abdominal cavity, and subcutaneous
adipose tissue (SAT), which is present below the skin [8].
The amount of fat in both VATand SAT is closely related to
the incidence of metabolic diseases [9], and excessive fat ac-
cumulation in VAT in particular is regarded as a high risk
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factor for metabolic disorders and cardiovascular diseases
[10–12]. Therefore, studies on visceral adipocyte differenti-
ation and its potential regulatory mechanisms have long
been the core of obesity research. The development and
function of VAT is age dependent, as one study showed that
protein synthesis in bovine adipose tissue was more active
in fetuses than in adults [13], as were the transcription
factors PPARG, C/EBP and STAT which are known to
promote the development of WAT [14].
Non-coding RNAs (ncRNAs) are functional RNAs that

do not encode proteins, but play important roles in vari-
ous cellular processes [15–17]. Based on their functions
and lengths, ncRNAs are classified into different cat-
egories including microRNAs (miRNAs), transfer RNAs
(tRNAs), small interfering RNAs (siRNAs), ribosomal
RNAs (rRNAs), and the long non-coding RNAs
(lncRNAs) which are > 200 nucleotides long [18–20].
With the development of high-throughput technologies
like RNA-seq, large-scale expression analysis has acceler-
ated the discovery and characterization of lncRNAs [21,
22]. The latter plays critical roles in many biological pro-
cesses such as epigenetic modification [23, 24], gene
transcription [23, 25], cell differentiation [24, 26], growth
and development, as well as in some obesity-related dis-
eases [27].
Rabbits are an economically important livestock ani-

mal, and are raised for meat and fur production, as well
as experimental models for biomedical research. Rabbit
meat is protein rich, and low in cholesterol, and fat.
Since the adipose tissue in rabbits has a lower deposition
rate during growth, the rabbit is an ideal model to study
adipose regulation [28–32]. Several lncRNAs involved in
adipogenesis in mammals like cattle [33], pigs [34] and
chicken [35], have been identified but the adipose tissue
growth-related lncRNAs in rabbits have not been pro-
filed so far.
We used the RNA-seq based approach to determine

lncRNAs expression levels in rabbit VAT at 35, 85 and
120 days after birth, and identified 30,353 lncRNAs of
which 107 were differentially expressed indicating their
potential in rabbit adipogenesis. Our findings provide
further insights into the regulatory function of lncRNAs
in rabbits and for annotating the rabbit genome, as well
as contribute to better understanding of adipogenesis.

Materials and methods
Animal and sample collection
Tianfu Black rabbits (native species in Sichuan province
of China) aged 35, 85 and 120 days were used in this
study. Given the plasticity and maturation of rabbit VAT
[36], three biological replicates of peri-renal fat were col-
lected for 35 days (YR) and 120 days (TR), and two for
85 days (MR). The samples were snap frozen in liquid
nitrogen, and stored at − 80 °C until RNA extraction.

Total RNA extraction
Total RNA was isolated using Trizol Reagent (Life Tech-
nologies, Carlsbad, CA, USA). The purity and integrity
of the RNA were determined using Nanodrop (Thermo
Fisher Scientific, Waltham, MA, USA) and Agilent Bioa-
nalyzer 2100 system (Agilent Technologies, CA, USA) re-
spectively, and RNA concentration was measured using a
Qubit® RNA Assay Kit and Qubit® 2.0 Fluorometer (Life
Technologies, Carlsbad, CA, USA). Integrity of RNA was
assessed using. Only samples that had RNA Integrity
Number scores > 8 were used for sequencing.

Library construction and sequencing
The libraries construction and sequencing were per-
formed by Mega Genomics Co.,Ltd., (Beijing, China).
Briefly, 1 μg RNA was taken per sample and rRNA was
removed using a NR603-VAHTS Total RNA-seq (HMR)
Library Prep Kit (Vazyme Biotech Co.,Ltd., Nanjing,
China). First-strand cDNA was synthesized using ran-
dom hexamer primers, followed by the second-strand
synthesis using DNA polymerase I and RNase H. The
resulting double-stranded DNA was purified by AMPure
XP beads, and a poly A tail was ligated to the sequen-
cing joint. The correct-sized fragments were purified by
AMPure XP beads. The USER enzyme was used to de-
grade the cDNA strands containing U instead of T, and
the first-strand cDNA was sequenced, thereby preserv-
ing the direction of the RNA. Finally, PCR amplification
was conducted and the products were purified (AMPure
XP beads) for constructing the cDNA libraries.
The quality of the latter was assessed using Agilent

BioAnalyzer 2100 system and qPCR. The libraries were
sequenced on an Illumina HiSeq X Ten platform and
150-bp long paired-end reads were generated.

Transcriptome assembly and lncRNAs detection
To ensure the accuracy of information analysis, the
adapter and low-quality reads were removed from the raw
reads, and only the high quality clean reads were used for
subsequent analysis. They were aligned to the rabbit refer-
ence genome (GCF_000003625.3_OryCun2.0_genomic.fa),
along with annotated genes (GCF_000003625.3_Ory-
Cun2.0_genomic.gff) using histat2 (2.0.5) software with
the parameters ‘-dta-rf-p 1-x-1-1-S File for SAM output
(default:stdout)’ [37]. The StringTie program [38, 39] was
used to splice the Mapped Reads. LncRNA identification
consisted of two steps: basic screening and potential cod-
ing ability screening. The transcripts longer than 200 bp,
containing two or more exons, and fragments per kilobase
of transcript per million fragments mapped (FPKM) [40]
≥ 0.1 were first selected by basic screening. Subsequently,
CPC [41], CNCI [42], CPAT [43], and Pfam protein struc-
ture domain analysis [44] were used to screen for potential
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coding transcripts. Stringtie (1.3.3) was used to quantify
transcripts and normalize the expression values (FPKM).

Screening of differentially expressed lncRNAs
Differentially expressed (DE) lncRNAs between any two
libraries were identified by DESeq (1.26.0), with padjust
< 0.01 and an absolute value of the |log2(fold change)| ≥
2.0 or ≤ 1/2.0 as the threshold. All DE lncRNAs in eight
libraries were clustered using the Heatmaps in R soft-
ware package.

Target gene prediction and functional enrichment
analysis
Most of the lncRNAs deposited in current databases
have not yet been functionally annotated. Therefore, pre-
diction of their functions is based on the functional an-
notations of their related cis and trans mRNAs. Coding
genes located at the distance of 100-kb were considered
potentially cis-regulated target genes, while LncTar [45]
was used to predict the potentially trans-regulated target
genes of the DE lncRNAs. GO enrichment and KEGG
pathway analyses of the candidate DE lncRNA target
genes were then performed using GOseq [46] and R
package, respectively. Significance was calculated using
the Expression Analysis method, and P value < 0.05 was
considered significant.

Validation of DE lncRNAs by q-PCR
Primers for the lncRNAs and internal controls (Add-
itional file 1) were designed using Primer-BLAST
(https://www.ncbi.nlm.nih.gov/tools/primer-blast/).
Total RNA was converted to cDNA using a Prime-
Script™ RT Reagent Kit containing gDNA Eraser
(TAKARA, Dalian, China), and oligo (dT) and random
hexamer primers. The q-PCR was performed using
SYBR Premix Ex Taq™ II (TAKARA) according to the
manufacturer’s instructions. The reaction mix consisted
of 5 μl SYBR Premix Ex Taq™ II, 1 μl template cDNA,
0.4 μl of 10 μM forward and reverse primers, and 3.2 μl
dH2O to a final volume of 10 μl. The reactions were per-
formed on a Rotor gene 6000 PCR System (QIAGEN,
Hiden, Germany) as follows: 95 °C for 10s, followed by
40 cycles of 95 °C for 5 s, and 20s at the Tm (Additional
file 1). Melting curve analysis was performed from 65 °C
to 95 °C with increments of 1.5 °C. The expression levels
of lncRNAs were normalized to HPRT1 and GAPDH.
Relative gene expression levels were calculated using the
2-ΔΔCt method [47], and data were expressed as mean ±
standard error of the mean (SEM).

Statistical analysis
Statistical analysis was performed using the SPSS Statis-
tics 20.0 (SPSS Inc., Chicago,

IL, USA), and P < 0.05 was considered statistically
significant.

Results
Overview of RNA-Seq
To identify lncRNAs expressed during the growth of
rabbit adipose tissue, we constructed 8 cDNA libraries
(YR-1,YR-2,YR-3, MR-1,MR-2,TR-1,TR-2 and TR-3)
from the peri-renal adipose tissues of 35 (YR), 85 (MR),
and 120 (TR) day-old rabbits. The libraries were se-
quenced using the Illumina HiSeq X Ten platform, and
1,016,066,842 raw reads were generated. After filtering
adaptor sequences and low-quality reads, we finally ob-
tained 991,157,544 clean reads. The percentage of clean
reads and GC content of libraries ranged from 97.29–
98.12% and 49.5–51.65%. After mapping the clean reads
to the rabbit reference genome, approximately 89.53% of
the clean reads were selected for further analysis
(Additional file 2).

Characterization of lncRNAs in rabbit adipose tissue
The RNA-seq produced 30,353 lncRNAs (Fig. 1a,
Additional file 3) and 119,502 protein-coding transcripts.
The lncRNA transcripts included 11,498 lincR-
NAs(37.9%), 4440 anti-sense lncRNAs (14.6%), 11,382
intronic lncRNAs (37.5%) and 3033 sense lncRNAs
(10%) (Fig. 1b).The average length of the lncRNAs was
considerably shorter compared to that of the
protein-coding genes (Fig. 2a). Furthermore, the
protein-coding genes with average 7.8 exon numbers
were more than the lncRNAs with average 2.3 exons
(Fig. 2b), and the open reading frame (ORF) size in the
protein-coding genes was longer than the ORFs of
lncRNAs(most of lncRNAs were within 100 bp) (Fig. 3a).
In addition, lncRNAs exhibited a lower level of expres-
sion than the protein-coding genes (Fig. 3b).

Identification of DE lncRNAs
The expression levels of the lncRNAs were calculated by
FPKM using DESeq. A total of 107 DE lncRNAs were
identified (p < 0.05) during the growth of adipose tissue
(Fig. 4), of which 42.7% were up-regulated and 57.3%
were down-regulated. The DE lncRNAs with similar ex-
pression levels across the different libraries were
screened and clustered using the systematic cluster ana-
lysis (Fig. 5a). Pairwise comparison of the YR, MR and
TR lncRNA data showed 59, 59 and 53 DE lncRNAs be-
tween the respective growth stages. A Venn diagram
constructed using these DE lncRNAs showed that 54 DE
lncRNAs overlapped between YR vs MR and TR vs MR
comparisons, while 5 DE lncRNAs (MSTRG.131023.1,
MSTRG.258713.8, MSTRG.262225.9, MSTRG.80672.4,
MSTRG.93331.2) were common to all three growth
stages (Fig. 5b).
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Enrichment analysis of the target genes of DE lncRNAs
The potential cis-regulated target genes of lncRNAs
were first predicted and 43 out of the 107 DE lncRNAs
corresponded to 72 protein-coding genes. Gene ontology
(GO) analysis [48] of the cis lncRNA targets showed sig-
nificant enrichment of 192 GO terms (P < 0.05), of which
U2-type spliceosomal complex (GO:0005684), nucleic
acid transmembrane transporter activity (GO:0051032)
and regulation of DNA ligation (GO:0051105) were the
top listed GO terms involved in cellular component
(CC), molecular function (MF) and biological process
(BP) respectively (Fig. 6a). In addition, several terms as-
sociated with adipose accumulation like cell morphogen-
esis (GO:0000902), macromolecule metabolic process
(GO:0043170) and lytic vacuole (GO:0000323) were also
highly enriched. Furthermore, 20 Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways were enriched,

of which several were related to adipocyte growth such
as oxidative phosphorylation (KO00190), glyoxylate and
dicarboxylate metabolism (KO00630), and calcium sig-
naling pathway (KO4323) (Fig. 6b). Interestingly, we also
found target genes including GCSH, NDUFS5,
HNRNPA3, GSN, CYSLTR2, and TFIP11, which were an-
notated with adipose growth-related GO terms and
pathways.
Prediction of the trans-regulated target genes showed

that, 64 DE lncRNAs corresponded to 20 protein-coding
genes, with significant enrichment of 124 GO terms (P <
0.05), including carbon-oxygen lyase activity (GO:0016835),
regulation of catabolic process (GO:0009894) and cell cycle
process (GO:0022402) (Fig. 7a). KEGG analysis revealed 5
enriched pathways (Fig. 7b) including the Jak-STAT
signaling (KO04630) and Purine metabolism pathways
(KO00230). Taken together, the majority of target genes of

Fig. 2 Comparison between rabbit lncRNAs and protein-coding genes. a Transcript size distribution of rabbit lncRNAs and protein-coding genes.
b Exon numbers of rabbit lncRNAs and protein-coding genes

Fig. 1 Identification of rabbit lncRNAs. a The Venn diagram of lncRNA transcripts from four tools CNCI (Coding-Non-Coding Index), CPC (Coding
Potential Calculator), PFAM (the Protein Families Database), and CPAT (Coding Potential Assessment Tool). The lncRNAs identified by all four
analytical tools were used in subsequent analyses. b The number of the four lncRNA types
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the DE lncRNAs in different growth stages were related to
adipose development and growth.

Validation of DE lncRNAs
To validate the RNA-Seq results, we randomly selected six
DE lncRNAs and examined their expression patterns at
the three growth stages by q-PCR. The results showed
that all six lncRNAs (MSTRG.118114.1, MSTRG.93684.2,
MSTRG.13808.1, MSTRG.20558.1, MSTRG159118.2,
MSTRG.67280.1) were differentially expressed at different
stages. In addition, the six lncRNAs exhibited a similar
trend between the results of RNA-seq and q-PCR (Fig. 8).
Therefore, the FPKM obtained from RNA-seq can be reli-
ably used to determine lncRNAs expression.

Discussion
LncRNAs play important roles in genomic imprinting,
cellular trafficking and organization, as well as regulation
of gene expression and dosage compensation [49]. How-
ever, in contrast to mice [50, 51] and humans [52], lim-
ited information is available regarding rabbit lncRNAs.
We identified 30,353 lncRNAs in the rabbit peri-renal

adipose tissues, which is more than the number reported
for chicken [53, 54] and pigs [34]. This may be the result
of the differences between the species. To the best of
our knowledge, this is the first report to systematically
identify lncRNAs at the three growth stages of rabbit
VAT: 35, 85, and 120 days after birth using RNA-Seq. Six
of these DE lncRNAs were validated using q-PCR, and
showed similar trends as the RNA-Seq results, indicating
that our approach was reliable and accurately reflected
the differential lncRNA expression during adipose
growth in rabbit.
Compared to previous studies on other species, the

rabbit lncRNAs were shorter, and had fewer exons,
shorter ORFs and lower expression levels compared to
the protein-coding genes [55–57]. These characteristics
of lncRNAs are common across mammals, and are likely
significant to their regulatory function, in addition to
acting as a template for identifying the lncRNAs of dif-
ferent mammalian species.
In this study, we detected a total of 107 DE lncRNAs

in the pairwise comparisons of different growth stages of
rabbit VAT. The numbers of down-regulated lncRNAs

Fig. 3 The distribution of open reading frame(ORF) size and expression level of the lncRNAs and protein-coding genes. a Distribution of ORF
sizes in the lncRNAs and protein-coding genes. b Expression level analysis in the lncRNAs and protein-coding genes

Fig. 4 Number of up-regulated and down-regulated lncRNAs in the rabbit peri-renal adipose at three growth periods
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was higher than that of the up-regulated lncRNAs, in-
dicating that most lncRNAs were involved in the
early adipose growth. In addition, 54 lncRNAs were
differentially expressed in both the YR vs MR and TR
vs MR comparisons, although their expression levels
were different. This indicates that the DE lncRNAs
likely play different role in the different stages of
VAT growth. Taken together, the DE lncRNAs identi-
fied in our study are important regulators of rabbit
adipose growth.
Our and others’ studies were not able to infer the

function of lncRNAs from their sequences and struc-
tures [58, 59]. LncRNAs regulate the expression of
nearby or distal genes, respectively known as cis or trans
regulation [60]. We predicted the potential cis and trans
regulated target genes of the 107 DE lncRNAs, and de-
termined their potential biological relevance using GO
and KEGG analysis.

The cis-regulated target genes showed significant en-
richment in GO terms associated with lipid metabolism
and functions of adipose tissue, such as mRNA metabolic
process, cellular protein modification process, cell part
morphogenesis, mast cell cytokine production, histone
H2B ubiquitination, response to corticotropin-releasing
hormone, mast cell activation involved in immune re-
sponse, macromolecule metabolic process, growth and
lytic vacuole organization. Pathway analysis showed that
the cis-target genes of the DE lncRNAs were mainly in-
volved in oxidative phosphorylation, glyoxylate and dicar-
boxylate metabolism, glycine, serine and threonine
metabolism, and calcium signaling pathway. Calcium is a
key intracellular signaling mediator regulating numerous
cellular processes [61]. Activation of CaSR, an extracellu-
lar Ca2+ sensor, in the visceral white adipose progenitor
cells increases proliferation and adipocyte differentiation
[62]. Some of the cis target protein-coding genes are

Fig. 5 Analyses of DE lncRNAs in the RNA-Seq libraries. a Hierarchical clustering analysis of lncRNA expression profiles from 8 libraries with 107
DE lncRNAs.Data are expressed as FPKM.Red - relatively high expression, Green - relatively low expression. b Venn diagram showing the DE
lncRNAs at the three growth periods

Fig. 6 GO enrichment analysis and KEGG pathway enrichment analysis of the cis-regulated target genes. a The top 10 significant BP, MF and CC
terms in GO enrichment analysis at p-value < 0.05. b The KEGG enrichment analysis, with the vertical axis showing the significantly enriched
pathways with p-value < 0.05
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involved in VAT growth, for e.g. GCSH, NDUFS5,
HNRNPA3, GSN, CYSLTR2, and TFIP11. These results in-
dicate the possible roles of the DE lncRNAs in regulating
adipogenesis. Recent studies have shown that lncRNAs
such as PU.1 antisense lncRNA, ADINR, lncRNA U90926

and NEAT1 directly or indirectly regulate expression of
PPARγ [63–66]. The PU.1 antisense lncRNA was discov-
ered within the mouse PU.1 locus [67], and promoted adi-
pogenesis by transcriptionally repressing the adjacent
PU.1 mRNA [63].

Fig. 7 GO enrichment analysis and KEGG pathway enrichment analysis of the trans-regulated target genes. a The top 10 significant BP, MF and
CC terms of GO enrichment analysis at p-value < 0.05. b The KEGG enrichment analysis, with the vertical axis showing the significantly enriched
pathways with p-value < 0.05

Fig. 8 Validation of six randomly selected DE lncRNAs by q-PCR
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Some lncRNAs can also regulate their target genes in
the trans mode [68], and the trans-regulated target
genes predicted in this study were enriched in MF terms
like immune system, signal transduction, and nucleotide
metabolism and BP terms including cell cycle process,
coenzyme metabolic process, regulation of cell differen-
tiation and regulation of multicellular organismal devel-
opment. Some of the trans target protein-coding genes
were involved in VAT growth such as IL10, PDE6D,
MAFB, and PCBD2. Large scale genomic studies in re-
cent years have furthered our understanding of lncRNAs
as functional adipogenic regulators [69]. IL-10, an
anti-inflammatory cytokine is known to contribute to
childhood obesity [70, 71], and Liu et al found that IL-10
and the downstream JAK-STAT pathway were down
-regulated in obese children with hypertriglyceridemia
and in HFD obese rats [72]. This, indicated a protective
effect of IL-10 on lipid metabolic disorders, especially
hypertriglyceridemia. Therefore, the DE lncRNAs might
trans-regulate adipogenic differentiation and lipid me-
tabolism by targeting genes involved in the relevant sig-
naling pathways. In conclusion, we identified lncRNAs
that regulate adipose growth and apoptosis through cis
or trans-acting mechanisms. In future studies, we will
investigate the functions of some of these DE lncRNAs
in order to elucidate the regulatory mechanisms and po-
tential therapeutic targets for obesity.

Conclusions
This is the first report of the lncRNA profile of rabbit
VAT at different stages of growth, which identified 107
DE lncRNAs associated with adipogenetic pathways like
oxidative phosphorylation, cell part morphogenesis and
glyoxylate and dicarboxylate metabolism. These DE
lncRNAs are thus involved in the development and me-
tabolism of adipose tissue in rabbits.

Additional files

Additional file 1: The Primer information of lncRNA for qPCR validation
(XLSX 11 kb)

Additional file 2: Overview of RNA-seq. (XLSX 10 kb)

Additional file 3: List of 30353 annotated lncRNA loci. (XLSX 1322 kb)
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