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Abstract

Background: LCAT (lecithin-cholesterol acyltransferase) deficiency is characterized by two distinct phenotypes,
familial LCAT deficiency (FLD) and Fish Eye disease (FED). This is the first systematic review evaluating the ethnic
distribution of LCAT deficiency, with particular emphasis on Latin America and the discussion of three Mexican-
Mestizo probands.

Methods: A systematic review was conducted following the PRISMA (Preferred Reporting Items for Systematic
review and Meta-Analysis) Statement in Pubmed and SciELO. Articles which described subjects with LCAT
deficiency syndromes and an assessment of the ethnic group to which the subject pertained, were included.

Results: The systematic review revealed 215 cases (154 FLD, 41 FED and 20 unclassified) pertaining to 33 ethnic/
racial groups. There was no association between genetic alteration and ethnicity. The mean age of diagnosis was
42 ± 16.5 years, with fish eye disease identified later than familial LCAT deficiency (55 ± 13.8 vs. 41 ± 14.7 years
respectively). The prevalence of premature coronary heart disease was significantly greater in FED vs. FLD. In Latin
America, 48 cases of LCAT deficiency have been published from six countries (Argentina (1 unclassified), Brazil (38
FLD), Chile (1 FLD), Columbia (1 FLD), Ecuador (1 FLD) and Mexico (4 FLD, 1 FED and 1 unclassified). Of the Mexican
probands, one showed a novel LCAT mutation.

Conclusions: The systematic review shows that LCAT deficiency syndromes are clinically and genetically
heterogeneous. No association was confirmed between ethnicity and LCAT mutation. There was a significantly
greater risk of premature coronary artery disease in fish eye disease compared to familial LCAT deficiency. In FLD,
the emphasis should be in preventing both cardiovascular disease and the progression of renal disease, while in
FED, cardiovascular risk management should be the priority. The LCAT mutations discussed in this article are the
only ones reported in the Mexican- Amerindian population.
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Introduction
Lecithin cholesterol acyltransferase (LCAT) is a 67 kDa
protein, predominantly expressed in the liver [1]. It cir-
culates in plasma bound to high density lipoproteins
(HDL) but can also be found on apolipoprotein B100
containing particles [2–4]. It catalyzes the transfer of an
unsaturated fatty acid from lecithin to free cholesterol,
producing lysolecithin and cholesteryl ester. This reac-
tion occurs on immature HDL particles in the presence
of apolipoprotein A-I (apo A-I), and corresponds to the
alpha activity of the LCAT enzyme. When this reaction
occurs on low density lipoproteins (LDL) or very low
density lipoproteins (VLDL) it is referred to as the beta
activity. The net result is the formation of hydrophobic
cholesterol ester, which is transferred to the lipoprotein
core. In the case of HDL, this allows the conversion of
discoidal pre-beta 1 particles to mature spherical alpha
forms. In addition, the esterification of cholesterol on
HDL increases the concentration gradient for free chol-
esterol between cell membranes and HDL, thus promot-
ing the removal of cholesterol from cells [1, 2]. Another
HDL associated serum enzyme is paraoxonase 1
(PON1), this may play a role in the protection of LDL
particles from oxidative stress. Hence, low serum con-
centrations of HDL may impact susceptibility to vascular
disease [3].
LCAT deficiency is a rare autosomal recessive disease

[4, 5]. Loss of LCAT function causes decreased matur-
ation of HDL particles and increased HDL levels of
unesterified cholesterol and phosphatidylcholine. There
is no reliable estimate of the prevalence of the disease; in
individuals with very low HDL cholesterol (HDL-C)
ranges, the estimated prevalence of LCAT deficiency is
between 2 and 9 % [6–8]. The disease is characterized by
two distinct phenotypes, familial LCAT deficiency (FLD)
and Fish Eye disease (FED). In FLD, both the alpha and
beta LCAT activity is lost, leading to extremely low
plasma HDL-C (below the 5th percentile for the popula-
tion), premature corneal opacification, hemolytic
anemia, proteinuria and renal failure [9]. In FED, only
the alpha LCAT activity is lost, the beta activity is pre-
served, permitting cholesterol esterification on VLDL
and LDL but not on HDL [10]. As a result, the HDL
particles contain only 20 % cholesteryl ester, as com-
pared to 75 to 80 % in control HDL. These individuals
present with corneal opacities and low HDL-C levels,
but are free of the renal consequences seen in complete
LCAT deficiency. Calabresi et al., have suggested that
FLD and FED are not two distinct syndromes, but the
same disease showing differing levels of LCAT activity
[11]. Despite distinct cholesterol esterification profiles
between FED and FLD, they found that the biochemical
phenotype was quite similar; this is further supported by
the finding of anemia and renal disease in FED cases.

The clinical phenotype is only apparent in individuals
who carry two mutant LCAT alleles [12]. The LCAT
gene consists of 6 exons, spans 4,200 base pairs and is
located on chromosome 16 (16q22) [13]. Of the reported
mutations, the majority are associated with the FLD
phenotype, with a significant number remaining unclas-
sified (21.5 %) [14].
Mutations in the LCAT gene have been recorded in

multiple ethnic and racial groups. However, there is no
description of LCAT deficiency in terms of ethnic distri-
bution. In particular, there is sparse knowledge of LCAT
deficiency syndromes in Latin America. The greater sus-
ceptibility of Hispanics for dyslipidemia (in particular
phenotypes with low HDL cholesterol) is a well-
documented phenomenon [15]. Hispanic ethnicity re-
sults from the admixture of native Americans and Span-
iards. The Amerindians have suffered catastrophic
events (wars, famines, infections), it is likely that genetic
selection processes have occurred in this group influen-
cing findings in present day Hispanics [16].
This article reports the results of the first systematic

review conducted to explore the distribution of LCAT
disorders, particularly those associated with the Amerin-
dian /Hispanic group. In addition, we describe the bio-
chemical and genetic investigation of three previously
unreported Mexican probands and their kindred with
LCAT deficiency syndromes.

Methods for systematic review
A systematic search was conducted following the PRIS
MA (Preferred Reporting Items for Systematic reviews
and Meta-Analyses) Statement in Pubmed, Embase and
SciELO. (The PRISMA checklist is shown in supplemen-
tary Table 1). The initial PICO question was posed as
follows: in patients with LCAT disorders (P), the distri-
bution (I) of FLD compared to FED, (C) and the associ-
ation with ethnicity (especially among Amerindian/
Hispanic population) (O). Articles which described sub-
jects with clinical characteristics compatible with an
LCAT deficiency disorder (with or without a mutation
in the LCAT gene), and reporting of the ethnic group to
which the subject belonged, were considered for analysis.
All epidemiological studies which contained the follow-
ing keywords or MeSH terms were considered: Fish eye
disease (FED), Familial Lecithin cholesterol acyl transfer-
ase deficiency (FLD), LCAT enzyme deficiency (partial
and total), LCAT gene mutation or polymorphism, ho-
mozygotes, compound heterozygotes, corneal opacities,
corneal clouding, low high density cholesterol levels,
anemia, renal failure, atherosclerosis. The search strategy
is described in the supplementary materials. Articles
written in English, Spanish or Portuguese were included.
Data collection was carried out by four investigators,
commenced in September 3rd, 2018 and concluded in
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March 1st, 2020. The investigators took care to avoid
double counting of cases by working in pairs; one pair
including or excluding cases, and the other pair verifying
the decision. All decisions had to be reached unani-
mously by each pair. In addition, the reference lists of
review articles and conference abstracts were also con-
sidered. Abstracts were independently assessed to iden-
tify eligible research reports. The commonest reasons
for ineligibility were, insufficient information regarding
either the LCAT gene mutation, clinical characteristics
or no mention of ethnicity. This systematic review has
been registered in the PROSPERO systematic review
register with the ID CRD42021229254. The date of
registration was after data extraction was completed.
This is not ideal. However, data collection began in
2018, at which point registration was not mandatory.
Protocol registration and development are now consid-
ered desirable prior to initiating any search strategy in
systematic analysis [17].

Methods for biochemical and genetic analysis of
lcat probands
Biochemical measurements.
Fasting serum blood samples were obtained from all

three probands. These included full blood count, chem-
istry, a complete lipid profile, erythrocyte fragility studies
(in FLD deficiency subjects), and 24-hour urine collec-
tion for determination of microalbuminuria (30–
299 mg/g) and creatinine clearance. The lipid parame-
ters were measured inthe Institute’s central laboratory.
For total cholesterol (TC), HDL-C, LDL cholesterol
(LDL-C), triglycerides and glucose measurements com-
mercial enzymatic methods were used (Beckman
Coulter). Apolipoprotein A1 and apolipoprotein B con-
centrations were measured using nephelometric
methods (Beckman Coulter).
Measurement of LCAT activity.
α-LCAT activity was measured in plasma using the

Chen and Albers method [18]. Briefly: apoAI/phosphati-
dilcholine/3H-cholesterol complexes were incubated
with plasma in a shaking water bath for 1 h al 37 °C (es-
terification was linear during this time). The reaction
was stopped, and lipids were extracted. Esterified and
unesterified cholesterol were separated by thin-layer
chromatography, and the radioactivity was counted.
LCAT specific activity was expressed as the nanograms
of cholesterol esterified by 1 mL of plasma in 1 h (nmol/
mL/h).
Measurement of Paroxonase-1 (PON-1) activity (pa-

tient 1 and kindred, patient 3).
PON1 activity was measured in serum using phenyla-

cetate as substrate [19]. Initial rates of hydrolysis were
determined spectrophotometrically at 270 nm. The assay
mixture included 1 mM phenylacetate and 0.9 mM

CaCl2 in 20 mM Tris-HCl, pH 8.0, and 10 µL serum (di-
luted 1:40). The ɛ270 for the reaction was
1310 M− 1 cm− 1. Arylesterase activity was expressed as
the number of micromoles of phenylacetate hydrolyzed
per minute per milliliter of serum. To determine the dis-
tribution of PON1 in lipoprotein fractions, 300 µL of
plasma heparin was separated by size exclusion chroma-
tography using a Bio-Prep SE1000/17 column coupled to
a Bio-Rad Duo Flow system as previously described [20]
with slight modifications. Briefly, protein elution was ac-
complished with 2 mM CaCl2 in 20 mM Tris-HCl, pH
8.0, at a flow rate of 1mL/min. Fractions of 0.5 mL were
collected and PON1 activity was assessed after elution
using 10 µL of each fraction. The column was calibrated
with VLDL, LDL and HDL isolated by ultracentrifuga-
tion from a pool of 5 plasma samples obtained from 5
normolipemic volunteers. For the calibration, cholesterol
was determined in the elution fractions by enzymatic
colorimetric methods commercially available.
Mutational analysis.
Genomic DNA was extracted from peripheral leuco-

cytes using a Commercial Kit (Qiagen). The DNA was
amplified using conventional polymerase chain reaction
(PCR) to obtain the corresponding exons, including the
exon-intron regions. The products of PCR were ampli-
fied using primers as follows: 1 F, CACTCCCACA
CCAGATAA; 1R TTATGTCGGGGCTTATGC (332
pb) E2-3 F, GGGGAGGGTAAGTGTGCTTT; E2-3R,
GTGTGCAGGTACCCTGTGG (600 pb) E4-5 F,
TGTGGAGTACCTGGACAGCA; E4-5R, AGGATCAG
CTTGGTCTCACC (584 pb) E6F, GAGCCTACAC
TCAGCAGGTTG; E6R, GTGGCTGGTGAGGA
GTGAA (746 pb). This was carried out under the fol-
lowing conditions: 97 °C 7 min per cycle; 95 °C 30 s;
56 °C 30 s; 72 °C 2 min; 40 cycles; 72 °C 10 min per
cycle; 4 °C hold. To amplify exon 6, the temperature for
alignment was 58 °C. After purification, all DNA frag-
ments were sequenced using forward and reverse
primers. The sequencing was performed in an ABI prism
3100 genetic analyzer (Applied Biosystems). The refer-
ence sequence was obtained from the National Center
for Biotechnology Information (NM_000229.1).

Statistical analysis
Categorical variables are reported as frequencies and
percentages. Continuous data is shown as mean and
standard deviation or median and interquartile range de-
pending on the parametric or non- parametric distribu-
tion of variables. Categorical variables are compared
using the chi-square test or Fisher’s test as appropriate.
Students T-test and the U Mann-Whitney test were used
for comparisons for parametric and non-parametric vari-
ables respectively. A P-value < 0.05 was considered as
statistically significant. Statistical analyses were
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performed using Statistical Package for Social Science
(IBM Corp. Released 2012. IBM SPSS Statistics for Win-
dows, Version 21.0. Armonk, NY: IBM Corp.) and
GraphPad Prism (GraphPad Prism version 7.0.0 for
Windows, GraphPad Software, San Diego, California
USA).

Results of the systematic review
The PRISMA algorithm is shown in Fig. 1. The research
strategy retrieved a total of 3,373 publications. After re-
moving any duplicate documents, 2,800 abstracts were
reviewed. Of these, 2,153 articles were excluded, as they
did not complete inclusion criteria. In total, 87 relevant
articles/abstracts were reviewed in detail for eligibility.
Of these, six publications were excluded due to incom-
plete information. Finally, 81 studies were included for
the purposes of this article (Table 1, [6, 7, 21–100]).
The systematic analysis retrieved 215 cases, of which

71.6 % (n = 154) were FLD, 19.0 % (n = 41) were FED and
9.3 % (n = 20) were unclassified (Table 2). Most of the
information was found in case reports (87.6 %). The
LCAT deficiency cases are from 33 countries, the major-
ity of individuals are Caucasians and the commonest
presenting feature was corneal opacity. There is a pre-
dominance of men (n = 116, 53.9 %) and the mean age of
individuals is 42 ± 16.5 years. The median concentration
of HDL-C is 7 [4–12] mg/dL, the median LCAT activity
is 1.65 (0.0-7.1) nmol/mL/hr and median levels of tri-
glycerides are 206 (138–380) mg/dL. A creatinine clear-
ance < 60mL/min was found in 30.2 %, > 60 in 40.4 %
and unknown in the remaining cases. Albuminuria/ pro-
teinuria was present in 39.1 % and absent in 29.8 % of
cases. Anemia was reported in 53.9 % and absent in
32.1 %. Premature coronary artery disease was present in

7.4 %, absent in 59.1 % and not evaluated or unknown in
the remaining cases.

On comparing the individuals with FLD and FED, cer-
tain differences are apparent. The FLD cases are signifi-
cantly younger than the FED cases (41 ± 14.7 vs. 55 ±
13.8 years, P = 0.02, respectively). There was no differ-
ence in HDL-C levels between groups. However, LCAT
activity was significantly lower in FLD compared to FED
(0.1 (0.0–2.1) nmol/mL/hr vs. 2.7 (0.8–7.0), P = 0.01).
Unsurprisingly, clinical features compatible with FLD
are significantly more common in these cases (low cre-
atinine clearance, albuminuria/proteinuria and anemia).
Premature coronary artery disease was significantly more
prevalent in FED compared with FLD (P = 0.00). A com-
parison between the 3 phenotypes available (unclassified,
FLD, and FED) is presented in supplementary Table 4.
The main characteristics of unclassified patients is also
available in supplementary Table 5.
Mutational analysis:
A total of 138 mutations in the LCAT gene were re-

covered (136 in exons and 2 in introns) (supplementary
Table 1). Mutations have principally been published in
Caucasians. Genetic alterations are present on all exons
of the gene; there was no association between a particu-
lar exon and phenotype. No specific mutation was asso-
ciated with an ethnic group. The number of mutations
associated with FLD, FED and unclassified cases were
77, 38 and 23 respectively. The FLD phenotype was as-
sociated with exon 6 (n = 27), exon 5 (n = 13) and exon 1
(n = 13). In FED, exon 6 (n = 12), exon 4 (n = 10) and
exon 1 (n = 8) appeared to have the greatest number of
alterations. In unclassified cases, exon 6 was also the
predominant site on the LCAT gene.

Fig. 1 Systematic review
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The ethnic distribution of the cases was reviewed with
respect to location of LCAT mutation (supplementary
Table 1). Here exon 6 (n = 41) and exon 1 (n = 19) were
the most common sites for LCAT mutations. There was
a predominance of exon 6 mutations, in Italians, Dutch
and Japanese groups. In the Amerindian ethnic group,
exon 1 was most common in Mexican-Mestizos whilst
exon 6 predominated in Brazil and Chile.
Finally, the number of mutations per exon, adjusted

for size of exon was examined (supplementary Table 2).
This avoids exon size bias; exon 6 is more than double
the length of the others, perhaps explaining the greater
number of mutations encountered. With this analysis, a
fairer comparison between exons is possible. Exon 4 and
exon 1 show the greatest density of mutations, with
exons 5 and 6 showing the least number of alterations.
There was no clear relationship between the alterations
and the key positions for the enzymatic activity of the
LCAT protein.
Characteristics of the Latin American cases:
In total, 48 cases of LCAT deficiency have been pub-

lished from six Latin American countries (Argentina,

Brazil, Chile, Columbia, Ecuador and Mexico) (Table 3).
There are 38 FLD cases from Brazil (published in an ab-
stract), one unclassified case from Argentina and 3 FLD
cases from Chile, Colombia and Ecuador respectively. In
Mexico, six cases (4 probands) have been encountered
(4 FLD, 1 FED and 1 unclassified); one of which has pre-
viously been published (unclassified probable FED).The
mean age of the cases was 45 years (in Brazil it was 38
years) with an equal sex distribution. The mean HDL-C
level was 5.4 (in Brazil it was < 10 mg/dL) and LCAT ac-
tivity was reported in only 4 individuals with a mean
level of 3.1nmol/mL/hr.
Molecular analysis of the Mexican- Mestizo patients

revealed mutations in exon 1 (Trp8*, c.101dupC,
c.110 C > T) in 3 probands, and a homozygous alteration
on exon 4 in 1 proband (c.490 C > T). The Chilean case
reported alterations on exon 6, c.1210 A > G and
c.997G > A. In Brazil, 38 cases have been reported; the
investigators encountered three pathogenic mutations in
the LCAT gene, each corresponding to a distinct geo-
graphic disease cluster. Two mutations are on exon 6
(c.803 G > A and c.893 C > T) and one on exon 5

Table 2 Systematic analysis: Characteristics of FLD and FED cases

Total n = 216
(Unclassified n = 20)

FLD
(n = 153, 70.8 %)

FED
(n = 43, 19.9%))

p

AGE (years)a 44.8 (±15.6) 40.2 (±13.8) 53.0 (±15.6) <0.001

GENDER (n = 203)
(Unknown = 13)

MALE 119
(58.6 %)

93
(60.7 %)

18
(41.8 %)

0.17

FEMALE 84
(41.3 %)

57
(37.2 %)

23
(53.4 %)

PREMATURE
CHD (n = 148)
(Unknown = 68)

YES 13
(6.01 %)

1
(0.65 %)

12
(27.9 %)

<0.001

NO 135
(62.5 %)

112
(73.2 %)

16
(37.2 %)

HDL-C mg/dLb 7
(4–12)

7.0
(4–12)

6.7
(3.9–9.7)

0.272

Triglycerides mg/dLb 206
(138–380)

185
(121–380)

283
(164–528)

0.165

LCAT ACTIVITY nmol/mL/hb

(n = 78)
1.50
(0.00-7.02)

0.1
(0.0–2.1)

2.1
(0.9–3.5)

0.013

eGFR < 60 (n = 184)
(Unknown = 32)

YES 65
(35.3 %)

62
(40.5 %)

3
(6.9 %)

0.00

NO 87
(47.2 %)

48
(31.3 %)

38
(88.3 %)

PROTEINURIA/
MICROALBUMINURIA
(n = 177)
(Unknown = 29)

YES 84
(47.4 %)

83
(54.2 %)

1
(2.32 %)

0.00

NO 64
(36.1 %)

24
(15.6 %)

40
(93.02 %)

HEMOLYTIC ANEMIA
(n = 215)
(Unknown = 30)

YES 116
(53.9 %)

115
(75.1 %)

1
(2.32 %)

0.00

NO 69
(32.1 %)

28
(18.3 %)

20
(46.5 %)

Abbreviations. FLD Familial LCAT deficiency. FED Fish eye disease. CHD coronary heart disease. eGFR estimated glomerular filtration rate (MDRD equation)
a media (±DE) b mediana (IIC)
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(c.679 A > T). Finally, molecular analysis was not carried
out in Argentina, Colombia and Ecuador.

Mexican probands with lcat deficiency syndromes
1. PROBAND 1: Familial LCAT deficiency (FLD)
The proband was a 37-year old woman with bilateral
corneal opacities (no deficit in visual acuity). She came
from a small village in the state of Oaxaca, in south-west
Mexico. She was the 6th of 10 children and her parents
were apparently non-consanguineous. Only her paternal
grandmother had eyes similar to hers. Of her 9 siblings,
2 brothers had corneal opacities and nephrotic syn-
drome. There was no history of cardiovascular disease in
her family. All available family members, including her
parents and 5 of their 10 children were evaluated.
She had a history of hyperlipidemia, arterial hyperten-

sion and nephrotic syndrome; a renal biopsy reported
glomerulopathy characterized by mesangial proliferation,
vacuolated macrophages and presence of intramembra-
nous lipid deposits in glomerular capillaries. A recent ca-
rotid doppler ultrasound was normal with no alteration
in carotid-intima thickness.
Biochemical analysis:
Laboratory results showed a normochromic, normocy-

tic anemia [hemoglobin 9.2 g/dL (normal 13-15 g/dL)]
and measurement of erythrocyte osmotic fragility con-
firmed the presence of brittle cells. There was evidence
of renal failure with nephrotic syndrome (creatinine
clearance 47mL/min, and proteinuria of 5 g/24hrs). The
lipid profile showed low HDL-C, hypertriglyceridemia
and low levels of apolipoprotein A1 (Table 4). The
LCAT activity was low (LCAT activity 0.4 %, specific

activity 3.7 nmol/mL/hr) and there was a reduction in
paroxonase-1 activity (27.8 mU/ml/h, control = 100.77
mU/ml/h).
Two brothers were affected (homozygotes) and hetero-

zygote family members had half- normal HDL-C con-
centrations (Table 4). All three affected individuals
showed some paroxonase-1 activity, whereas LCAT ac-
tivity was virtually absent. The proband had a 72 % re-
duction in PON-1 activity, while her affected brothers
showed a 47 and 57 % reduction respectively. The 2
remaining siblings and both parents had low LCAT ac-
tivity (2.4–3.8 %) and higher paroxonase activity com-
pared to the affected individuals. On separation of the
lipoproteins by exclusion chromatography, the
paroxonase-1 activity was essentially on HDL, with little
activity on LDL.
Mutational analysis:
A novel mutation was encountered in this proband.

This was a nucleotide replacement resulting in a stop
codon at position 8 on exon 1 of the LCAT gene (in the
leader sequence). Tryptophan (TGG) was replaced by
Ambar stop (TAG). This is reported as Trp8* or Trp-
17* (*indicates stop codon) in the nucleotide sequence.
The parents were heterozygous for the mutation and the
proband and both her affected brothers were homozy-
gous. The family pedigree is shown in supplementary
Fig. 1.

2. PROBAND 2: Fish Eye Disease (FED)
The 70-year-old proband from Mexico City, had bilat-
eral corneal opacities and a history of myocardial infarc-
tion. The subject’s father and mother had suffered from

Table 3 Characteristics of Latin America population

Country Exon
mutation

Nucleotide
change

Phenotype Age Gender HDL-C
mg/dL

TG
mg/dL

LCAT
activity
nmol/
mL/h

Argentinean Unknown Unknown Unclassified 63 F 4 765 2.4

Brazilian Ex 5
Ex 6

c.679 A > T
c.803 G > A
c.893 C > T

38 FLD 38 18 F, 20 M <10 -

Chilean Ex 6
Ex 6

c.997G > A
c.1210 A > G

FLD 36 F 3 387 -

Colombian - - FLD 33 M 4 1260 -

Ecuadorian - - FLD 60 F -

Mexican Mestizo (1 proband and 2 other
members of same family)

Ex 1 Trp8* FLD 37 F 15 300 3.70

Mexican Mestizo Ex 1
Ex 1

c.101dupC
c.110 C > T

FED 70 F 12 334 4.20

Mexican Mestizo Ex 1 c.110 C > T FLD 34 M 2 597 2.10

Mexican Mestizo Ex 4 c.490 C > T FLD 29 F 4 186 -

Total 10 48 - - - -

Abbreviations. HDL-C high density lipoprotein cholesterol, TG triglycerides
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coronary artery disease (her father died at age 66, her
mother died at age 70). The only other family members
with similar eyes were her father, paternal grandmother
and one male sibling who died soon after birth. None of
her 8 siblings were alive. Both her children and 5 grand-
children had normal corneas and no health issues. The
proband, her two daughters and 4 of her grandchildren
were studied.
The proband had type 2 diabetes mellitus (no known

complications), mixed hyperlipidemia, and arterial
hypertension (history of atrial fibrillation and left ven-
tricular hypertrophy). The coronary heart disease was
characterized by occlusion of 3 coronary vessels (left
coronary: trunk, circumflex and right coronary); she had
been treated with two medicated stents.
Biochemical analysis:
The lipid profile showed an HDL-C level of 11 mg/dL

(Table 4). The remaining laboratory results included;
glucose 102 mg/dL, creatinine 0.87 mg/dL, hemoglobin
12.1 g/dL. The proband had no evidence of anemia or
renal disease.
No other family member had a clinical or biochemical

phenotype compatible with FED. The proband and her
daughters had HDL cholesterol levels < 40 mg/dL, while
all the grandchildren had normal HDL-C levels. The

proband had low levels of apolipoprotein A1; her daugh-
ters had levels intermediate between hers and those of
her grandchildren. The proband had extremely low
LCAT activity (LCAT specific activity 4.2 nmol/mL/hr)
and both daughters had relatively normal LCAT activity
(55.0 and 52.7 nmol/mL/hr respectively, Control = 78.7).
Mutational analysis:
Two mutations were found on exon 1:

1. On one allele, there was an insertion of cysteine
(reported as c.101dupC) at codon 34. This mutation
resulted in a stop codon 7 codons later. The
proband was heterozygote for this mutation.

2. On the other allele, the alteration was c.110 C >
T. When this allele is translated, threonine is
substituted by methionine (ACG-ATG
Thr37Met) (missense mutation) at position 37 of
the protein. The proband was heterozygote for
this mutation.

The proband is compound heterozygote for both mu-
tations. Daughter 1 is heterozygote for the second muta-
tion (c.110 C > T at codon 37), while daughter 2 is
heterozygote for the first mutation (c.101dupC at codon
34). Analysis of the apoA1 gene and its promotor region

Table 4 Biochemical results of probands 1, 2 and 3 and their kindred

TG Total
chol

HDL-
C

LDL-
C

Apo
A1

Apo
B

LCAT
activity %

Specific LCAT
Activity
(nmol/mL/h)

PON-1 mU/
ml/h
(Control 100.77)

PROBAND
1

Father
(II-1)

112 168 37 109 132 92.5 2.70 25.63 100.5

Mother (II-2) 188 203 38 127 135 122 3.18 30.19 62.6

Proband (37 yrs) (III-7) 300 153 15 78 44 113 0.4 3.79 27.8

Brother1 (35 yrs)
(III-2)

1076 222 11 --- 35.3 52.1 0.9 8.54 42.6

Brother2 (33 yrs)
(III-1)

589 313 17 178 47.2 114 0.5 4.74 53.0

Brother3 (22 yrs)
(III-10)

117 161 26 112 91.6 102 2.42 22.98 97.0

Sister (45 yrs)
(III-5)

177 168 23 110 --- --- 3.82 36.27 81.7

PROBAND
2

Proband (II-1) 334 150 12 71 48.7 109 4.2

Daughter 1 (III-1) 290 196 30 108 131 116 55

Daughter 2 (III-2) 191 157 25 94 123 108 52.7

Granddaughter (mother is daughter 1)
(IV-1)

59 180 81 87 210 52.7

Grandson (mother is daughter 1) (IV-2) 450 240 48 102 169 121

Grandson (mother is daughter 2) (IV-4) 85 162 46 99 157 92.3

PROBAND
3

Proband (II-1) 186 117 4 59 7.3

Father (II-1) 257 168

Abbreviations. TG: triglycerides HDL-C: high density lipoprotein cholesterol. LDL-C: low density lipoprotein cholesterol. ApoA1: apolipoproten A1 ApoB:
apolipoprotein B
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was also carried out in the proband, no alterations were
found.
The family pedigree is shown in supplementary Fig. 1.

3. PROBAND 3 (Familial LCAT Deficiency)
The proband was a 29-year-old woman from Monterrey,
with bilateral corneal opacities resembling premature
corneal arcus. She had an FLD phenotype with ex-
tremely low levels of HDL-C, anemia and kidney disease
(glomerulopathy).There was no clinical or biochemical
evidence of FLD or FED in her parents or sibling. There
was no family history of premature cardiovascular dis-
ease. She had attended consultations with several spe-
cialists, had undergone three kidney biopsies and one
bone marrow aspiration; despite this she had not been
diagnosed.
Biochemical analysis.
The proband had an HDL-C level of 4 mg/dL

(Table 4). The laboratory profile showed: glucose
101 mg/dL, creatinine 1.12 mg/dL, hemoglobin 12.9 g/
dL and 24-hour urinary protein 2307 mg/day. The pro-
band had extremely low LCAT activity (7.3 nmol/mL/hr,
LCAT specific activity in control 145.34nmol/mL/hr)
and a 60 % reduction in PON-1 activity compared with
controls.
Mutational analysis:
The genetic alteration was a point mutation in exon 4

of the LCAT gene, i.e., a G to A substitution on codon
140 converting Arginine to Histidine. The family pedi-
gree is shown in supplementary Fig. 1.

Discussion
FLD and FED are rare LCAT deficiency syndromes with
differing clinical manifestations. This is the first system-
atic analysis evaluating the ethnic distribution of LCAT
deficiency syndromes, with particular emphasis on Latin
America, presenting the case histories of three Mexican-
Mestizo probands.
The systematic review retrieved 215 published cases of

which 71.6 % were reported as FLD, 19 % as FED and
9.4 % were unclassified. This number is significantly
greater than that reported in the current literature [101].
The majority of probands have been published in case
reports, often with incomplete clinical or genetic infor-
mation. This disease continues to be diagnosed late, with
corneal opacifications being the principal reason for con-
sultation. FED is diagnosed significantly later than FLD,
probably because the severe clinical phenotype associ-
ated with the later results in earlier medical attention.
LCAT enzyme activity was significantly lower in FLD

compared to FED however there was no difference in
HDL-C levels between the two phenotypes. Indeed, both
can have similar lipid profiles, suggesting any variability
in parameters is unrelated to LCAT function. Pavanello

et al. commented that the severity of the hypoalphalipo-
proteinemia varies widely among carriers of different
LCAT genotypes [101]. Furthermore, carriers of one
mutant LCAT allele show an intermediate biochemical
phenotype between homozygous carriers and controls,
suggesting that the disease, which is reported as reces-
sive, is indeed co-dominant for the biochemical
phenotype.
The clinical features of the probands showed a clear

difference between FED and FLD, with renal disease and
anemia prevalent in the later. Renal damage is the
principle cause of morbidity and mortality in FLD. This
usually begins as proteinuria in childhood and pro-
gresses to renal failure in the fourth decade. The depos-
ition and accumulation of nephrotoxic and pro-
inflammatory lipoprotein X (Lp-X) particles, mainly in
the mesangium, in the absence of LCAT, may explain
the development of renal disease [14]. However, not all
cases of FLD showed significant proteinuria or reduced
eGFR; this suggests that the rate of progression to renal
failure may be highly variable. Lamiquiz-Moneo et al.
state that this clinical variability is likely to be related to
the biochemical /lipid phenotype rather than to the
inherited mutation [80]. In addition, an unclassified clin-
ical phenotype was present in 9.3 % of our cases; the au-
thors could not confirm either FLD or FED
(supplementary Tables 4 and 5). Some authors have
commented that the clinical manifestations of patients
with LCAT gene mutations may vary even among mem-
bers of the same family carrying identical mutations
[43]. Mahapatra et al., have reported the co-existence of
differing phenotypes in the same family; they report a
proband with FLD, while the sister and mother pre-
sented with FED. [88]. Thus, LCAT deficiency syn-
dromes appear to show both biochemical and clinical
heterogeneity.
There was a significantly greater prevalence of prema-

ture CHD in FED patients compared to FLD patients.
The cardiovascular risk associated with LCAT deficiency
syndromes is still a matter of debate. [83]. Oldoni et al.,
compared carotid intima media thickness between 33
heterozygous FLD subjects and 41 heterozygous FED
subjects [102]. Carriers of FLD mutations exhibited less
carotid atherosclerosis, whereas those with FED muta-
tions presented with more subclinical atherosclerosis.
This may be related to the capacity of LCAT to esterify
cholesterol on apolipoprotein B–containing lipoproteins-
this is lost in FLD, but is unaffected in FED. In a study
of Italian FLD families, the inheritance of a mutated
LCAT genotype had a gene-dose dependent effect in re-
ducing carotid IMT, however, a subgroup of these car-
riers also showed normal flow-mediated dilation [65,
83]. In general there are few longitudinal follow-up stud-
ies hence a definitive conclusion is hard to reach.
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The molecular defects associated with LCAT defi-
ciency syndromes show heterogeneity. In total, 138
LCAT mutations were found with no particular exon
dominating in a particular ethnicity. There was no as-
sociation between clinical phenotype and genetic al-
teration, this may be due to the low number of cases
worldwide. Exon 6 was the predominant site for both
FLD and FED; however, after adjusting for exon size,
exon 1 and 4 showed the greatest concentration of
mutations. At present, it is impossible to predict the
phenotype (FLD or FED) associated with LCAT muta-
tion [101].
With regards to ethnicity, at least 33 different groups

are represented, of which Caucasians are most common.
The predominance of Caucasian and Asian cases may
reflect better health awareness and access to health care
in these regions. Only one case has been reported in the
African sub-continent. Cases are more likely in countries
hosting research groups with interest and resources to
investigate this disease. At present, only six countries
have reported probands with LCAT deficiency in Latin
America, and genetic evaluation has only been carried
out in three [82–88]. Of these, Brazil reports three mu-
tations causing FLD each associated with a distinct geo-
graphical region. In Mexico, the first FLD proband,
came from an isolated village in the south of Mexico,
there is little genetic admixture in this region. The indi-
genous heritage of this patient may have been respon-
sible for disease susceptibility. The mutations reported
in Brazil and Chile are on exon 5 and 6. In Mexico, exon
1 mutations predominate (3 probands), with only 1 case
from the north of the country showing a homozygous
exon 4 alteration.
The first Mexican- Mestizo proband (FLD pheno-

type) showed an alteration located in the leader se-
quence of the gene, thus normal protein synthesis is
abolished. To our knowledge, this particular mutation
is novel, only one other mutation in this region of
the gene has been reported: Calabresi et al. mention a
subject with a Thr-13Met mutation and an FLD
phenotype [64]. The proband continued to show par-
oxonase- 1 activity, essentially on HDL, even though
the number of particles was extremely low and des-
pite a clear lack of LCAT activity. The proband had
27 % activity, while her affected siblings had approxi-
mately 50 % activity. The heterozygote family mem-
bers had essentially normal PON-1 activity. This
enzyme prevents the conversion of LDL into a more
atherogenic particle [103]. Preserved PON-1 activity
has been reported in other HDL-C deficiency states,
and in vitro experiments with LCAT deficient plasma
suggest an apparent maintenance of cholesterol efflux
[94, 104, 105]. Reverse cholesterol transport and pro-
tection of LDL from oxidative stress is possibly

conserved in complete LCAT deficiency, supporting
the differential cardiovascular risk between
phenotypes.
The second Mexican- Mestizo proband (FED) had two

distinct LCAT mutations, one on each allele (compound
heterozygote). One of the alterations was a frameshift
mutation (c.101dupC) on exon 1; the other mutation
was a missense mutation (c.110 C > T) on the same
exon. Both mutations have previously been reported in
the literature [27–29].
Argyropoulos et al. have reported an FLD Caucasian

proband who was compound heterozygote with a mis-
sense mutation identical to that in the proband
(c.110 C > T on exon 1) [46]. Posadas-Sanchez et al.
have reported the presence of the same missense mu-
tation (c.110 C > T) on both alleles (homozygote) in
an unrelated Mexican subject with an unclassified
LCAT deficiency syndrome (probable FED) [88]. The
34- year old Mexican man had type 2 diabetes, pre-
mature coronary artery disease, corneal opacities, nor-
mal renal function and extremely low levels of HDL
cholesterol (2 mg/dL). The investigators reported an
increased number of small HDL particles, which had
a reduced ability to promote cholesterol efflux (PON-
1 activity was low). Finally, Bujo et al. have published
the presence of the homozygous c.101dupC mutation
on exon 1 in a Japanese subject. This resulted in a
truncated 16 amino-acid non -functional LCAT pro-
tein and an FLD phenotype [22]. Predicting the effect
of the co-existence of two different mutations (one
on each allele) on LCAT function and structure is
not straightforward. The majority of mutations are
not located in sites involved in the catalytic function
of the enzyme; the affected sites are probably involved
in maintaining protein stability and structure. The
mature LCAT protein contains 416 amino acids and a
leader sequence (67 kDa) [106–108]. LCAT has two
disulfide bridges between Cyst50-Cys74 and Cys313-
Cys356; the first bridge partially covers the active site
of LCAT, forms part of the lid region and is thought
to enable the enzyme to bind to lipid surfaces. In our
patient, the genetic alterations may interfere with the
nearby lid structure or produce a conformational
change when the mature protein is folded, resulting
in enzyme- substrate interference. The frameshift mu-
tation is a more detrimental alteration; however, clin-
ical expression of which would only be apparent in
homozygotes. Hence, the predominant phenotype in
the subject is FED.
The third Mexican-Mestizo proband (FLD), had a

point mutation on exon 4 of the LCAT gene; this muta-
tion has been reported in an Austrian kindred who were
homozygous for this modification [39]. This domain
(where Arg140 resides) is crucial for an enzymatically
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active LCAT protein, mutations in this region possibly
affect tertiary structure.
In Latin America, persons with LCAT deficiency syn-

dromes face unique challenges. The medical community
is unaware of this condition; the third proband had
attended consultations with several specialists and had
not been diagnosed opportunely. Many centers do not
have the infrastructure for the biochemical or genetic
studies necessary to confirm this condition. Current
management of FLD is preventative and involves lipid
lowering therapy, ACE inhibitors, diuretics and steroids,
in order to delay progression to end-stage renal disease:
for many in Latin America, these medications will be an
out of pocket expense. Furthermore, access to further
treatment with peritoneal dialysis or hemodialysis is
variable. Provision of renal replacement therapy (RRT)
has increased in all Latin American countries over the
past 20 years, universal access is available in only a few
countries (Argentina, Brazil, Chile, Cuba, Uruguay,
Venezuela, and Colombia) [109]. Kidney transplantation
may offer a temporary cure, but reoccurrence of ne-
phropathy is inevitable [110]. Currently, trials are under-
way with human recombinant LCAT enzyme and there
is the possibility of gene therapy in the future [111].
However, such products maybe unavailable and/or un-
affordable in Latin America [112].

Study strengths and limitations
This study is the first systematic review of LCAT defi-
ciency syndromes evaluating the ethnic distribution of
this condition. This work highlights the major know-
ledge gaps in this disease. Limitations include the lack of
standardized data in the case reports. This limited the
analysis in the systematic review. A quality assessment
and critical appraisal of the included case reports was
also carried out (using the JBI critical appraisal checklist)
by two of the researchers and is available in supplemen-
tary Table 8 [113]. It is evident that the included articles
focus only on the history and diagnosis with little infor-
mation on treatment and long-term follow-up. This lack
of longitudinal data does not allow the natural history of
this disease to be examined adequately. Measurements
of free cholesterol and cholesteryl ester, as well as chol-
esterol esterification rate to complete the biochemical
characterization of the Mexican probands and their fam-
ilies would have been desirable.

Conclusions
In conclusion, the systematic review shows that LCAT
deficiency syndromes are diagnosed late; with FLD cases
identified significantly earlier than FED. This review
confirms that this condition is clinically and genetically
heterogeneous. There was no association between ethni-
city and LCAT mutations. However, there was a

significantly greater risk of premature coronary artery
disease in FED compared to FLD. This finding is clinic-
ally important, it suggests that management should be
tailored according to the LCAT deficiency profile. In
FLD patients, the priority is to mitigate both CVD and
progression to end stage kidney disease; in contrast, in
FED patients, management of cardiovascular risk may
well be paramount. Finally, the LCAT mutations dis-
cussed in this article are the only ones reported in the
Mexican- Amerindian population. The novel mutation
associated with FLD in a Mexico-Mestizo woman, may
suggest the influence of Amerindian ancestry.
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