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Abstract

Background: Cholesterol is an essential component in human development. In fetuses affected by intrauterine
growth restriction (IUGR), fetal blood cholesterol levels are low. Whether this is the result of a reduced
materno-fetal cholesterol transport, or due to low fetal de novo synthesis rates, remains a matter of debate.
By analyzing cholesterol interbolites and plant sterols we aimed at deeper insights into transplacental
cholesterol transport and fetal cholesterol handling in IUGR with potential targets for future therapy. We
hypothesized that placental insufficiency results in a diminished cholesterol supply to the fetus.

Methods: Venous umbilical cord sera were sampled post-partum from fetuses delivered between 24 weeks of
gestation and at full term. IUGR fetuses were matched to 49 adequate-for-age delivered preterm and term neonates
(CTRL) according to gestational age at delivery. Cholesterol was measured by gas chromatography-flame ionization
detection using 5a-cholestane as internal standard. Cholesterol precursors and synthesis markers, such as lanosterol,
lathosterol, and desmosterol, the absorption markers, 5α-cholestanol and plant sterols, such as campesterol and
sitosterol, as well as enzymatically oxidized cholesterol metabolites (oxysterols), such as 24S- or 27-hydroxycholesterol,
were analyzed by gas chromatography-mass spectrometry, using epicoprostanol as internal standard for the non-
cholesterol sterols and deuterium labeled oxysterols for 24S- and 27-hydroxycholesterol.

Results: Mean cholesterol levels were 25% lower in IUGR compared with CTRL (p < 0.0001). Lanosterol and
lathosterol to cholesterol ratios were similar in IUGR and CTRL. In relation to cholesterol mean, desmosterol,
24S-hydroxycholesterol, and 27-hydroxycholesterol levels were higher by 30.0, 39.1 and 60.7%, respectively, in
IUGR compared to CTRL (p < 0.0001). Equally, 5α-cholestanol, campesterol, and β-sitosterol to cholesterol ratios
were higher in IUGR than in CTRL (17.2%, p < 0.004; 33.5%, p < 0.002; 29.3%, p < 0.021).

Conclusions: Cholesterol deficiency in IUGR is the result of diminished fetal de novo synthesis rates rather
than diminished maternal supply. However, increased oxysterol- and phytosterol to cholesterol ratios suggest
a lower sterol elimination rate. This is likely caused by a restricted hepatobiliary function. Understanding the
fetal cholesterol metabolism is important, not only for neonatal nutrition, but also for the development of
strategies to reduce the known risk of future cardiovascular diseases in the IUGR fetus.
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Background
Intrauterine growth restriction (IUGR) is a condition
where the fetus does not reach its genetically determined
growth potential [1, 2]. Affecting approximately 3–8% of
all pregnancies it is a major cause of fetal mortality and
morbidity; it is also generally considered an independent
risk factor for the development of cardiovascular diseases
(CVD) later in life [3–6]. Although its pathogenesis re-
mains enigmatic, factors, such as disturbed blood perfu-
sion of the placenta with events of hypoxia-reperfusion
injury, increased oxidative stress, accumulation of oxidized
LDL, atherogenic changes, and placental damage, have
been suggested to play key roles in its etiology [7–9]. Con-
sequently, the resulting “placental insufficiency” leads to
fetal malnutrition. One component that is believed to play
a decisive role in cellular growth and functionality - and in
fetal development - is cholesterol. Cholesterol is the most
important sterol in humans and, besides its function in
membrane fluidity, it is also a precursor of bile acids and
steroid hormones [10–14].
Various enzymatic defects at different stages of choles-

terol biosynthesis have been reported and are linked to
abnormal fetal development. The most common inborn
error of cholesterol synthesis is the Smith-Lemli-Opitz
syndrome (SLOS), a 7-dehydrocholesterol-Δ7-reductase
deficiency. Clinically, patients frequently present with
structural abnormalities of the brain, the skeleton and
the skin, underlining the important role of cholesterol in
fetal development [15, 16].
In IUGR, cholesterol concentration in fetal blood is low

[17–23]. In particular, the high-density lipoprotein (HDL)
fraction, which is the main cholesterol acceptor and dom-
inant lipoprotein in the fetus, is diminished by about 50%
when compared to appropriately grown fetuses [17]. The
cause (maternal, fetal, or placental origin) of the low fetal
cholesterol concentration in IUGR is still a matter of de-
bate. In general, the fetus synthesizes most of its choles-
terol de novo, although it has been estimated that 20–50%
of the fetal cholesterol originates from the mother and is
transferred through the placenta by distinctive transport
pathways [11, 16, 24, 25]. At the fetal side, cholesterol is
released from the placenta to circulating acceptors, such
as apolipoproteins, and native HDL particles [26]. The hy-
pothesis of a relevant transplacental transport of choles-
terol from the mother to the fetus is supported by the
analysis of plant sterols. As plant sterols cannot be synthe-
sized in humans, their blood concentration is dependent
on ingestion or, in case of the fetus, solely on the amount
transported from the mother through the placenta. Plant
sterols use the same transport mechanisms as cholesterol
and can be detected in relevant concentrations in amniotic
fluid and umbilical cord blood [11, 27].
In this study, we measured biochemical markers of

cholesterol biosynthesis, lanosterol, lathosterol, and

desmosterol, in venous umbilical cord sera of IUGR
and normally grown fetuses. We also determined 5α-
cholestanol and the most prominent plant sterols,
campesterol and ß-sitosterol levels, assuming these to
be valid markers to estimate materno-fetal cholesterol
transport. Finally, we estimated oxysterol concentra-
tions as a means of cholesterol catabolism.
We hypothesized that a diminished fetal cholesterol

concentration is caused by a reduced maternal choles-
terol supply as a consequence of placental insufficiency
and disturbed transport pathways through the placenta.

Methods
Biomaterial for this case control study was sampled pro-
spectively at the University Hospital of the RWTH Aa-
chen, Germany. Patients were included between March
2008 and March 2012. Prior to the study, a power ana-
lysis was performed. Calculating the minimum required
sample size on the basis of the fetal HDL cholesterol
concentration, choosing a power (1–β-error) of 80% and
a level of significance (α-error) below 0.05 for each
group, IUGR and control group (CTRL), at least five pa-
tients had to be included in each group.
Clinical data were recorded at inclusion and following

delivery. Gestational age was calculated by the last men-
strual period and verified by first trimester scan docu-
mentation. Fetal cord blood was sampled immediately
after birth and processed as described [17].
IUGR was diagnosed antenatally, as recently described,

and defined in accordance with the guidelines of the
American College of Obstetricians and Gynecologists
and the German guidelines on IUGR [1, 2, 17] as an esti-
mated fetal weight < 10th percentile, in addition to at
least one of the following criteria: (1) deceleration of
fetal growth rate > 40th percentile, (2) elevated resistance
index in umbilical artery Doppler sonography above the
95th percentile, (3) head-to-abdominal circumference ra-
tio > 95th percentile or (4) amniotic fluid index < 6 cm.
Of the IUGR cases, 13 were additionally complicated by
preeclampsia as defined by the ISSHP criteria [28]. IUGR
was subgrouped into early-onset IUGR (detection and
delivery before 34 weeks of gestation) and late-onset
IUGR (detection and delivery at 34 weeks of gestation or
later). Fetal and neonatal birth weight centiles were de-
termined according to the population-based newborn
weight charts [29]. Additionally, customized centiles
were calculated by use of the online platform www.ges-
tation.net (Gardosi J, Francis A. Customised weight cen-
tile calculator. GROWTH V6.7.6.11 (DE)).
A total of 299 patients giving birth at our University

Hospital were enrolled during the study period. Of
those, we identified 49 IUGR cases with sufficient serum
volume to be used further for the scheduled investiga-
tion. Thirty-six of the IUGR fetuses needed mandatory
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preterm delivery before 37 weeks of gestation (WOG).
The IUGR cases were matched with CTRL as closely as
possible for maternal age, gestational age, fetal gender,
betamethasone administration, maternal smoking habits,
and maternal body mass index (BMI). Neonatal weight
in the CTRL group was within the 10th and 90th per-
centiles. Thirty-two of the 49 CTRL fetuses were born
preterm before 37 WOG for various reasons (including
premature rupture of the membrane, spontaneous onset
of labor, and vaginal bleeding). None of the CTRL
mothers suffered from hypertension or preeclampsia.
Exclusion criteria were defined as multiple gestation,

fetal anomalies, abnormal fetal karyotype, patients with
clinical or biochemical signs of infection, positive toxoplas-
mosis, rubella, cytomegalovirus, herpes simplex, and HIV
(TORCH) screening results, maternal diabetes mellitus/
gestational diabetes or other severe maternal metabolic dis-
orders, and the patient’s withdrawal from the study. Sam-
ple storage times and conditions were equal for all groups.

Blood sampling, serum generation, and storage of
aliquots
Blood samples (up to 4.9mL each) were taken postnatally
from a double-clamped umbilical cord vein using Monov-
ette syringes (Serum 4.9mL Monovette; Sarstedt, Nüm-
brecht, Germany). After incubation at room temperature
for 15–30min, samples were centrifuged at 2000 g for 15
min. Serum was aliquoted and stored at − 80 °C.

Basic serum lipid profiling
Analysis of serum triglycerides (TG), total cholesterol
(TC), LDL- and HDL cholesterol was performed by col-
orimetric enzymatic methods using an automated photo-
metric measuring unit (Roche/Hitachi Modular P800;
Roche Diagnostics, Basel, Switzerland) as described [17].

Cholesterol, non-cholesterol sterols and oxysterols
measurements
After thawing, butylated hydroxytoluene as radical scav-
enger (antioxidant) and 5α-cholestane, epicoprostanol,
and deuterium labelled oxysterols were added as internal
standards for the quantification of targets, respectively,
to 100 μL of plasma. After alkaline hydrolysis, the free
sterols and oxysterols were extracted using cyclohexane
and silylated to their corresponding (di) trimethylsilyl
ethers prior to gas chromatographic (GC) separation.
Cholesterol was determined by flame-ionization detec-
tion (FID), the non-cholesterol sterols and oxysterols by
selected-ion monitoring mass spectrometry (MS-SIM) as
previously described in detail [30–32].

Statistics
nQuery Advisor 7.0 (Janet D. Elashoff (2007), CA, USA)
was used for sample size calculation. Data analysis was

conducted using the Prism Version 6.0e Software
(GraphPad Software Inc., CA, USA). Clinical data are
presented as means ±95% CI or percentages. Analytical
variables are expressed as median ± 95% CI. A two-tailed
Mann-Whitney test was conducted to compare the
metric variables of the two groups. Values were adjusted
for potential confounders (maternal age, BMI, parity,
smoking status, weeks of gestation at delivery, and fetal
stress response (umbilical artery pH)) by residual calcu-
lation. Subgroup analysis was performed using the
Kruskal-Wallis test followed by Dunn’s comparison for
multiple testing. Fisher’s exact test was used for categor-
ical data. Correlations were analyzed by Spearman’s cor-
relation coefficient. Values of p < 0.05 were regarded as
significant.

Results
Study population and basic lipid profile
Maternal and neonatal characteristics are summarized in
Table 1. Gestational age at inclusion into the study, ges-
tational age at delivery, mode of delivery, and neonatal
gender were kept similar. Maternal age, pre-pregnancy
BMI, and smoking status during pregnancy differed
slightly, but were not significant between the study
groups, while we found a significant proportion of pa-
tients in the CTRL group to be multiparous compared
to the IUGR group. None of the CTRL group and 27%
in the IUGR group were hypertensive during pregnancy.
Neonatal birth weight, birth weight centiles, and umbil-
ical artery pH were lower in the IUGR group than in the
CTRL group. In the IUGR group, mean fetal TC and
HDL cholesterol concentrations were 28 and 48% lower
than in the CTRL group (Table 1).

Cholesterol
Cholesterol concentrations measured by GC-FID were
virtually identical to those measured with the automated
photometric measuring unit Modular P800 (ρ = 0.9371,
p < 0.0001). Cholesterol concentration in the CTRL
group decreases with ongoing gestational age at birth
(ρ = − 0.451; p = 0.001). This was not observed in the
IUGR group (ρ = − 0.149; p = 0.306) (Fig. 1a). When
cholesterol concentrations were related to birth weights
((cholesterol (mmol/L)) / (birth weight (g))), no signifi-
cant difference was detected between IUGR and CTRL
fetuses in all gestational weeks at birth (Fig. 1b). Assum-
ing that the fetal serum cholesterol concentration
(mmol/L) mirrors fetal tissue cholesterol content
(mmol/kg), the fetal body accumulates twice as much
cholesterol during intrauterine development (calculated
as cholesterol (mmol/L) * birth weight (kg)) in CTRL as
in IUGR (Fig. 1c).
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Cholesterol synthesis
In IUGR, absolute lanosterol and lathosterol concentra-
tions were 35 and 33% lower than in CTRL (Table 2).
Adjustment for potential confounders had no major in-
fluence on the significance. The lanosterol/TC and
lathosterol/TC ratios did not differ significantly (Table 3).
We found no significant difference in mean desmosterol
concentrations between both study groups (Table 2), al-
though in the IUGR group, the desmosterol/TC ratio
was 30% higher than in the CTRL group (Table 3). Find-
ings were similar for the two subgroups, early onset and
late onset IUGR (Fig. 2), but we failed to provide signifi-
cance for desmosterol/TC ratio in the late onset IUGR
group compared to their gestational age matched CTRL
group (data not shown).

Oxysterols
No significant differences were found in absolute 24S-OH-
cholesterol (24S-OHC) and 27-OHC levels in IUGR com-
pared to CTRL (Table 2). Adjustment for potential con-
founders had no major influence on significance. Hence,
24S-OHC/TC ratio and 27-OHC/TC ratio were increased

by 39 and 61%, respectively, indicating an increased choles-
terol turnover (Table 3). Findings were similar in the early
and the late onset subgroups of IUGR (Fig. 3).

Plant sterols
No significant differences were found in absolute campes-
terol and β-sitosterol levels, while in the IUGR group, 5α-
cholestanol levels were in the mean 13% lower than in the
CTRL group (Table 2). Adjustment for potential con-
founders had no major influence on significance. Ratios of
campesterol, β-sitosterol, and 5α-cholestanol to TC were
increased by 34, 39, and 17%, respectively (Table 3). How-
ever, this could not be confirmed when separately analyz-
ing data in the late onset subgroup of IUGR (Fig. 4).

Discussion
Several studies, including our own, have reported dimin-
ished fetal cholesterol concentrations in IUGR [17–23].
Characterizing umbilical cord blood sterol profiles in IUGR
and normally grown fetuses we aimed at a deeper under-
standing of cholesterol metabolism during fetal develop-
ment and impaired fetal growth. To estimate the

Table 1 Maternal and neonatal clinical characteristics and lipid concentrations

CTRL (n = 49) IUGR (n = 49) p-
valueMean or % 95% CI Mean or % 95% CI

Maternal age (y) 32.0 (30.4–33.6) 29.6 (27.7–31.6) 0.065

Maternal height (m) 1.66 (1.64–1.68) 1.65 (1.64–1.67) 0.654

Maternal weight b. p. (kg) 63.7 (60.7–66.8) 68.8 (63.8–73.8) 0.085

Maternal BMI b. p. (kg/m2) 23.2 (22.1–24.3) 25.0 (23.4–26.6) 0.063

Maternal smoking status (%) 24.5 36.7 0.192

Maternal primiparity (%) 32.7 67.4 0.000

Maternal systolic BP (mmHg) 117 (114–120) 129 (123–135) 0.000

Maternal diastolic BP (mmHg) 67 (64–69) 76 (72–79) 0.000

Maternal hypertension (%) 0.0 26.6 0.278

Maternal WOG at inclusion (w) 33.4 (32.1–34.7) 32.6 (31.4–33.8) 0.360

Delivery WOG (w) 33.9 (32.7–35.1) 33.6 (32.4–34.7) 0.705

Delivery mode: cesarean (%) 81.6 83.7 0.792

Neonatal gender (% female) 59.2 57.1 0.861

Neonatal birth weight (g) 2246 (2000–2492) 1478 (1295–1661) 0.000

Neonatal birth weight centile 43.3 (37.9–48.7) 4.2 (3.4–5.0) 0.000

Neonatal customized weight centile 41.7 (34.2–49.2) 0.8 (0.2–1.4) 0.000

Neonatal umbilical artery pH 7.33 (7.32–7.35) 7.27 (7.23–7.30) 0.000

Neonatal 5 min APGAR value 9.2 (8.9–9.5) 8.9 (8.5–9.3) 0.186

Storage time at − 80 °C (y) 5.32 (5.08–5.56) 4.98 (4.68–5.27) 0.076

Neonatal LDL cholesterol (mg/dL) 30 (25–34) 20 (16–24) 0.002

Neonatal HDL cholesterol (mg/dL) 31 (29–33) 16 (14–18) 0.000

Neonatal total cholesterol (mg/dL) 71 (66–77) 52 (47–57) 0.000

Neonatal triglycerides (mg/dL) 21 (18–25) 46 (37–54) 0.000

Significant p-values are in bold
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contribution of maternal cholesterol to the fetal cholesterol
pool, we measured plant sterol concentrations such as β-
sitosterol. Plant sterols cannot be synthesized de novo in
humans. Their concentration levels in the circulation are
dependent on nutritional intake, and, in the case of the
fetus, maternal provision. At term, concentration levels of
plant sterols in umbilical cord blood are 40–50% of the ma-
ternal levels [27]. Consequently, placental insufficiency and
disturbed placental transport processes should result in
lower fetal plant sterol concentrations. By contrast to this
assumption, plant sterol to cholesterol ratios were indeed

higher in IUGR than in CTRL fetuses, especially in those
born preterm, suggesting an unrestricted transplacental
sterol transport and a general substantial maternal contri-
bution to the fetal cholesterol pool independent of placen-
tal insufficiency. High plant sterol to cholesterol ratios can,
however, also be explained by lower hepato-biliary elimin-
ation rates of the phytosterols. The liver is the main organ
regulating body cholesterol homeostasis. The synthesis of
cholesterol starts with the mevalonate pathway by the for-
mation of acetyl CoA, which is then converted to 3-
hydroxy-3-methylglutaryl CoA (HMG-CoA) and further to

Table 2 Total sterol concentrations in umbilical cord vein of IUGR and CTRL neonates

Total concentration CTRL (n = 49) IUGR (n = 49) p-value adj. p-
valueMedian 95% CI Median 95% CI

Cholesterol (GCMS) mmol/L 1.90800 (1.75800–1.96900) 1.44600 (1.28500–1.61000) < 0.0001 < 0.0001

Lathosterol μmol/L 4.34600 (3.87600–4.69100) 2.97500 (2.67200–3.24700) < 0.0001 0.0009

Dihydro-lanosterol μmol/L 0.01248 (0.01009–0.01462) 0.00806 (0.00652–0.01101) 0.0019 0.0040

Desmosterol μmol/L 2.20600 (1.98800–2.50300) 2.13100 (2.01400–2.25800) 0.3145 0.8708

Lanosterol μmol/L 0.34760 (0.31850–0.41090) 0.23700 (0.21380–0.27620) < 0.0001 0.0001

24OH cholesterol μmol/L 0.14230 (0.12250–0.15840) 0.14870 (0.13130–0.16870) 0.6355 0.8430

27OH cholesterol μmol/L 0.06026 (0.05529–0.06517) 0.06440 (0.05743–0.07782) 0.2345 0.3010

β-sitosterol μmol/L 0.78970 (0.61960–0.94940) 0.66460 (0.56740–0.82710) 0.2451 0.3916

Campesterol μmol/L 0.73540 (0.63070–0.82030) 0.62460 (0.56650–0.76840) 0.5196 0.3462

5α-cholestanol μmol/L 10.66000 (10.15000–11.75000) 9.72100 (9.13700–10.47000) 0.0061 0.0159

Stigmasterol μmol/L 0.13850 (0.13220–0.16650) 0.11290 (0.10060–0.14100) 0.0011 0.0060

Brassicasterol μmol/L 0.08838 (0.07519–0.10950) 0.08332 (0.07112–0.10850) 0.9605 0.3390

Significant p-values are in bold

Fig. 1 a Regression lines along with 95% confidence intervals and individual spots of fetal total cholesterol concentrations (Y-axis) depending on
gestational age at delivery (X-axis) are displayed separately for IUGR and CTRL fetuses. Note that blood cholesterol concentrations in IUGR fetuses are lower
especially early and before 34weeks of gestation when compared to CTRL as indicated by the non-overlapping 95% confidence intervals. CTRL: Y = -
2.476*X + 161.4, R2 = 0.2196, P= 0.0007. IUGR: Y = -0.8135*X + 85.1, R2 = 0.0274, P= 0.2556. b Regression lines and individual spots of total cholesterol
concentrations related to neonatal birth weights and depending on gestational age at delivery are displayed separately for IUGR and CTRL fetuses on a
logarithmic ordinal scale. Note that fetal cholesterol concentration adjusted to fetal weight in both study groups are similar; both decrease significantly
with ongoing gestational age. CTRL: Y = -0.1723*X + 6.988, R2 = 0.6143, p< 0.0001. IUGR: Y = -0.1883*X + 7.643, R2 = 0.5226, p< 0.0001. c Regression lines of
assumed fetal body cholesterol accumulation as calculated by blood cholesterol concentration multiplied with birth weight and related to weeks of
gestation at delivery are displayed separately for IUGR and CTRL fetuses. CTRL: Y = 0.2656*X - 4.715, R2 = 0.5709, p< 0.0001; IUGR: Y = 0.1955*X - 4.386, R2 =
0.5214, p< 0.0001. Adjusted for gestational age, the demand on cholesterol appears to be twice as high in CTRL compared to IUGR fetuses (p< 0.0001)
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mevalonate, squalene and finally, lanosterol. Lanosterol can
be processed to cholesterol through an enzyme-mediated
19-step process following the Kandutsch-Russell pathway
through lathosterol and 7-dehydrocholesterol. In the
present study, low circulating lanosterol and lathosterol
concentrations together with balanced cholesterol ratios
suggest an unaffected enzymatic capacity of the
Kandutsch-Russell pathway in IUGR. Hence, reduced
lanosterol concentration in IUGR is most probably caused
by lower enzymatic activity prior to the mevalonate path-
way, or by a decrease in nutritional supply or energy

provision to the fetal liver. Indeed, in IUGR, a reduced pla-
cental oxygen uptake and glucose transfer forces the fetus
to increase shunting through the ductus venosus bypassing
the liver to maintain nutritional supply to the heart and the
brain [33, 34]. This so-called “brain-sparing-effect” results
in a reduced hepatic volume [35–37], declining hepatic
glycogen stores, and fetal hypoglycemia, and affects main-
tenance of fetal oxidative metabolism [20, 34, 38]. As a re-
sult, diminished synthesis of acetyl-CoA in the fetal liver
and, subsequently, reduced mevalonate and lanosterol
production can be expected.

Fig. 2 Fetal concentration of a cholesterol, b lathosterol, c lanosterol, and d desmosterol in umbilical cord blood of early onset (< 34 WOG, n = 24)
and late onset (≥34 WOG, n = 25) IUGR fetuses compared to a healthy control group with adequate birth weight and born at similar gestational age
(< 34 WOG, n = 25; ≥34 WOG, n = 24). Tukey’s box plots. Dots represent outliers. ns “not significant”; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001

Table 3 Ratios of specific sterol to cholesterol concentrations in umbilical cord vein of IUGR and CTRL neonates

CTRL (n = 49) IUGR (n = 49) p-value

Sterol to TC ratio μmol/mmol *10exp3 Median 95% CI Median 95% CI

Lathosterol/TC Ratio 2.183 (2.049–2.523) 2.081 (1.894–2.276) 0.2952

Dihydro-lanosterol/TC Ratio 0.006 (0.005–0.008) 0.006 (0.005–0.008) 0.6267

Desmosterol/TC Ratio 1.156 (1.080–1.259) 1.522 (1.399–1.586) < 0.0001

Lanosterol/TC Ratio 0.187 (0.167–0.206) 0.175 (0.145–0.206) 0.1795

24OH cholesterol/TC Ratio 0.075 (0.065–0.084) 0.108 (0.091–0.123) < 0.0001

27OH cholesterol/TC Ratio 0.033 (0.030–0.035) 0.047 (0.043–0.050) < 0.0001

β-sitosterol/TC Ratio 0.420 (0.354–0.481) 0.478 (0.418–0.558) 0.0210

Campesterol/TC Ratio 0.387 (0.360–0.429) 0.469 (0.437–0.569) 0.0002

5α-cholestanol/TC Ratio 5.990 (5.426–6.489) 6.924 (6.515–7.175) 0.0004

Stigmasterol/TC Ratio 0.075 (0.069–0.085) 0.082 (0.070–0.094) 0.1585

Brassicasterol/TC Ratio 0.045 (0.040–0.053) 0.059 (0.055–0.066) 0.0001

Significant p-values are in bold
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Interestingly, and in contrast to lathosterol, the des-
mosterol to cholesterol ratios in our study were higher
in the IUGR than in the CTRL group. Desmosterol is
synthesized from lanosterol via zymosterol. A high ratio
suggests either increased synthesis rates or reduced con-
version to cholesterol via the 3β-hydroxysterol-Δ24-re-
ductase (DHCR24), the final enzymatic step of the Bloch

pathway, an alternative pathway of cholesterol synthesis
[30]. The Bloch pathway is particularly activated in the
fetal brain and desmosterol transiently represents up to
30% of total brain sterols during intrauterine develop-
ment [24, 39]. Desmosterol might cross from fetal brain
into the body circulation either via an incomplete blood-
brain barrier (BBB), or via to date unknown pathways,

Fig. 3 Fetal concentration of a 24-hydroxy-cholesterol and b 27-hydroxy-cholesterol in umbilical cord blood of early onset (< 34 WOG, n = 24) and
late onset (≥34 WOG, n = 25) IUGR fetuses compared to a healthy control group with adequate birth weight and born at similar gestational age (< 34
WOG, n = 25; ≥34 WOG, n = 24). Tukey’s box plots. Dots represent outliers. ns “not significant”; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001

Fig. 4 Fetal concentration of a β-sitosterol, b campesterol, and c 5α-cholestanol in umbilical cord blood of early onset (< 34 WOG, n= 24) and late onset
(≥34 WOG, n= 25) IUGR fetuses compared to a healthy control group with adequate birth weight and born at similar gestational age (< 34 WOG, n= 25;
≥34 WOG, n= 24). Tukey’s box plots. Dots represent outliers. ns “not significant”; *p < 0.05; **p< 0.01; ***p< 0.001; ****p< 0.0001
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e.g. potential re-conversion of brain-driven 24S-OHC to
desmosterol. While the latter enzymatic step is theoret-
ically possible, a specific enzyme has yet to be described.
However, the presence of cholesterol transport mole-
cules in the BBB suggests a potential flux of sterols from
the brain into the body circulation [40, 41]. This is par-
ticularly important since fetal brain cholesterol homeo-
stasis must be tightly regulated, separately from the body
cholesterol homeostasis for beneficial neurodevelop-
ment. Almost all inborn errors of cholesterol synthesis
are associated with central neural system malformations
or neuro-developmental disorders [15, 42]. In line with
desmosterol, 24S-OHC to cholesterol ratios were evenly
high in the IUGR fetuses in our study. 24S-OHC is a
cholesterol metabolite almost exclusively produced in
the brain that crosses the BBB to protect from choles-
terol overload [43, 44]. In light of the “brain-sparing-ef-
fect”, this finding of desmosterol and 24S-OHC suggests
conserved brain cholesterol turnover rates in IUGR fe-
tuses independent of body cholesterol synthesis to guar-
antee uneventful neurodevelopment.
Since cholesterol and its metabolites are catabolized in

the fetal liver by bile acid formation higher 24S-OHC/
TC ratios (and also 27-OHC/TC ratios) in IUGR fetuses
may also be explained by reduced elimination rates. In-
deed, studies on liver function of IUGR fetuses suggest a
reduced hepatic activity with lower alanine aminotrans-
ferase synthesis rates [45], and higher bile acids concen-
trations in cord blood of the IUGR fetuses as compared
to controls [46] that persists in childhood [47].
These persisting metabolic alterations in IUGR neo-

nates as well as increased plant sterol concentrations are
in concert with the known observation that being small
for gestational age is a risk factor for CVD later in life.
High plasma plant sterol levels have been frequently as-
sociated with CVD [48]. Campesterol/cholesterol and si-
tosterol/cholesterol ratios, e.g., have been demonstrated
to be independent predictors of CVD [49]. Mechanistic-
ally, plant sterols promote production of proinflamma-
tory cytokines, influence ABC transporter expression,
and inhibit cholesterol efflux from macrophages [50]. In-
deed, we recently demonstrated a lower cholesterol ef-
flux from [3H]-cholesterol-loaded macrophages when
treated with serum from IUGR compared to CTRL fe-
tuses [51] possibly contributing to early atherosclerotic
changes of the fetal vascular walls.
The present study has certain limitations. IUGR fe-

tuses often have to be delivered preterm, and gestational
age is one of the main factors affecting cord blood com-
position [17]. Hence, the study groups need to be con-
trolled for this issue. However, preterm birth per se is a
pathological condition and we cannot exclude that cord
blood parameters within the CTRL group are biased by
factors that may lead to spontaneous onset of preterm

labor. Moreover, differences in the treatment regimens
between the IUGR and the CTRL mothers may have an
influence on maternal and/or fetal metabolism. For ex-
ample, mothers with spontaneous onset of preterm labor
or preterm premature rupture of membranes receive an-
tibiotics and tocolytic agents, while IUGR mothers do
not. Stress also influences lipid parameters, and fetal dis-
tress is a common medical indication for delivery in pa-
tients with IUGR. We also do not have data on
nutritional intake of patients, which may influence plant
sterol concentrations.
Strength of this study is its well characterized patient

cohort and antenatal diagnosis and clear definition of
“IUGR”. The use of GC methods resulted in a highly
specific assessment of the sterols of interest, avoiding
the frequently observed cross-reactivity that occurs with
conventional antibody-based measurement techniques.

Conclusion
We here provide evidence that in IUGR fetuses, the fetal
de novo cholesterol synthesis rate rather than the
materno-fetal cholesterol transfer is low. Our data sug-
gest that reduced energy provision forces the IUGR fetus
to downregulate hepatic de novo cholesterol synthesis,
yet this seems to be rather adaptive and well balanced to
meet fetal growth rates. Additionally, reduced hepatic
function causes lower elimination rates of sterols and
cholesterol end-products. This observation is particularly
important, since cholestasis is a well-described complica-
tion in extremely low birth weight neonates [52] that
could progress to liver failure [53] and may affect hep-
atic drug metabolism [54]. Our study supports the idea
that specific therapeutic regimes need to be considered
in neonates born IUGR, especially in the setting of neo-
natal intensive care management. This applies to drug
administration, but also to parenteral nutrition of the
neonate with plant sterol containing soybean oil-based
lipid emulsions.
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