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Abstract

Background: In metabolic disorders, myocardial fatty infiltration is critically associated with lipotoxic
cardiomyopathy.

Methods: Twenty Psammomys obesus gerbils were randomly assigned to normal plant or high fat diet. Sixteen
weeks later, myocardium was sampled for pathobiological evaluation.

Results: A sixteen-week high fat diet resulted in myocardial structure disorganization, with collagen deposits, lipid
accumulation, cardiomyocyte apoptosis and inflammatory cell infiltration. Myocardial expressions of glucose transporter
GLUT1 and pyruvate dehydrogenase (PDH) inhibitor, PDH kinase (PDK)4 increased, while insulin-regulated GLUT4
expression remained unchanged. Myocardial expressions of molecules regulating fatty acid transport, CD36 and fatty
acid binding protein (FABP)3, were increased, while expression of rate-controlling fatty acid β-oxidation, carnitine
palmitoyl transferase (CPT)1B decreased. Myocardial expression of AMP-activated protein kinase (AMPK), decreased,
while expression of peroxisome proliferator activated receptors (PPAR)-α and -γ did not change.

Conclusion: In high fat diet fed Psammomys obesus, an original experimental model of nutritionally induced metabolic
syndrome mixing genetic predisposition and environment interactions, a short period of high fat feeding was sufficient
to induce myocardial structural alterations, associated with altered myocardial metabolic gene expression in favor of
lipid accumulation.
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Background
In the normal adult heart, fatty acids are major sub-
strates for ATP generation, while glucose oxidation pro-
vides a lesser contribution to energy production [1].
Besides an altered metabolic profile, chronic high fat diet
consumption contributes to dysregulated glucose and
fatty acid metabolism, leading to overall dysregulated en-
ergy homeostasis [2]. In the heart, this is associated with
a variety of adaptations and alterations in myocardial
structure and function occurring in subjects as adipose

tissue and lipids accumulate abnormally, even in the ab-
sence of comorbidities such as type 2 diabetes or hyper-
tension [3]. Obesity has been associated with increased
myocardial lipid accumulation [4, 5], which was corre-
lated with diastolic dysfunction [6]. Increased myocardial
intracellular levels of triglycerides were also commonly
described in various experimental models of obesity [7,
8]. Chronic exposure to high plasma levels of free fatty
acids may cause accumulation of toxic lipid intermedi-
ates within cardiomyocytes, which has been related to
cardiac lipotoxicity [9]. However, mechanisms leading to
obesity-induced cardiomyopathy remain largely un-
known [10].
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Due to its particular pathologic adaptation to nutrient
excess, Psammomys obesus is an original nutritionally
controlled and genetically predetermined experimental
model of obesity and metabolic syndrome [11]. Indeed,
on its natural diet composed of halophilic plants,
Psammomys obesus is healthy, with a metabolic-
endocrine system adapted to desert life. In captivity, they
spontaneously and naturally develop diabetes, dyslipid-
emia and obesity, when fed on a standard laboratory ro-
dent chow diet [11]. This pathologic adaptation to
nutrient excess may represent a reliable experimental
model for studying the mechanisms underlying the pre-
disposition to develop insulin resistance and metabolic
syndrome in humans who evolve from scarcity to abun-
dant food intake [12]. In these animals, a short period of
time with high fat diet resulted in an important weight
gain and increased circulating levels of fatty acids, as
well as altered myocardial expression of calcium-
handling contraction proteins [13].
In this context, the objective of the present study was

to explore whether a high fat diet could induce cardiac
alterations in structure, energy metabolism and cardio-
myocyte viability in these wild rodents with a genetic
predisposition to develop obesity.

Methods
Animal model
Adult Psammomys obesus gerbils were captured in the
Algerian region of Beni-Abbes (30°7 latitude north and
2°10 longitude west) and housed in individual cages in a
12-h light/dark cycle for 2 weeks. During this period of
acclimation, the animals were fed with their natural food
composed of halophilic plants [14, 15]. Thereafter, sex-
matched eight-week old gerbils weighting 93 ± 9 g were
divided in 2 groups as follows: 1) control animals were
fed with normal diet of natural halophilic plants (Salicor-
nia; composition of the halophilic plants: water 80.8 g;
mineral salts 6.9 g; lipids 0.4 g; proteins 3 g; carbohy-
drates 8.4 g and 45–50 kcal/100 g); 2) the other group of
animals received a high fat diet, comprising halophilic
plants plus the daily addition of one-quarter (5 g) of
cooked egg yolk (composition of cooked egg yolk: water
40–46 g; proteins 13.5–17.5 g; carbohydrates 0.2 g; lipids
30–31 g; cholesterol 1.2–1.3 g and 370–400 kcal/ 100 g)
during 16 weeks.
At baseline and after a sixteen-week high fat diet, ani-

mals were bled from the retro-orbital venous plexus.
Blood samples were immediately centrifuged at 3000
rpm on dried tubes. At the end of the protocol, the ani-
mals were sacrificed by decapitation. Hearts were imme-
diately dissected, snap-frozen in liquid nitrogen and kept
at − 80 °C for pathobiological analysis (n = 10 in each
group) or after three-day fixation in Bouin’s aqueous

solution, embedded in toto in paraffin for histopatho-
logical evaluation (n = 10 in each group).

Biochemical analysis
Glucose, triglyceride and total cholesterol concentrations
were determined with BIOSYSTEM kits (Barcelona,
Spain) in plasma samples, according to manufacturer’s
instructions. Plasma were used for the assay of lipo-
proteins on agarose gel by the method of Kalwakami
[16]. Plasma creatine Phosphokinase (CPK) levels
were measured using COBAS INTEGRA Analyzer
(Roche; CA, USA).

Cardiac morphometry
Five-micrometer myocardial sections were taken along
the longitudinal axis of the heart and stained with
hematoxyllin-eosin for overall morphological analysis, as
previously described [17]. Masson’s Trichrome staining
was used to assess collagen accumulation and fibrosis
within myocardial sections.

Immunohistochemistry: Detection of myocardial cells
undergoing apoptosis
Cardiac apoptotic cells were detected by Terminal Deox-
ynucleotidyl Transferase dUTP Nick-End Labeling
(TUNEL) staining using the ApopTagPlus Peroxidase In
Situ Apoptosis Detection Kit (Chemicon, Temecula, CA),
according to the manufacturer’s instructions. Negative
control run without TdT enzyme and positive control
pretreated with DNase-I were tested. For each cardiac
sample, ten different randomly chosen fields were exam-
ined. Cardiac apoptotic rate was calculated as the ratio
of apoptotic nuclei (TUNEL-positive or brown nuclei) to
total nuclei (brown + blue nuclei) (× 100 to be expressed
in percentage). All counts were performed by two inde-
pendent investigators in blinded manner. Mean value
was used for analysis.

Real–time quantitative polymerase chain reaction (RTQ-
PCR)
Total RNA was extracted from snap-frozen myocardial
tissue using QIAGEN RNeasy®Mini kit (QIAGEN,
Hilden, Germany), according to the manufacturer’s in-
structions. RNA concentration was determined by stand-
ard spectrophotometric technique and RNA integrity
was assessed by visual inspection of GelRed (Biotium,
Hayward, California)-stained agarose gels. Reverse tran-
scription was performed using random hexamer primers
and Superscript II Reverse Transcriptase (Invitrogen,
Merelbeke, Belgium), according to the manufacturer’s
instructions.
For RTQ-PCR, sense and antisense primers (Table 1)

were designed using Primer3 program for Rattus norve-
gicus solute carrier family 2 members 1 (Slc2a1 or
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GLUT1) and 4 (Slc2a4 or GLUT4), carnitine palmi-
toyltransferase1B (CPT1B), fatty acid translocase
CD36, fatty acid binding protein 3 (FABP3), peroxi-
some proliferator activated receptors (PPAR) -alpha
and -gamma, AMP-activated protein kinase (AMPK),
pyruvate dehydrogenase kinase (PDK) 4, uncoupling
protein (UCP) 3, insulin receptor substrates (IRS) 1
and 2, natriuretic peptide B (NPPB) and hypoxanthine
phosphoribosyl transferase (HPRT) 1 mRNA se-
quences. To avoid inappropriate amplification of re-
sidual genomic DNA, intron-spanning primers were
selected when exon sequences were known. For each
sample, amplification reaction was performed in tripli-
cate using SYBR Green PCR Master Mix (Quanta
Biosciences, Gaithersburg, MD, USA), specific primers
and diluted template cDNA. Result analysis was

performed using an iCycler System (BioRad Labora-
tories). Relative quantification was achieved with the
comparative 2-ΔΔCt method by normalization with the
housekeeping gene (HPRT1). Results were expressed
as relative fold increase over the mean value of rela-
tive mRNA expression of 16-week normal diet fed
control group arbitrary fixed to 1.

Statistical analysis
All data were expressed as mean ± standard error of the
mean (SEM). Statistical analyses were performed using
StatView 5.0 Software. Intergroup differences were
assessed by one-way analysis of variance (one-way
ANOVA) followed by Student’s t-test. p < 0.05 was con-
sidered statistically significant.

Table 1 Primers used for real-time quantitative polymerase chain reaction (RT-QPCR) in myocardial tissue from Psammomys obesus
gerbils

Genes Primer sequences

Solute carrier family 2 members 1 (Slc2a1 or GLUT1) Sense GTGGGCCTCTTTGTTAATCG

Antisense CATAAGCACGGCAGACACAA

Solute carrier family 2 members 4 (Slc2a4 or GLUT4) Sense GAGTTAGCTGGGGTGGAACA

Antisense ACCGAGACCAACGTGAAGAC

Carnitine palmitoyltransferase-1B (CPT1B) Sense AAGAACACGAGCCAACAAGC

Antisense ACCATACCCAGTGCCATCAC

Fatty acid binding protein 3 (FABP3) Sense TCAAGTCGGTCGTGACACTG

Antisense TCCCATCACTTAGTTCCCGTG

Fatty acid translocase (CD36) Sense TTCAAGGTGTGCTCAACAGC

Antisense ACCCCACAAGAGTTCCTTCA

AMP-activated protein kinase (AMPK) Sense TTCGGGAAAGTGAAGGTGGG

Antisense TCTCTGCGGATTTTCCCGAC

Pyruvate dehydrogenase kinase 4 (PDK4) Sense TTCCAGGCCAACCAATCCAC

Antisense TGGCCCTCATGGCATTCTTG

Uncoupling protein 3 (UCP3) Sense CGCCAGATGAGTTTTGCCTC

Antisense CTGGAGTGGTCCGTTCCTTT

Peroxisome proliferator activated receptor-alpha (PPAR-α) Sense TTAGAGGCGAGCCAAGACTG

Antisense CAGAGCACCAATCTGTGATGA

Peroxisome proliferator activated receptor-gamma (PPAR-γ) Sense GCGCTAAATTCATCTTAACTCCCA

Antisense CTGTGTCAACCATGGTAATTTCAGT

Insulin receptor substrate 1 (IRS1) Sense ATGAACATCAGACGCTGTGG

Antisense TCATCCACTTGCATCCAGAA

Insulin receptor substrate 2 (IRS2) Sense CGGATTTTGGAAGAGGAGAGA

Antisense GAGTGATGAGGCTGGGTATGA

Natriuretic peptide B (NPPB) Sense GACGGGCTGAGGTTGTTTTA

Antisense ACTTGAGAGGTGGTCCCAGA

Hypoxanthine phosphoribosyl transferase-1 (HPRT1) Sense ACAGGCCAGACTTTGTTGGA

Antisense TCCACTTTCGCTGATGACCAC
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Results
Chronic high fat diet caused body weight gain and
systemic hyperlipidemia
As illustrated in Table 2, baseline body weight and bio-
chemical parameters were similar between the two study
groups of Psammomys obesus gerbils. After sixteen-week
high fat diet, body weight increased more than in normal
diet-fed animals (Table 2).
In terms of biochemical parameters, sixteen-week high

fat diet was associated with increased plasma levels of
lipids, including triglycerides, total cholesterol, low-
density (LDL-c) and high-density lipoprotein cholesterol
(HDL-c) (Table 2). Plasma atherogenic Castelli’s Risk
Index-I (assessed as the ratio between total cholesterol
and HDL-cholesterol) and -II (assessed as the ratio
between LDL-cholesterol and HDL-cholesterol) were
calculated. They were found to be significantly in-
creased after sixteen-week high fat diet (Table 2).
There was only a trend (but not significant) of higher
plasma level of glucose (increased by 32% compared
to normal diet) (Table 2). Plasma levels of CPK were
increased (Table 2).

Myocardial architecture was altered after sixteen-week
high fat diet
As illustrated in Fig. 1a and b, hematoxylin and eosin
staining showed normal histological heart architecture
with myofibrils and muscle bundles in myocardial sec-
tions from normal diet fed animals. After sixteen-week
high fat diet, there was myocardial accumulation of infil-
trating inflammatory cells and apoptosis of cardiac myo-
cytes (Fig. 1c). This was associated with lipid deposit
accumulation within the myocardium (Fig. 1d and e),
which strongly suggest myocardial lipotoxicity probably
contributing to depressed cardiac function and cardio-
myopathy [18].

To assess fibrosis and collagen deposit, Masson’s Tri-
chrome staining was performed. In animals fed with
normal diet, cardiac cells were arranged orderly, with a
structured cardiac muscle fiber organization and little
collagen fiber deposit even at perivascular area (Fig. 2a
and b). Sixteen-week high fat diet induced myocardial
structural disorganization with cardiomyocyte loss (Fig.
2c and e), myocardial diffuse interstitial (Fig. 2e) and
perivascular fibrosis (Fig. 2c and d), associated with
myocardial accumulation of infiltrating cells (Fig. 2e)
and lipid deposits (Fig. 2f).

Cardiomyocyte apoptosis was induced by sixteen-week
high fat diet
To assess whether this myocardial accumulation of lipids
could be associated with cardiac cell apoptosis, a
TUNEL staining was performed in myocardial sections.
As illustrated in Fig. 3a, sixteen-week high fat diet in-
duced diffuse apoptosis in cardiomyocytes. The apop-
totic rate was increased in the myocardium of
Psammomys obesus fed with high fat diet (Fig. 3b).

High fat diet altered myocardial expression of molecules
implicated in glucose and lipid metabolism
To determine the effects of a relative short period of
high fat diet on expression profile of genes modulating
cardiac energy production, including cardiac glucose and
fatty acid metabolism, as well as insulin signaling, RT-
QPCR experiments were performed. Sixteen-week high
fat diet increased myocardial gene expression of the
major glucose transporter GLUT1, while expression of
GLUT4, an insulin-regulated facilitative glucose trans-
porter, remained unchanged (Fig. 4a). Myocardial ex-
pression of CD36, a major cellular regulator of fatty acid
transport, and FABP3, an intracellular fatty acid-binding
protein participating in fatty acid uptake and

Table 2 Sixteen-week evolution of bodyweight and plasma biochemical parameters after high fat and normal diet feeding in
Psammomys obesus gerbils

Baseline After 16 weeks

Normal diet (n = 10) Hight fat diet (n = 10) Normal diet (n = 10) High fat diet (n = 10)

Bodyweight (in g) 91 ± 3 94 ± 2 NS 106 ± 5 113 ± 4 *

Glucose (in g/L) 0.62 ± 0.06 0.59 ± 0.03 NS 0.60 ± 0.07 0.79 ± 0.10 NS

Triglycerides (in g/L) 0.58 ± 0.05 0.64 ± 0.05 NS 0.52 ± 0.06 0.97 ± 0.16 *

Total cholesterol (in g/L) 0.61 ± 0.09 0.55 ± 0.03 NS 0.70 ± 0.08 4.29 ± 0.98 *

LDL-cholesterol (ing/L) 0.12 ± 0.03 0.12 ± 0.01 NS 0.15 ± 0.04 3.25 ± 0.83 **

HDL-cholesterol (in g/L) 0.35 ± 0.06 0.34 ± 0.02 NS 0.46 ± 0.05 1.06 ± 0.12 **

Castelli risk index-I 1.90 ± 0.45 1.64 ± 0.06 NS 1.87 ± 0.37 3.83 ± 0.76 *

Castelli risk index-II 0.69 ± 0.47 0.35 ± 0.04 NS 0.31 ± 0.05 2.72 ± 0.63 *

CPK (IU/L) 375 ± 42 361 ± 55 NS 345 ± 41 646 ± 106 *

Values are presented as means ± SEM. ** 0.001 < P < 0.05, *0.01 < P < 0.05 high fat versus normal diet feeding at baseline and after 16-week feeding. LDL means
low-density lipoprotein, HDL high-density lipoprotein; Castelli risk index-I calculated as the ratio between total cholesterol and HDL-cholesterol levels; Castelli risk
index-II calculated as the ratio between LDL-cholesterol and HDL-cholesterol levels; CPK creatine phosphokinase, NS not significant

Sahraoui et al. Lipids in Health and Disease          (2020) 19:123 Page 4 of 11



intracellular transport, were increased, while expression
of the rate-controlling enzyme of fatty acid β-oxidation
pathway, CPT1B, decreased (Fig. 4b). All these results
suggest altered myocardial expression profile of energy
production mediators in favor of myocardial fatty acid
uptake and accumulation (decreased fatty acid β-
oxidation) after sixteen-week high fat diet in Psamm-
omys obesus gerbils.

To understand better mechanisms controlling the ex-
pression of these metabolic mediators, expression of nu-
clear transcription factors and enzymes implicated in
lipid and glucose metabolism regulation and adipocyte
differentiation were evaluated. As illustrated in Fig. 4c,
myocardial expression of PPAR-α and -γ did not change
after chronic high fat diet. However, expressions of
AMPK, a cellular energy sensor, and of UCP3, a

Fig. 1 Representative hematoxylin and eosin-stained myocardial sections from Psammomys obesus gerbils fed with normal diet (a, b) or high fat
diet (c-e) during 16 weeks. Myocardial sections were obtained at 1000-fold (a-d; Scale bars: 20 μm) and 400-fold (e; Scale bar: 50 μm)
magnification. In normal diet-fed animals, myocardial sections showed normal histological heart architecture with myofibrils and muscle bundles
(a, b). In 16-week high fat diet fed animals, hematoxylin and eosin stained-myocardial sections showed infiltrating inflammatory cells (c) and lipid
accumulation (d, e)

Fig. 2 Representative Masson Trichrome-stained myocardial sections from Psammomys obesus gerbils fed with normal diet (a, b) or with high fat
diet (c-f) during 16 weeks. Trichrome Masson staining was performed to detect fibrotic areas (collagen fibers stained in green; indicated by arrows
in a-e). Myocardial sections were obtained at 400-fold (a-e; scale bars: 50 μm) and 1000-fold (f; scale bar: 20 μm) magnification. In animals fed
with normal diet, cardiac cells were arranged orderly, with structured cardiac muscle fiber organization and little collagen fiber deposit (a, b). In
16-week high fat diet fed animals, Trichrome Masson-stained myocardial sections showed diffuse fibrosis (mostly in perivascular areas; c and d)
and lipid deposit (f)
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mitochondrial transporter implicated in energy balance
control, decreased in the heart of animals fed with high
fat diet, while expression of PDK4, which phosphorylates
(and thus deactivates) pyruvate dehydrogenase (PDH)
and inhibits glucose oxidation, was increased (Fig. 4d).
Myocardial expressions of IRS1 and 2 did not change
(Fig. 4e).

Myocardial expression of wall stretch responsive gene,
the natriuretic peptide B (BNP)
When the heart is stretched, BNP concentration in-
creases markedly, indicating that the heart is working
harder and having more trouble meeting the body’s de-
mands, such as in heart failure [19]. In the present study,
gene expression of NPPB, the precursor of BNP, was in-
creased in the myocardium of high fat diet-fed animals
(Fig. 5).

Discussion
The present results show that sixteen-week high fat diet
results in severe alterations of cardiac structure, with
collagen and lipid accumulation and diffuse activation of
apoptotic processes in Psammomys obesus gerbils, wild
rodents with a genetic predisposition to develop obesity,
diabetes and metabolic syndrome. This was associated
with altered cardiac expression of molecules regulating

energy metabolism in favor of cardiac lipid accumula-
tion, with increased expressions of CD36 and FABP3,
both implicated in cellular fatty acid transport, and of
PDK4, a key regulator of glucose oxidation, while ex-
pressions of CPT1B, a rate-controlling enzyme of fatty
acid β-oxidation and of a key cellular energy sensor
AMPK decreased.
A sixteen-week high fat diet resulted in the develop-

ment of obesity associated with increased circulating
levels of triglycerides, total cholesterol, LDL- and HDL-
cholesterol, which strongly suggest major cardiovascular
risks in these animals [20, 21]. This was confirmed by
higher values of Castelli’s risk index-I and –II after
sixteen-week high fat diet [22]. This is consistent with
previous studies showing rapid development of obesity
and metabolic syndrome after high fat diet in Psamm-
omys obesus [13, 14, 23], even if a characteristic diabetic
profile was not found in the present study. Indeed, glu-
cose tolerance seemed to be preserved in these animals,
because glucose levels only slightly increased. This ap-
parent discrepancy has already been described in
Psammomys obesus removed from their natural halo-
philic plant diet evolving variably overtime [15]. Genetic
background also probably contributed to the rapid car-
diac alterations in cardiac morphometry and energy sub-
strate use. However, little is known about these genetic

Fig. 3 Myocardial activation of apoptotic processes assessed by terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling (TUNEL) in
Psammomys obesus gerbils fed with normal diet or high fat diet during 16 weeks. Myocardial sections were obtained at 400-fold (a; Scale bars:
50 μm). Cardiac apoptotic rate (in percentage; b) was evaluated as the ratio between the number of terminal deoxynucleotidyl transferase biotin-
dUTP nick-end labeling-positive cardiomyocytes (brown nuclei mentioned by arrows) and the total number of cardiomyocytes (brown + blue
nuclei) in 16-week normal (n = 10; yellow bars) and high fat diet (n = 10; blue bars)-fed animals. Data are expressed as mean ± SEM.***P < 0.001
versus the normal diet fed animals
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determinants. Genome sequencing of Psammomys obe-
sus revealed a mutationally biased chromosome region
probably involved in ecological adaptation and con-
straint in these animals [16]. However, to date, the link
with the present results remain elusive.
After high fat diet, histological examination of the

heart revealed interstitial and perivascular fibrosis and
inflammatory cell infiltration, associated with lipid accu-
mulation and cardiomyocyte apoptosis. In humans,
obesity has been related to epicardial fat deposition and
intra-myocardial fatty infiltration [17]. In the heart, ac-
cumulation of intramyocellular triglycerides was also de-
scribed in experimental models of obesity [7, 8].
Elevated circulating levels of fatty acids have been
strongly associated to myocardial lipid accumulation [18,

19] and even to lipotoxicity in cardiomyocytes for oxi-
dized LDL-cholesterol [24]. Moreover, presence of tri-
glycerides and lipid metabolites has been related to
cardiac lipotoxicity and cardiomyocyte apoptosis. Then,
apoptotic cells were replaced by extracellular matrix that
leads to cardiac remodeling and dysfunction [25]. A
positive correlation between cardiac lipid accumulation
and dysfunction has been described giving rise to the
term lipotoxic cardiomyopathy associated with obesity
[26]. Usually, early stages of cardiomyopathy include car-
diac hypertrophy, intracellular lipid accumulation, fibro-
sis and diastolic dysfunction, which evolves to systolic
dysfunction with reduced ejection fraction [27]. In the
present study, there was no evaluation allowing to cor-
relate heart function and accumulation of fatty acids per

Fig. 4 Myocardial expression of genes implicated in uptake and metabolism of glucose and fatty acids, including the solute carrier family 2
members 1 (Slc2a1 also called GLUT1; a) and 4 (Slc2a4 also called GLUT4; a); the carnitine palmitoyltransferase1B (CPT1B; b), the CD36 (b) and the
fatty acid binding protein 3 (FABP3; b); of transcription factors implicated in cardiac metabolism regulation, including the peroxisome proliferator
activated receptors-alpha (PPAR-α; c) and -gamma (PPAR-γ; c); the protein kinase AMP-activated (AMPK; d), pyruvate dehydrogenase kinase 4
(PDK4; d) and uncoupling protein 3 (UCP3; d); and of insulin receptors (IRS)1 and 2 (e) in 16-week normal (n = 10; yellow bars) versus high fat
(n = 10; blue bars) diet fed Psammomys obesus gerbils. Values are expressed as mean ± SEM. * 0.01 < P < 0.05, high fat diet- versus normal diet-fed
Psammomys obesus animals
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se. However, cardiomyocyte hypertrophy [13] and apop-
tosis, lipid deposit accumulation and fibrosis, as well as
increased CPK were found, all together probably con-
tributing to cardiac dysfunction associated to chronic
high fat diet in Psammomys obesus. Plasma cardiospeci-
fic biomarkers (such as CK-MB) allowing the evaluation
of heart function should be evaluated in further studies.
The present results suggest that obesity promoted

myocardial lipid accumulation though fatty acid over-
supply and chronic hyperlipidemia. Cardiac metabolism
depends primarily on fatty acid utilization for oxidative
phosphorylation and ATP generation [26]. Fatty acids
enter the cell via cell membrane fatty acid transporters,
such as CD36 and FABP [28]. In the present study, myo-
cardial expressions of CD36 and FABP3 were increased,
which suggest exaggerated entry of fatty acids into car-
diac cell cytoplasm. Because of its rate-controlling role
in myocardial fatty acid metabolism, CD36 has been im-
plicated in dysregulated fatty acid and lipid metabolism
in high fat diet-induced cardiomyopathy [29]. In the
heart of obese rats, persistent relocation of fatty acid
transporters CD36 and FABP from the cytosol to the cell
membrane has been described [30–32] and associated to
chronic elevation in cardiac fatty acid uptake [33]. Gen-
etic studies also indicated a crucial role for FABP in the
pathogenesis of metabolic cardiomyopathy [34]. Expres-
sion of CPT1B, a key mitochondrial enzyme implicated
in β-oxidation, was also decreased in the present study.
This strongly suggests decreased fatty acid oxidation,
since mitochondrial transfer of fatty acid oxidation
mainly depends on CPT activity [28]. Sixteen-week high
fat diet resulted in an imbalance between fatty acid up-
take and consumption, contributing to intracellular lipid
accumulation, which probably leads to cardiac cell dys-
function and death [35] and subsequent cardiomyopathy

and heart failure [36]. Indeed, lipotoxic cardiomyopathy
has been identified as the major mechanism through
which patients with metabolic syndrome and obesity de-
velop cardiac hypertrophy and dysfunction [37].
Even if fatty acid oxidation contributes to the majority

of ATP generation in the normal adult heart, cardiomyo-
cytes present high and flexible metabolic ability to use
glucose. In the present study, chronic high fat diet was
associated with increased myocardial expression of
GLUT1, while GLUT4 expression did not change. Both
GLUT1 and GLUT4 are the main glucose transporters
in the heart. Increased GLUT1expression suggests a shift
from an oxidative to a glycolytic metabolism [38]. In
high fat diet-fed transgenic mice overexpressing GLUT1
specifically in the heart, cardiac dysfunction associated
to excessive lipid accumulation was observed [39]. Ex-
pression of PDK4, the major regulator of PDH, was also
increased, suggesting constrained glucose oxidation in
the heart after high fat diet [40]. This is consistent with
previous study showing increased PK4 expression along
with increased availability of fatty acids over glucose
after high fat diet [41]. Cardiac PDH inhibition resulted
in metabolic re-programming with reduced glucose oxi-
dation and increased glycolysis [42], suggesting maladap-
tive metabolic remodeling after chronic high fat diet.
These changes in energy supply and use are probably ac-
companied with reduced myocardial ATP production,
due to the lower number of ATP molecules generated
during glycolysis compared with fatty acid oxidation,
which probably contributes to altered cardiac efficiency
and function.
In the present study, cardiac expressions of different

key energy sensors, including PPAR’s and AMPK was
also evaluated. Expressions of PPAR-α and -γ were not
altered in the heart after high fat diet. PPARs play key

Fig. 5 Myocardial expression of cardiac stress-response gene, natriuretic peptide B (NPPB) in 16-week normal (n = 10; yellow bars) versus high fat
(n = 10; blue bars) diet fed Psammomys obesus gerbils. Values are expressed as mean ± SEM. * 0.01 < P < 0.05, high fat diet- versus normal diet-fed
Psammomys obesus animals
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roles in regulating fatty acid metabolism in the heart [43,
44], through the induction of expression of molecules
involved in fatty acid oxidation, such as CD36 and CPT1
[45, 46]. Myocardial PPAR-α overexpression mimicked
lipotoxic cardiomyopathy [40], whereas PPAR-α knock-
down attenuated it [47], suggesting its important role in
lipotoxic cardiomyopathy pathogenesis. This apparent
discrepancy with the present results has also been ob-
served by others [8, 40, 48]. In diabetic mice, cardiac
PPAR-α expression was not enhanced, while cardiac me-
tabolism was altered [8, 40, 48]. This may be explained
by the fact that alterations in cardiac metabolism could
be independent of PPAR-α, or that PPAR-α activity
could be enhanced independently of gene expression.
AMPK detects intracellular ATP/AMP ratio and plays a
pivotal role in intracellular adaptation to energy stress.
Here, expression of AMPK was decreased after high fat
diet. Dysregulated AMPK has also been described in the
heart of high fat diet-fed mice [49, 50]. Cardiac AMPK
activation has been involved in cardiac protection, accel-
erating ATP generation and attenuating ATP depletion,
protecting against cardiac dysfunction and cardiomyo-
cyte apoptosis [51, 52]. Inactivation of AMPK has been
linked to the activation of apoptotic processes in
cardiomyocytes [53], while AMPK activation reduced
cardiomyocyte apoptosis and improved diabetic cardio-
myopathy [54]. This is consistent with present results
showing myocardial activation of apoptosis together with
decreased AMPK expression after high fat diet.
UCP3 is a mitochondrial anion carrier protein with

antioxidant properties known to stimulate fatty acid me-
tabolism in muscle cells [55]. In high fat diet-fed ani-
mals, myocardial expression of UCP3 decreased. This is
consistent with data showing either unchanged or de-
creased cardiac UCP3 levels in genetic models of obesity
[56], despite increased mitochondrial uncoupling. In
mice, genetic UCP3 deletion was associated to decreased
myocardial ATP content [57], as well as worsening of
cardiac function, increased cardiomyocyte death, and
greater mortality after myocardial infarct [58]. Expres-
sion levels of insulin receptors was similar after a high
fat diet. This is probably due to the fact that insulin re-
sistance was not found in these animals. Increased ex-
pression of a heart failure marker BNP after a high fat
diet was also shown in the present study. BNP is se-
creted by cardiomyocytes in response to stretching by
increased blood volume. Increased expression of BNP
precursor strongly suggests cardiac dysfunction associ-
ated to altered cardiac metabolism, as natriuretic peptide
secretion has been shown to increase in proportion to
the severity of cardiac dysfunction [59, 60]. However,
further investigations are necessary to determine if these
metabolic alterations are implicated in cardiac dysfunc-
tion in this experimental model.

Study strength and limitation
Psammomys obesus is an original nutritionally controlled
and genetically predetermined experimental model of
metabolic syndrome, which is associated to sustained
myocardial biological alterations [13]. However, heart
function and plasma levels of cardiospecific biomarkers
were not evaluated per se. This should be evaluated in
further studies.

Conclusions
In conclusion, after a sixteen-week high fat diet, the
heart of Psammomys obesus showed signs of lipotoxic
cardiomyopathy, characterized by metabolic remodeling
and detrimental metabolic switch leading to lipid
accumulation. This unique experimental model of nutri-
tionally induced metabolic syndrome allowed us to myo-
cardial impact of high fat diet in animals with a genetic
predisposition to develop rapidly obesity, type 2 diabetes
and metabolic syndrome. It may prove useful for the
study of the mechanisms underlying the predisposition
to develop insulin resistance and metabolic syndrome in
humans who evolve from scarcity to abundant food
intake.
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