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Paradigm shift: the primary function of the
“Adiponectin Receptors” is to regulate cell
membrane composition
Marc Pilon

Abstract

The ADIPOR1 and ADIPOR2 proteins (ADIPORs) are generally considered as adiponectin receptors with anti-diabetic
properties. However, studies on the yeast and C. elegans homologs of the mammalian ADIPORs, and of the
ADIPORs themselves in various mammalian cell models, support an updated/different view. Based on findings in
these experimental models, the ADIPORs are now emerging as evolutionarily conserved regulators of membrane
homeostasis that do not require adiponectin to act as membrane fluidity sensors and regulate phospholipid
composition. More specifically, membrane rigidification activates ADIPOR signaling to promote fatty acid
desaturation and incorporation of polyunsaturated fatty acids into membrane phospholipids until fluidity is
restored. The present review summarizes the evidence supporting this new view of the ADIPORs, and briefly
examines physiological consequences.
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Background
The ADIPOR1 and ADIPOR2 proteins (ADIPORs) have
been the subject of several high-profile articles suggest-
ing that they are adiponectin receptors with anti-diabetic
properties [1–5]. Separately, the yeast and C. elegans ho-
mologs of the mammalian ADIPORs have now been
studied for over ten years and this is a brief account of
what has been learned during that time.

The ADIPORs are PAQR proteins
The ADIPORs are members of the PAQR (progestin
and adipoQ receptors) protein family, named after
two of its founding members [6]. There are eleven
PAQR proteins in the human genome (PAQR1-11),
and ADIPOR1 and ADIPOR2 correspond to PAQR1
and PAQR2, respectively. PAQR proteins have three

important characteristics: (1) seven transmembrane
domains; (2) an orientation inverse that of GPCRs (G
protein-coupled receptors), i.e. with their N-terminus
being cytoplasmic and the C-terminus extracellular;
and (3) they are part of the larger CREST protein
family of hydrolases [7]. ADIPOR1 and ADIPOR2
were initially identified as putative receptors for the
primarily adipocyte-secreted protein adiponectin
(other tissues can produce adiponectin but adipocytes
are by far the main source [8]), which was done by
screening a cDNA expression library to identify pro-
teins that bound fluorescent-tagged bacterially
expressed recombinant adiponectin [3]. Several publi-
cations have since reported adiponectin-dependent
ADIPOR signaling or physiological roles [1, 2, 4, 5, 9,
10]. Cautiously however, one study suggest that the
ADIPORs may not be adiponectin receptors [11], and
adiponectin itself is now emerging as a lipid carrier
protein, which would explain its high concentration
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in plasma [12]. The crystal structure of the ADIPORs
has been solved and consists of a barrel-shaped con-
formation open towards the cytoplasm with a cavity
capable of accommodating fatty acids (FAs), or FA-
like substrates, and a zinc-coordination site that may
either stabilize the structure and/or participate in a
hydrolytic reaction, such as the proposed ceramidase
activity first suggested by studies of the yeast homo-
logs and consistent with observations with the mam-
malian proteins [5, 13, 14].

Lessons from yeast
The yeast Izh1, -2, -3 and − 4 (implicated in zinc homeo-
stasis) genes encode PAQR proteins similar to the ADI-
PORs. A 2004 study by Lyons et al. showed that the Izh
genes regulate the levels of structural membrane sterols
and, in this indirect way, may affect the permeability of
certain ions, such as zinc [15]. Importantly, expression
of Izh genes is regulated by an oleate response element
(ORE) [16], and is inhibited by the presence of oleic acid
(C18:1) or linoleic acid (C18:2), two unsaturated fatty
acids (UFAs) that promote membrane fluidity when
present in phospholipids [17]. Conversely, Izh gene ex-
pression is stimulated by the presence of saturated fatty
acids (SFAs) that promote membrane rigidification when
incorporated into phospholipids [15, 17]. In 2009, the
Lyons group showed that IZH2 is a ceramidase, i.e. can
hydrolyze ceramides to generate free FAs and sphingoid
bases that act as second messengers [18]. The same
group showed that the human ADIPOR1 and ADIPOR2
proteins can functionally mimic IZH proteins [19], and
are functional as ceramidases when heterologously
expressed in yeast cells [20]. The activity of the ADI-
PORs was enhanced by addition of adiponectin in the
media during those experiments [20]; unfortunately, the
source of adiponectin was not specified, which is an im-
portant point given that active recombinant adiponectin
is difficult to produce and may contain biologically ac-
tive impurities [21]. A separate study further strength-
ened the connection to membrane homeostasis by
identifying genes mis-regulated in the Izh2 mutant:
down-regulated genes included several lipid metabolism
genes such as Ino1 (inositol-3-phosphate synthase),
Cho1 (phosphatidylserine synthase), Tsc (important for
sphingosine synthesis) and Erg28 (ergosterol biosyn-
thesis); over-expressed genes included genes important
for phosphate transport (Pho84, Pho89 and Pic2) [22].
Izh2 is also upregulated under condition of increased
membrane rigidity in a yeast model with varying UFA
content [23], and the Izh2 and Izh4 genes are continu-
ously repressed under conditions of high UFAs, i.e. when
membranes are not challenged by SFA-driven rigidifica-
tion [24]. In summary, the yeast homologs of the ADI-
PORs regulate membrane composition (structural

lipids), are up-regulated by membrane rigidification (e.g.
excess SFAs), are inhibited by the presence of
membrane-fluidizing UFAs, carry a ceramidase activity,
signal via sphingoid bases and can be functionally re-
placed, at least partially, by the human ADIPORs.

Lessons from C. elegans
There are 5 PAQR proteins encoded by the C. elegans
genome, two of which are clear ADIPOR homologs and
are named PAQR-1 and PAQR-2 (there are no adipo-
nectin homologs in C. elegans) [25]. Mutants lacking
PAQR-1 have no obvious phenotypes, though they en-
hance the phenotypes of worms lacking PAQR-2, indi-
cating redundancy [25, 26]. Worms lacking PAQR-2
have a deformed tail tip, impaired autophagy, reduced
life span, brood size and locomotion, and are cold- and
SFA-intolerant because both conditions promote mem-
brane rigidification [25, 27–31]. Importantly, the primary
defect in mutants lacking PAQR-2 is an excess of SFAs
in their phospholipids accompanied by debilitating
membrane rigidity, which we documented through lipi-
domics analysis and verified in vivo using fluorescence
recovery after photobleaching (FRAP) [27, 28, 32–35]. A
forward genetics screen led to the identification of the
protein IGLR-2 as an obligate partner for PAQR-2 func-
tion: both proteins must be present in the same cell for
systemic maintenance of membrane fluidity when worms
are challenged with either cold temperatures or SFA-
rich diets [28, 35]. IGLR-2 has a large extracellular N-
terminal region containing one immunoglobulin domain
and several leucine-rich repeats, one transmembrane
alpha helix and a large cytoplasmic C-terminal domain
[28]. IGLR-2 is loosely homologous to mammalian LRIG
proteins, a family with nearly 40 members [36], though a
functional IGLR-2 ortholog has not yet been identified.
Bifluorescence complementation (BiFC) and fluores-
cence resonance energy transfer (FRET) studies have
shown that IGLR-2 localizes to the plasma membrane
where it interacts in a membrane rigidity-dependent
manner with PAQR-2 [28, 37]. Additionally, structure-
function studies indicate that the two proteins interact
via their transmembrane domains and, more specula-
tively, that IGLR-2 may help displace the cytoplasmic
PAQR-2 domain to facilitate access of substrates to the
active site [26, 37]. Note also that IGLR-2 is not required
for PAQR-1 function, suggesting that PAQR-1 either has
a basal constitutive activity or is regulated via a separate
mechanism [26].
Remarkably, an unbiased genetic screen to identify

mutants intolerant of dietary palmitic acid (a C16:0 SFA)
showed that PAQR-2 and IGLR-2 are the only two C.
elegans proteins specifically essential to prevent lethal
membrane rigidification by SFA-rich diets [37].
Additionally, screens for secondary mutations that
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compensate for the lack of PAQR-2 revealed the exist-
ence of two independent downstream branches in the
PAQR-2/IGLR-2 pathway: “Branch 1” acts by upregulat-
ing the expression of desaturases, and its function can
be replaced by gain-of-function alleles of NHR-49 (a
homolog of the mammalian PPARs), MDT-15 (a homo-
log of the mammalian mediator subunit MED15) or
SBP-1 (a homolog of the mammalian SREBPs)[29];
“Branch 2” acts by promoting PUFA production and/or
their incorporation into phospholipids, and its function
can be replaced by loss-of-function mutations in FLD-1
(a homolog of the mammalian TLCD1 and TLCD2 pro-
teins) or ACS-13 (a homolog of the mammalian
ACSL1)[32, 33]. Only by simultaneously providing muta-
tions that replace both branches can one achieve
complete suppression of all phenotypes found in worms
lacking PAQR-2 [32, 33](Fig. 1). In summary, work in C.
elegans showed that the essential function of PAQR-2 is
to respond to membrane rigidification by low
temperature or SFA-rich diets by promoting a compen-
satory increase in phospholipids that contain UFAs.

Translation to mammalian cells
The findings concerning C. elegans PAQR-2 have been
extended to the ADIPORs in mammalian cells using
siRNA and CRISPR/Cas9 to silence or knock out target
genes, RNA sequencing to monitor the transcriptome,
lipidomics to monitor the FA composition of

phospholipids, and three different methods to measure
membrane fluidity, namely FRAP, Laurdan dye staining
and atomic force microscopy. We found that ADIPOR1
and/or ADIPOR2 depletion causes excess SFAs in phos-
pholipids accompanied by membrane rigidification in all
cell lines studied (embryonic kidney cells-derived
HEK293, hepatocyte-derived HepG2, astrocyte-like
1321N1) and in primary human umbilical vein endothe-
lial cells (HUVECs), with the most potent effects occur-
ring with dual silencing of ADIPOR1 and ADIPOR2 [27,
32, 33, 38, 39]. qPCR and an exhaustive RNAseq analysis
also showed that ADIPOR2 is required for a normal
transcriptional response to SFA challenges: thousands of
genes become mis-regulated in ADIPOR2-deficient cells
challenged with 200 µM palmitate [39]. Among the most
significantly downregulated genes in ADIPOR2-KO cells
are the desaturases SCD, FADS1 and FADS2 while genes
of the UPR (unfolded protein response) are among the
most upregulated genes, which is likely a secondary con-
sequence of the membrane homeostasis failure [39]. Not
surprisingly, the ADIPOR-deficient cells exhibit mito-
chondrial respiration defects, poor viability and abnor-
mal morphology when challenged with SFAs [39]. Most
phenotypes found in cells lacking one or both ADIPORs
can be abrogated by supplementing the cultures with
membrane-fluidizing FAs such as oleic acid (a C18:1
UFA), eicosapentaenoic acid (a C20:5 PUFA) or docosa-
hexaenoic acid (a C22:6 PUFA), which indicates that
membrane rigidification is the primary defect in these

Fig. 1 The role of PAQR-2 in membrane homeostasis. Conditions that promote membrane rigidification, such as SFA-rich diets or low
temperature, stimulate the formation, hence activation, of the PAQR-2/IGLR-2 complex. While PAQR-2 is definitely an ADIPOR ortholog, no
functional homolog of IGLR-2 has yet been identified in mammals. Genetic studies reveal that two downstream branches mediate the effects of
the PAQR-2/IGLR-2 complex: (1) Branch 1 stimulates the transcription of fatty acid desaturase genes and can be replaced by gain-of-function
mutations in NHR-49 (homologous to the mammalian PPARs), MDT-15 or SBP-1; and (2) Branch 2 stimulates the production/incorporation of
PUFAs into phospholipids and can be replaced by loss-of-function mutations in FLD-1 (homologous to the mammalian TLCD1/2 proteins) or
ACS-13. The ultimate output of PAQR-2 signaling is to increase the UFA content in phospholipids, which promotes fluidity
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cells [33, 38, 39]. Importantly, adiponectin is not re-
quired for the membrane homeostasis function of ADI-
POR1 and ADIPOR2 in the cultured cell types tested,
and the addition of a commercially purchased recombin-
ant adiponectin produced from a mammalian expression
system had no effect on the membrane fluidity of
HEK293 cells [38]. This is somewhat confusing given the
many studies documenting ADIPOR-dependent in vivo
effects of adiponectin, including its effect on ceramide
levels [5, 10]. Unfortunately, no comprehensive analysis
of phospholipid composition has been reported for ADI-
POR1/2 or adiponectin mutant mice, though it is known
that ADIPOR1 mutations cause a severe depletion of
long-chain PUFAs in the phosphatidylcholines of the
retina accompanied by impaired vision both in mice and
humans [40–43]. In terms of downstream events, it is
likely that the two pathway branches mediating the ef-
fects of C. elegans PAQR-2/IGLR-2 are conserved in the
human ADIPORs since they too regulate desaturase
gene expression (“Branch 1”) [38], and their activity can
at least partially be replaced by silencing TLCD1/TLCD2
or ACSL1, the homologs of C. elegans FLD-1 and ACS-
13, respectively (“Branch 2”) [32, 33].
Recently, genome-wide CRISPR/Cas9 screens by the

groups of Kivanc Birsoy (Rockefeller University) and
Vamsi Mootha (Harvard Medical School) have provided
further incontrovertible evidence that the ADIPORs are
crucial for membrane homeostasis. In particular, ADI-
POR2 ranked 25th out of ~ 3 000 metabolism genes
tested for their ability to prevent palmitate toxicity in T-
cell-derived Jurkat cells [44], and ranked 4th out of ~ 20
000 genes tested for their ability to suppress membrane
rigidification in K562 cells challenged with hypoxia (a
condition that inhibits oxygen-dependent desaturase re-
actions)[45]. Adiponectin itself was not picked by either
screen, which may be due to the fact that it does not
regulate ADIPOR2 or because it belongs to a family of
secreted protein that may have partially redundant func-
tions [46–49]. In conclusion, the results of ours and
other’s studies are unambiguous: the function of ADI-
POR1 and ADIPOR2 is conserved with that of C. elegans
PAQR-2, and regulation of membrane homeostasis in
most cell types is likely the ancestral function of these
proteins, possibly extending as far back as the common
ancestor between yeasts and animals. It is not known at
present if there is a functional homolog to IGLR-2 in
mammalian cells. Speculatively, functionally equivalent
mechanisms (i.e. fluidity-dependent interactions) could
involve other types of documented protein-protein inter-
actions (e.g. APPL1; [50]) or homo/heterodimerization
of the ADIPORs themselves [51, 52]. Also, future re-
search will elucidate the precise nature of the two
“branches” downstream of the ADIPORs, which likely
involves their ceramidase activity.

An updated view of the ADIPORs
So far, ADIPOR1 and ADIPOR2 have been primarily
considered as adiponectin receptors that act via PPARα,
AMPK, and/or ceramide depletion to improve insulin
function and protect from the metabolic syndrome [3, 5,
9, 10, 53, 54]. The literature just now summarized sug-
gests a different view: the ADIPORs are evolutionarily
conserved regulators of membrane homeostasis that do
not require adiponectin to act as membrane fluidity sen-
sors and regulate phospholipid composition. More spe-
cifically, membrane rigidification activates ADIPOR
signaling to promote fatty acid desaturation and incorp-
oration of PUFAs into membrane phospholipids. In this
view, impaired ADIPOR function primarily leads to in-
creased intracellular SFA levels and membrane rigidity
and, secondarily, to a panoply of side effects including
elevated ceramide levels (a likely consequence of in-
creased intracellular palmitate [5, 10, 55–58]), altered
signaling by numerous receptors and increased suscepti-
bility to several diseases.

Relevance for human health
Membrane homeostasis is essential for most cellular
processes, including membrane trafficking and fusion,
organelle function, cytokinesis, etc. In particular, many
receptors, transporters and channels require specific
lipid interactions for their activity [59]. For example,
SFAs induce c-SRC clustering, leading to the activation
of JNK that in turns inhibit the insulin pathway and con-
tributes to insulin resistance [60, 61]. Conversely, mem-
brane fluidity increases insulin receptor signaling [62].
TRPV channels, which sense and regulate blood pressure
in response to shear stress [63], are sensitive to mem-
brane composition, requiring PUFA-containing phos-
pholipids for their activation [64–66]. On the other
hand, SFAs reduce membrane fluidity and promote
the accumulation of TLR4 receptors in specialized mem-
brane domains called lipid rafts, leading to homodimeri-
zation and proinflammatory signaling [67, 68]. Cell
membrane tension and membrane fluidity also affect
conformational dynamics of GPCRs and their ability to
sense shear stress in endothelial cells [69]. And as a last
example, phase separation of signaling molecules, which
is influenced by membrane fluidity, promotes T cell
receptor signal transduction [70]. This, merely the tip of
a large iceberg, should suffice to convince any reader
that membrane composition/property homeostasis is an
important parameter in the regulation of vital signaling
pathways. There are also numerous conditions where
membrane fluidity defects are likely implicated: retinitis
pigmentosa [41–43, 71], male sterility (in mice) [72–
74], diabetes [75–82], X-linked adrenoleukodystrophy
[83, 84], Gaucher disease [85], glycogen storage diseases
[86], hypertension [87–92], thromboembolic disorders
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[93], cancer [94–103], Niemann-Pick disease type C
[104], Parkinson’s disease [105–108], Alzheimer’s disease
[109–113], Huntington’s disease [114, 115], Batten disease
[116], polycystic kidney disease [117], inflammation [67,
68, 118, 119] and aging [120–124]. Note that the ADI-
PORs are ubiquitously expressed and that their roles in
membrane homeostasis are cell non-autonomous due to
lipid exchange among cells/tissues [35], which may com-
plicate therapeutic approaches targeting specific organs.
Nevertheless, pharmacological modulation of the ADIPOR
pathway, possibly using agonists such as AdipoRon [125,
126], could have wide-ranging medical usefulness, and
continued research to further elucidate the fluidity-
sensing mechanisms and the pathways downstream of the
ADIPORs will contribute to this development.

Study strengths and limitations
A strength of this review is that it emphasizes recent
work on the cell and molecular function of the ADI-
PORs with a focus on model systems such as yeast, the
nematode C. elegans and cultured mammalian cells.
Conversely, the review does not cover in details the
much more complex in vivo roles where the physiology
of the whole organism makes it difficult to deduce spe-
cific molecular functions.

Conclusion, application and future perspective
The primary and evolutionarily conserved function of
the ADIPORs is to regulate cell membrane compos-
ition to maintain its fluidity; other effects of the ADI-
PORs are likely secondary to this primary function. In
the future, it will be interesting to elucidate the pre-
cise fluidity-sensing mechanism and the precise na-
ture of the molecular events downstream of the
ADIPORs by which they regulate the fatty acid com-
position of phospholipids.
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