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Abstract

Obesity, insulin resistance, type 2 diabetes mellitus (T2DM) and hypertension (HTN) are common that are associated
with low-grade systemic inflammation. Diet, genetic factors, inflammation, and immunocytes and their cytokines
play a role in their pathobiology. But the exact role of sodium, potassium, magnesium and other minerals, trace
elements and vitamins in the pathogenesis of HTN and T2DM is not known. Recent studies showed that sodium
and potassium can modulate oxidative stress, inflammation, alter the autonomic nervous system and induce
dysfunction of the innate and adaptive immune responses in addition to their action on renin-angiotensin-
aldosterone system. These actions of sodium, potassium and magnesium and other minerals, trace elements and
vitamins are likely to be secondary to their action on pro-inflammatory cytokines IL-6, TNF-α and IL-17 and
metabolism of essential fatty acids that may account for their involvement in the pathobiology of insulin resistance,
T2DM, HTN and autoimmune diseases.
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Introduction
Both type 2 DM (T2DM) and hypertension (HTN) are
common diseases in almost all countries of the world. It
is estimated that about 50% of the population above the
age of 45 years have HTN and another 10-20% of the
population have T2DM (detected or undetected).
Almost 50% of the patients who have T2DM have or de-
velop HTN eventually. Thus, both T2DM and HTN are
present in many of the patients (population). In addition,
obesity is also common. Patients with both T2DM and
HTN are generally obese. It is noteworthy that obesity,
T2DM and HTN are all associated with insulin resist-
ance. In fact, insulin resistance is the first to develop in
those who eventually develop HTN and T2DM. It is

now recognised that obesity, T2DM and HTN are all
low-grade systemic inflammatory conditions. Coronary
heart disease (CHD) eventually occurs in some, if not all,
of the patients with insulin resistance, obesity, T2DM
and HTN. Thus, all these conditions have overlapping
features and one condition may lead to the other(s) [1–
8]. Insulin resistance seems to be a common factor
underlying all these conditions.
Of all the dietary factors that are known to influence

the development of HTN and T2DM, salt, potassium,
essential fatty acids, minerals, trace elements, vitamins
and calorie intake are important. Salt does not influence
the development of HTN in all but in a subset of pa-
tients who have salt sensitive HTN, whereas potassium
seems to suppress the pro-hypertensive action of salt [9,
10]. In addition to these dietary factors, exercise is also
an equally important factor in the prevention and
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management of hypertension and T2DM. Sodium (salt)
is an essential nutrient in man and physiological need in
adults is only of the order of 8–10 mmol/day (184–230
mg/day). It may be noted that the equivalence between
sodium and salt is as follows: 1g sodium chloride = 17.1
mmol or 393.4 mg sodium. Salt intake induces a signifi-
cant difference in the prevalence of hypertension. Higher
intake of salt is expected to produce substantial increase
in blood pressure, though some studies did not repro-
duce this correlation between salt intake and blood pres-
sure (reviewed in ref. 2). This discrepancy could be
attributed to variations in the consumption of other
minerals such as potassium, magnesium, and calcium. It
has been suggested that availability of adequate amounts
of calcium stabilizes the cell membrane (such as endo-
thelial and smooth muscle cell membranes), blocks its
own entry into the cells, and makes arterial smooth
muscle cells less likely to contract [2]. It was reported
that hypertensives consume less sodium than those with
normal blood pressure and significantly less calcium, po-
tassium, vitamin A, and vitamin C [2]. In SHR (spontan-
eously hypertensive rat) showed a lower level of sodium
contents in the RBC and a higher activity of the sodium
pump. These studies led to the suggestion that the
amounts of dietary calcium might regulate blood pres-
sure by changing the sodium pump of the cell mem-
brane in SHR. It is likely that it is not the calcium alone
but calcium in conjunction with other ions such as so-
dium and potassium that relax the arterial smooth
muscle cells. These results imply that it is likely that a
balance between all the ions that is more important than
calcium or for that matter any one ion in isolation that
regulates the smooth muscle contraction and the devel-
opment of hypertension [2].
It is well documented that increased consumption of

high calorie diet or high fat diet (HFD) enhance the risk
of development of insulin resistance, obesity, T2DM and
HTN. Similarly, high dietary content of trans-fats and
saturated fats enhance the incidence of insulin resist-
ance, obesity and T2DM. In contrast to this, adequate
exercise is beneficial in reducing the risk of insulin re-
sistance, obesity, T2DM and HTN and consequently im-
prove cardiovascular health. In addition, deficiency or
sub-optimal intake of minerals, trace elements and vita-
mins increase the risk of development of obesity and
T2DM [2]. Of all the dietary factors, perhaps, salt plays a
dominant role in the pathobiology of insulin resistance,
HTN and T2DM including cardiovascular health. In
South Asian countries where salt intake is high, it may
have a dominant role in the development of insulin re-
sistance, HTN, T2DM and cardiovascular diseases. Des-
pite this close association, the exact mechanism(s) by
which salt plays a significant role in these diseases is not
clear. It is suggested that high salt intake induces low-

grade systemic inflammation, decreases NO and PGI2
generation, and thus, participates in the pathogenesis of
these diseases. Based on the current evidence, it is pro-
posed that high salt intake enhances the generation of
TH17 cells that secrete enhanced amounts of IL-17, a
pro-inflammatory molecule; suppresses the production
of anti-inflammatory bioactive lipids (such as PGE1,
PGI2, lipoxin A4, resolvins, protectins, and maresins).
This imbalance between pro-inflammatory IL-17 (due to
enhanced generation and activity of TH17 cells) and de-
creased production of anti-inflammatory bioactive lipids
that have a negative regulatory control on IL-6 and
TNF-α, results in an increase in the production of pro-
inflammatory IL-6 and TNF-α, which induce the pro-
duction of reactive oxygen species (ROS), reduce the
generation of nitric oxide (NO) and enhance sympa-
thetic activity. These events result in an increase in insu-
lin resistance and subsequent development of HTN and
T2DM. PGE1, PGI2, LXA4, resolvins, protectins and
maresins, and NO are vasodilators and a decrease in
their production/action results in an increase in periph-
eral vascular resistance and development of HTN [11].
Several studies showed that LXA4, resolvins, protectins
and NO have anti-diabetic actions [12–17]. These results
suggest that inflammation and immunological events
participate in the development of HTN and DM imply-
ing that these two diseases have several common over-
lapping pathophysiological events.
Increased salt (sodium chloride) intake enhances the in-

duction of human TH17 cells by activating the p38/
MAPK pathway and serum/ glucocorticoid-regulated kin-
ase 1 (SGK1) [18] resulting in upregulation of the proin-
flammatory cytokines GM-CSF, TNF-α, and IL-2 leading
to the development of inflammatory events seen in HTN
and T2DM. Thus, increased intake of salt induced SGK1
expression promotes IL-23R expression which enhances
TH17 cell differentiation and accelerates the development
of inflammatory events that can be suppressed by potas-
sium supplementation [19]. These results imply that the
balance between salt and potassium needs to be main-
tained to regulate TH17-induced inflammatory events,
vascular tone, insulin resistance and prevent development
of HTN and T2DM [2, 11, 20–22].

Hypertension and T2DM have overlapping features
Hypertension is common in many countries. It is esti-
mated that the prevalence of hypertension among adults
was 29.0% and was similar among men (30.2%) and
women (27.7%) in USA. Approximately ~ 50% of pa-
tients with T2DM have and/or develop HTN that en-
hances risk of vascular diseases (including coronary
heart disease: CAD; peripheral vascular disease, stroke)
due to DM. The risk for cardiovascular disease (CVD) is
~ four-fold higher in those with both DM and HTN
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compared to the normotensive non-diabetics. DM en-
hances the risk for coronary heart disease (CAD),
stroke and deaths from cardiovascular cause, includ-
ing heart failure, cardiac arrhythmia, sudden death,
hypertensive disease, and aortic aneurysms [8]. The
enhanced risk of complications due to DM are com-
mon in those who also have HTN. Subjects who have
both HTN and T2DM are generally older, have
higher BMI and hypertriglyceridemia (and other lipid
abnormalities). These patients have higher expression
levels of NADPH oxidase and MnSOD in their per-
ipheral blood mononuclear cells [23–26].
NADPH oxidase (nicotinamide adenine dinucleotide

phosphate oxidase) is a plasma membrane-bound en-
zyme complex that is used by neutrophils to inactivate
microorganisms by producing superoxide free radical.
The NADPH oxidase complex is dormant under normal
circumstances but is activated during respiratory burst.
Superoxide anion kills bacteria directly by attenuating
their superoxide dismutase (SOD) genes and generating
hydrogen peroxide and other reactive oxygen species
(ROS). These free radicals inactivate several metabolic
enzymes, initiate lipid peroxidation, damage iron-
sulphur clusters, and allows the generation of indiscrim-
inate oxidants. Vascular NADPH oxidases are important
players in vascular remodeling and disease. Thrombin,
platelet-derived growth factor (PDGF), tumor necrosis
factor-α (TNF-α), interleukin-1, oxidized LDL and ara-
chidonic acid can activate NDPH oxidase [27–35]. In
those with uncontrolled hypertension, there is increased
generation of free radicals including superoxide anion by
their peripheral leukocytes and endothelial cells that can
be attenuated by various antihypertensive drugs [11, 36–
39]. It has been suggested that excess superoxide pro-
duced scavenges endothelial nitric oxide that, in turn,
leads to the increased vascular smooth muscle contrac-
tion and hence to the elevated total peripheral resistance
and development of HTN [40]. Similar increased pro-
duction of free radicals has also been reported in those
with T2DM and coronary heart disease [41–46].
Manganese-dependent superoxide dismutase (MnSOD)

is an enzyme which is a member of the iron/manganese
superoxide dismutase family that binds to the superoxide
byproducts of oxidative phosphorylation and converts
them to hydrogen peroxide and diatomic oxygen (O2).
Thus, MnSOD clears reactive oxygen species (ROS) and
protects cells from apoptosis. Thus, MnSOD protects vari-
ous cells/tissues from oxidative stress induced by various
agents and from inflammatory cytokines [47, 48]. These
results suggest that a balance need to be maintained be-
tween ROS and MnSOD (SOD exists in three different
isoforms: SOD1, SOD2, and SOD3. SOD1 is distributed
throughout the cell cytoplasm, nucleus and in the lumen
between outer and inner membranes of mitochondria,

SOD2 isoforms are in matrix of mitochondria, while
SOD3 is found mostly extracellularly) such that inappro-
priate apoptosis of cells would not occur due to excess
production of ROS.
Since, ROS generation is increased in both T2DM and

HTN [36–44], it may explain as to why the risk of devel-
opment of T2DM is high in those who have HTN [49–
53]. These results [49–53] suggest that HTN and T2DM
may have some common pathophysiological basis in-
cluding an increase in free radical generation. Both
T2DM and HTN are considered as low-grade systemic
inflammatory conditions since their plasma concentra-
tions of tumor necrosis factor-α (TNF-α), interleukin-6
(IL-6), and C-reactive protein (CRP) are higher com-
pared to normal healthy control [53–57]. High salt in-
take enhances the risk of development of HTN and
T2DM [58–60]. In addition, increased generation of
ROS and low levels of plasma NO is present in this situ-
ation [11, 36–40]. Furthermore, high salt intake induced
HTN is associated with increased sympathetic activity
(and so enhanced production of noradrenaline and
adrenaline), augmentation of intrarenal angiotensin II
production, enhanced oxidative stress and inflammatory
cytokines [61–64]. The pro-inflammatory action of en-
hanced sympathetic activity [65] may counteract the anti-
obesity action of sympathetic nervous system. In contrast
to this, vagal acetylcholine, the principal neurotransmitter
of the parasympathetic nervous system, has potent anti-
inflammatory actions [66, 67]. In this context, the benefi-
cial action of exercise is interesting. Sympathetic activity,
ROS, plasma IL-6 and TNF-α levels are increased during
exercise that are pro-inflammatory in nature [68–75]. But
regular exercise enhances parasympathetic activity and
augments vagal tone that results in increased generation
of acetylcholine that has anti-inflammatory actions [66,
67, 69, 70, 76, 77]. Interestingly, regular exercise causes a
gradual but sustained fall in the generation of IL-6 and
TNF-α and enhances the production of MnSOD leading
to an increase in endogenous antioxidant capacity [73–
75]. This ultimately results in decrease of blood pressure,
and protection from the development of T2DM and
CHD [69, 70, 76, 77]. Thus, exercise is anti-
inflammatory in nature [69, 70].

Sodium and potassium modulate inflammation
High intake of sodium causes hypertension by volume
expansion, altering the renin–angiotensin–aldosterone
system (RAS), reducing endothelial NO generation, en-
hancing the formation of asymmetrical dimethyl arginine
(ADMA), oxidative stress secondary to excessive produc-
tion of ROS, inflammation, impaired insulin-mediated
vasodilatation, increased sympathetic nervous system
(SNS) activation, dysfunctional immune responses, and
abnormal renal handling of sodium [2, 9, 11, 59–64].
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Similar abnormalities are also present in T2DM [41–44,
57–61, 9, 23, 49]. These results are in support of the ob-
servation that expression of NADPH oxidase is increased
in those with obesity, higher BMI and HTN and T2DM
[23, 24]. This enhanced generation of ROS in those with
T2DM and HTN can be attributed to an increase in the
concentrations of pro-inflammatory cytokines IL-6, TNF-
α and IL-17. In addition, angiotensin-II is a potent inducer
of inflammation and generation of ROS that may explain
as to how increase in intake of sodium-induced renin-
angiotensin-aldosterone system induces inflammation and
ROS induction [78–81]. Angiotensin-II enhances the for-
mation of ADMA (asymmetrical dimethylarginine), a po-
tent inhibitor of endothelial nitric oxide generation [81].
Thus, high salt intake reduces NO generation, increases
ROS generation, decreases microvascular antioxidant en-
zymes (especially Cu/Zn SOD activity) and thus, contrib-
utes to enhanced peripheral vascular resistance and
development of hypertension [82–86].
Recent studies revealed that increased salt (sodium

chloride) intake augments the activity of TH17 cells via
the p38/MAPK pathway and serum/glucocorticoid-regu-
lated kinase 1 (SGK1) [18] that results in upregulation of
GM-CSF, TNF-α and IL-2 levels, which are all pro-
inflammatory cytokines that may account for the pro-
inflammatory status seen in HTN and T2DM. This abil-
ity of salt to augment pro-inflammatory events can be
suppressed by adequate potassium supplementation [19,
87, 88]. This indicates that a balance needs to be main-
tained between salt and potassium to suppress inappro-
priate induction of TH17-induced inflammatory events
so that an increase in vascular tone and insulin resist-
ance does not occur that ultimately leads to the develop-
ment of HTN and T2DM. Thus, maintenance of balance
among sodium, potassium, magnesium, and calcium in
the physiological range prevents the development of
HTN and T2DM [2].
Magnesium is a co-factor needed for the normal

physiological activity of desaturases [2, 89, 90] that are
needed for the conversion of dietary essential fatty acids
(EFAs): linoleic acid (LA) and alpha-linolenic acid (ALA)
to their respective long-chain metabolites that have im-
portant actions in the pathobiology of HTN and T2DM
(see Fig. 1 for metabolism of EFAs and interaction among
EFAs and their metabolites and other soluble mediators
involved in HTN and T2DM). In addition, sodium and
potassium influence the metabolism of EFAs by virtue of
their ability to alter (sodium enhances whereas potassium
decreases) the concentrations of angiotensin-II. Increased
formation of angiotensin-II augments the generation of
ROS that inactivates desaturases and thus, decreases the
formation of their long-chain metabolites (GLA, DGLA,
AA, EPA and DHA) [91, 92] some of which are the pre-
cursors of lipoxins, resolvins, protectins and maresins that

have vasodilator, platelet antiaggregatory, anti-diabetic
and anti-inflammatory actions [93–96]. Sodium inhibits
whereas potassium enhances the activities of desaturases
and thus, influence the conversion of dietary LA and ALA
to their respective long-chain metabolites GLA, DGLA,
AA and EPA and DHA, the precursors of pro- and anti-
inflammatory prostaglandins (PGs), thromboxanes (TXs),
leukotrienes (LTs), lipoxins resolvins, protectins and mar-
esins. Sodium enhances the formation of PGs, TXs and
LTs and blocks the formation of lipoxins, resolvins, pro-
tectins and maresins at least, in part, by inhibiting the gen-
eration of AA, EPA and DHA, whereas potassium shows
opposite actions [97–106]. This may explain as to why ex-
cess salt consumption leads to pro-inflammatory status
and development of HTN and T2DM.

Potassium, sodium, and T cells
Potassium ions are not only the most abundant cation in
the body but are also capable of regulating T cell func-
tion. Most of the potassium (~98%) is intracellular and
only (~2%) a small portion of it is extracellular. In view
of its actions on the cardiac muscle, the extracellular
K++ concentrations need to be tightly controlled. Under
normal physiological conditions, sodium and potassium
ions have opposite actions. Increased sodium chloride
concentrations enhance the induction of TH17 cells by
activating the p38/MAPK pathway and serum/gluco-
corticoid-regulated kinase 1 (SGK1) [18, 19, 87, 88, 107–
112]. These TH17 cells secrete large amounts of pro-
inflammatory cytokines GM-CSF, TNF-α and IL-2 that
coincided with severe forms of autoimmune disease such
as experimental autoimmune encephalomyelitis (EAE). It
is noteworthy that other dietary factors such as high-fat
and cholesterol, high-protein, high-sugar, and frequent
consumption of processed and 'fast foods' that contain
significantly high amounts of salt (sodium chloride) not
only promote obesity, metabolic syndrome, and cardio-
vascular diseases but also augment TH17 cell generation
and production of IL-17 cytokine and thus, promote
autoimmune diseases. Thus, increased dietary salt, high
fat diet and high sugar all enhance the risk of developing
obesity, HTN and T2DM and autoimmune diseases
(such as rheumatoid arthritis, lupus, multiple sclerosis)
through the induction of pathogenic TH17 cells [18,
107–113] whereas elevated intracellular K+ concentra-
tion suppresses T cell function by inhibiting Akt and
mTOR protein kinases [19, 88–90, 114, 115]. Hence,
maintaining the balance between Na+ and K+ across the
cell membrane is critical not only for T cell function but
also for other cells such as endothelial cells to prevent
inappropriate production of pro-inflammatory cytokines
(endothelial cells also produce cytokines [116]). Thus,
dietary salt and K+ intake modulate GM-CSF, TNF-α,
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IL-2 and IL-17 production and thus, play a role in the
pathobiology of HTN and T2DM.

HTN as an immunological disorder
The observation that salt enhances the production of IL-
17, a pro-inflammatory molecule, implies that HTN
could be an immunological disorder. Increased salt in-
take induced elevation in plasma angiotensin-II levels
[62] that, in turn is known to enhance IL-6 secretion
and other pro-inflammatory molecules such as PGE2,
NF-kB and IL-17 [24, 63–65, 78–81]. It was reported
that the basal plasma levels of IL-6 were higher in those
with HTN compared to control. These results suggest
that HTN is associated with pro-inflammatory status
and angiotensin-II is a pro-inflammatory molecule.
Furthermore, angiotensin-II mediates induction of

HTN by acting on T effector (Teff) cells. Under normal

physiological conditions, T regulatory cells (Tregs) sup-
press Teff lymphocytes. In experimental animals, infu-
sion of angiotensin-II (1 μg/kg/minute subcutaneous) for
14 days increased systolic blood pressure by more than
40 mm Hg, enhanced NADPH oxidase activity in aorta
and heart by more than 1.5 fold, impaired acetylcholine
vasodilatory action by ~70% compared to control and
enhanced vasculature stiffness and mesenteric artery
vascular cell adhesion molecule expression by more than
2 fold and aortic macrophage and T cell infiltration,
events that could be reversed by Treg cell adaptive
transfer. Angiotensin-II induced decrease in Foxp3+ in
renal cortex that was reverted to near normal by Treg
cells transfer. These results suggest that angiotensin-
induced hypertension and other features are due to its
pro-inflammatory action mediated by Teff cells and this
can be reversed or prevented by Treg cells that have

Fig. 1 Scheme showing EFA metabolism, interaction, and feedback regulation among immunocytes, cytokines, various bioactive lipids (BALs) and
inflammation. 15-HETrE = 15-(S)-hydroxy-8,11,13-eicosatrienoic acid. M1 and M2 macrophages. Red lines indicate pro-inflammatory events; Green
lines indicate anti-inflammatory events. For further details see the text
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anti-inflammatory actions [117–125]. Thus, it is opined that
angiotensin-II induced blood pressure elevation is due to its
ability to induce oxidative stress, endothelial dysfunction,
and activation of Teff cell function. It is known that Treg
cells deficiency is associated with several autoimmune dis-
eases [126]. This is further supported by the observation
that IL-17 levels are increased in subjects with type 1 DM,
lupus, and multiple sclerosis [127–130]. These results
coupled with the reports that circulating levels of IgG and
IgM antibodies are elevated in patients with essential and
pregnancy-related hypertension that target G-protein
coupled receptors and ion channels including AT1 re-
ceptors, α1-adrenoceptors, β1-adrenoceptors, and L-
type voltage operated Ca(2+) channels imply that these
antibodies play a critical role in the events that are im-
portant for regulating blood pressure including modu-
lation of vascular tone, cardiac output, and/or Na(+
)/water reabsorption in the kidneys [131]. Since nor-
mally there is a close interaction between T and B cells
in the regulation of immune response, it is reasonable

to suggest that both T and B cells have a regulatory role
in the pathobiology of HTN and T2DM and other inflam-
matory diseases including type 1 DM. In this context, it is
noteworthy that EFAs and their metabolites have a regula-
tory role in the generation and action of T and B cells
[132–144] (see Figs. 2, 3 and 4). At this juncture, it is rea-
sonable to argue that not all hypertensives have increased
salt intake except those who have salt sensitive HTN. It is
likely that in those who do not have salt sensitive HTN
may have other abnormalities such as relatively decreased
intake of potassium, magnesium and calcium and de-
creased formation of downstream metabolites of EFAs
such as GLA, AA, EPA and DHA and lipoxins, resolvins
protectins and maresins. These abnormalities may
lead to increased formation of IL-17 secondary to the
absence of negative feedback control exerted by po-
tassium, magnesium, EFAs and their metabolites. This
ultimately leads to enhanced generation of IL-17 by
endothelial cells and various immunocytes leading to
the onset of HTN [116, 145–149].

Fig. 2 Scheme showing the effect of high sodium intake and potassium on the activity of desaturases, and formation of their metabolites. High
sodium intake inhibits the activity of desaturases and the conversion of dietary LA and ALA to their respective metabolites. This results in
decreased formation of vasodilator, and anti-inflammatory LXA4, resolvins, protectins and maresins due to the deficiency of their respective
precursors and an increase in PGE2, LTs and TXs are pro-inflammatory in nature. Sodium enhances TH17 activation and enhances IL-17 formation
and release whereas potassium inhibits these actions. IL-17 has pro-inflammatory actions and enhances ROS generation. For further details
see text
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EFAs in the pathobiology of HTN and T2DM
Dietary EFAs: cis-linoleic acid (LA, 18:2 n-6) and alpha-
linolenic acid (ALA, 18:3 n-3) are essential for the sur-
vival of humans. EFAs are needed for integrity of skin,
normal immune function, and inflammation. EFAs defi-
ciency can result in death due to dehydration, desquam-
ation of skin, poor wound healing, growth retardation,
immunosuppression and increased infections, hepatic
and splenic dysfunction and abnormal inflammation that
eventually can lead to death. But EFAs deficiency is rare
since they are present in almost all food that we con-
sume. EFAs deficiency is common in those who are on
total parenteral nutrition (when they do not receive
enough EFAs in the parenteral fluids), suffer from long-
standing and severe bowel disease, following massive

bowel resection surgery, pancreatic surgery, and gastric
bypass surgery and have significant cystic fibrosis [150–
153]. Due to the awareness of importance of EFAs in
health, now a days all patients receive EFAs supplemen-
tation and so is rare. The significance of EFAs resides in
the fact that they are essential for normal skin function
and to prevent water loss through skin since they are
important for skin integrity and for normal immune re-
sponse. EFAs form an important constituent of cell
membrane and regulate cell membrane fluidity [153]. In
addition, EFAs are converted into their long-chain me-
tabolites namely gamma-linolenic acid (GLA, 18:3 n-6),
dihomo-GLA (DGLA, 20:3 n-6) and arachidonic acid
(AA, 20:4 n-6) from LA and eicosapentaenoic acid (EPA,
20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3)

Fig. 3 Scheme showing interaction(s) among T and B cells and macrophages and their relationship to various diseases. Possible role of PUFAs
and their metabolites in these events is also depicted. Antigen-presenting cells (APCs) present antigen on their Class II MHC molecules (MHC2).
Helper T cells recognize these, with the help of their expression of CD4 co-receptor (CD4+). The activated helper T cell release cytokines and
other stimulatory signals that stimulate the activity of macrophages, killer T cells and B cells. The activated T cells, B cells and macrophages
produce eicosanoids, ROS, NO and cytokines that eliminate the invading microorganisms, intracellular pathogens and/or cause autoimmune
diseases depending on the regulation or inappropriate function of T suppressor cells. Decreased production of LXA4/resolvins/protectins/maresins
and abnormal EFA metabolism leads to alterations in the production of ROS, IL-17, IL-6, TNF-α and antibodies resulting in development of HTN
and DM. This diagram is an abridged form of the actual interactions that are much more complex
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from ALA by the action of enzymes delta-6- and delta-
5-desaturases and elongases (see Fig. 3). DGLA is the
precursor of 1 series prostaglandins (PGs), whereas AA
is the precursor of 2 series PGs, thromboxanes (TXs)
and 4 series leukotrienes (LTs). EPA is the precursor of
3 series PGs and TXS and 5 series LTs. PGs, TXs and
LTs generally have pro-inflammatory actions but those
formed from EPA are less pro-inflammatory compared
to those formed from AA. In addition, PGE1 from
DGLA, PGI2 and PGJ2 from AA have anti-inflammatory
actions. AA is the precursor of lipoxin A4 (LXA4), a po-
tent anti-inflammatory compound. EPA is the precursor
of resolvins of E series, whereas resolvins of D series,
protectins and maresins are derived form DHA. Resol-
vins, protectins and maresins are all potent anti-
inflammatory compounds. It is evident from this

discussion that EFAs are the precursors of a variety of
pro and anti-inflammatory compounds that play a sig-
nificant role in inflammation, wound healing, immune
response and protecting the body from various bacterial,
viral, fungal, and parasitic infections [153]. It is note
worthy that PGs, TXs, LTs, LXA4, resolvins, protectins
and maresins modulate vascular tone, regulate insulins
secretion, and have significant role in the modulation of
actions of leukocytes, macrophages, monocytes, T cells
and B cells [154–157]. In view of these actions, EFAs
and their metabolites have a critical role in the regula-
tion of blood pressure and pathobiology of both type 1
and type 2 diabetes mellitus [15, 93, 158–163]. One of
the actions of EFAs and their metabolites include their
ability to modulate secretion and action of cytokines,
ROS generation and T cell function (see Fig. 2).

Fig. 4 Factors controlling formation of different subsets of T helper cells. LXs = Lipoxins; RSvs = Resolvins; PRTs = Protectins; MaRs = Maresins.
Naive CD41 T cells differentiate into 3 types of subsets of T helper cells: TH1, TH2 and TH17. TGF-β converts naive T cells into FOXP3-expressing
induced Treg (iTreg) cells. T helper cell differentiation requires specific transcription factors as master regulators, which include T-bet, GATA3 and
ROR-γt. Terminally differentiated T helper cells produce specific effector cytokines to bring about their distinct effector functions. TGF-β, retinoic
acid or cytokines: IL-6, IL-1, IL-23, or IL-27 produced by the innate immune system’s immature or activated dendritic cells (DCs) dictate how a
naive T cell develops into a FOXP31 Treg cell, a TH17 cell or otherwise. PGE2 through its receptor EP4 on T cells and dendritic cells facilitates TH1
cell differentiation and amplifies IL-23–mediated TH17 cell expansion, whereas EP4-selective antagonist inhibits TH1 and TH17 cells and
suppresses autoimmune diseases. GLA, AA, EPA, DHA, lipoxins, resolvins, protectins, maresins and prostaglandins, leukotrienes and thromboxanes
influence macrophage and other immunocytes’ phagocytosis, motility and ability to alter ROS generation and thus, regulate inflammation and
immune response
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EFAs and their metabolites regulate T cells development
and its relevance to HTN and T2DM
On exposure to different stimuli, naïve T cells get acti-
vated, form three distinct effector TH subsets: TH1 cells
produce IFN-γ; TH2 cells produce IL-4, IL-13 and IL-
25; the third subset of TH cells known as TH17 cells
produce IL-17. TH17 cells also produce IL-21 and IL-22.
TGF-β, IL-6, IL-21, IL-23, and IL-1β have a role in the
formation of TH17 cells. High concentrations of TGF-β
inhibit IL-6-induced IL-22 expression, whereas a com-
bination of TGF-β and IL-6 induce generation of IL-17
by TH17 cells. IL-22 production by TH17 cells need the
co-operation of IL-23. Thus, IL-22 is the end point ef-
fector cytokine secreted by TH17 cells [164–171] (see
Figs. 1, 2 and 3).
IL-17, a pro-inflammatory cytokine, is secreted by T

helper 17 cell in response to stimulation by IL-23. IL-17
stimulates the induction of chemokines and thus, mono-
cytes and neutrophils are recruited to the site of inflam-
mation. IL-17 acts in conjunction with TNF and IL-1
and plays a critical role in autoimmune diseases and al-
lergic responses. IL-17 enhances the production of IL-6,
G-CSF, GM-CSF, IL-1β, TGF-β, TNF-α, chemokines (in-
cluding IL-8, GRO-α, and MCP-1), and PGE2 by macro-
phages and other cells [172]. TH17 is needed for
protection against Gram-positive and Gram-negative
organisms and fungi [172] (see Fig. 4).
TH17 development is regulated by the transcription

factor, the orphan nuclear receptor ROR-ct and TGF-β
plus IL-6. Furthermore, Treg cells and TH17 cells have a
reciprocal relationship between them. This is supported
by the observation that IL-2, a growth factor for Treg
cells, inhibits the generation of TH17 cells, whereas lack
of IL-2 reduces the number of Treg cells and increases
TH17 cells and leads to the development of inflamma-
tory diseases that can be suppressed Treg cells. IL-4, IL-
25, IL-27 and IFN-γ inhibit the expansion of TH17 cells
[166–172].
But surprisingly antibodies against IL-17 are not ef-

fective against inflammatory bowel disease, an auto-
immune disease. In contrast, targeting IL-23 is effective
[171]. PUFAs (especially EPA/DHA), lipoxins, resolvins,
protectins and maresins inhibit IL-23 and IL-17 and
hence are expected to prevent salt and HFD and
carbohydrate-induced HTN and T2DM (see Fig. 4).
Several studies revealed that EFAs and their metabo-

lites can regulate blood pressure and prevent develop-
ment of HTN, at least, in part by restoring IL-17 and
Treg balance, decreasing the formation of angiotensin-II
and suppressing the expression of angiotensin-II recep-
tors [141, 173–181]. We showed that GLA, DGLA, AA,
EPA and DHA can prevent the development of both
type 1 and type 2 DM by alloxan and streptozotocin in
experimental animals [158, 160, 163, 182]. Of all the

fatty acids tested, AA was found to be the most potent
in preventing type 1 and type 2 DM due to its conver-
sion to LXA4 [93]. It was found that resolvins and pro-
tectins also have anti-diabetic actions [183–185].
PGE2, derived from AA, induces the expression of IL-

23R in naïve CD4+ T cells. TXA4, a pro-inflammatory
molecule derived from AA, also facilitates IL-17A pro-
duction from Vγ4+ γδ T cells [186–193]. Lipoxins, resol-
vins, protectins and maresins suppress IL-17 and IL-23
production, whereas PGE2 and TXA4 have opposite ac-
tions [186–193]. But, in an occasional instance, PGE2
suppresses the production of IL-23 and IL-12 and thus
bring about its anti-inflammatory action [194]. But, in
general, PGE2 and LTs, enhance the production of IL-17
and IL-23, whereas lipoxins, resolvins, protectins and
maresins suppress their production [186–193] (see Figs.
1, 2, 3 and 4).

Conclusions and therapeutic implications
It is evident from the preceding discussion that in-
creased salt intake (and perhaps, in a similar fashion-
carbohydrate/high fat diet or energy dense food) results
in an: (i) increase in IL-17 production; (ii) decrease in
the activity of desaturases leading to low levels of GLA,
DGLA, AA, EPA and DHA and their anti-inflammatory,
vasodilator, and platelet anti-aggregator metabolites
LXA4, resolvins, protectins and maresins that have the
ability to suppress IL-16, IL-6, IL-17 and TNF-α produc-
tion; (iii) increase in PGE2, LTs, TXA2 production that
have pro-inflammatory action [195, 196]; (iv) increase in
the production of angiotensin-II that is pro-
inflammatory in nature-events that facilitate the occur-
rence of HTN and T2DM. We observed that PUFAs can
suppress the activity of ACE (angiotensin converting en-
zyme) [197] and thus, inhibit the formation of
angiotensin-II, a pro-inflammatory and IL-17 formation
stimulatory molecule. In addition, nitric oxide is a potent
suppressor of ACE activity [197] and antagonizes the
pro-inflammatory and vasoconstrictor action of
angiotensin-II. PUFAs and their metabolites especially,
PGE1, PGI2, LXA4, resolvins, protectins and maresins
augment the production of NO [198–201] and thus, are
of benefit in the prevention of HTN and DM. Despite
the evidence presented above, it is not without contro-
versy. For instance, it was reported that high-salt intake
induces severe hypertension in WBN/Kob diabetic fatty
(WBKDF) rats, whereas plasma glucose levels were sig-
nificantly increased in WBKDF-NS (normal salt) but not
in WBKDF-HS (high salt) rats. Even HOMA-IR (insulin
resistance) in WBKDF-HS was significantly lower com-
pared with that in WBKDF-NS that coincided with an
increase in plasma adiponectin level in WBKDF-HS
group. This paradoxical response shown by WBKDF-HS
group to high salt supplementation in the form of

Das Lipids in Health and Disease           (2021) 20:83 Page 9 of 16



reduced hyperglycemia and insulin resistance in WBKDF
rats has been attributed to increased plasma levels of
adiponectin [202]. In contrast to this, WBKDF-HFD
(high fat diet) and WBKDF-FRD (fructose rich diet) rats
exhibited aggravated obesity and dyslipidemia compared
with WBKDF rats fed standard diet (STD). Paradoxically,
hyperglycemia developed in WBKDF-STD rats was sig-
nificantly inhibited in WBKDF-FRD rats, but not in
WBKDF-HFD rats [203]. These results suggest that the
response of WBKDF rats to high salt intake and high fat
diet depends on other homeostatic mechanisms such as
adiponectin and secretion of NO, and response of the
autonomic nervous system (including secretion of adren-
aline and noradrenaline and acetylcholine). This argu-
ment is supported by the observation that WBKDF rats
when fed with high salt not only had significant eleva-
tion of systolic blood pressure (SBP) but also showed en-
hanced phenylephrine-induced contractions of isolated
thoracic aortic rings significantly reduced relaxation to
acetylcholine- and nitroprusside and higher plasma con-
centrations of 8-iso-prostaglandin F2α (a metabolite of
PGI2, a vasodilator, platelet anti-aggregator and anti-
inflammatory molecule) [204]. The reduced responses to
phenylephrine, acetylcholine and nitroprusside could be
attributed to higher constitutional production of NO
and PGI2 in WBKDF rats that is exaggerated by high
salt and high fat diet. This is supported by the observa-
tion that NO can prevent hyperglycemia [205, 206]. It is
noteworthy that adiponectin enhances eNO generation
[207, 208] and augments insulin action [209, 210]
explaining why diabetes mellitus is ameliorated in
WBKDF-HS group.
Sodium-glucose cotransporter 2 inhibitors (SGLT2i)

are hypoglycemic drugs that target SGLT2, the major
glucose transporter in the kidney responsible for about
90 percent of glucose reabsorption from primary urine
[8]. SGLT2i reduce glycosylated hemoglobin, body
weight, blood pressure, plasma volume, and improve
cardiac energy metabolism. The beneficial actions of
SGLT2i are due to their ability to inhibit vascular in-
flammation, reduce oxidative stress, reverse endothelial
dysfunction, reduce foam cell formation and prevent
platelet activation [211], which are all pro-inflammatory
events. It is interesting to note that SGLT2i empagliflo-
zin acts via AMPK/mTOR pathway to enhance autoph-
agy of hepatic macrophages and thus, prevents NAFLD-
related liver injury. Furthermore, empagliflozin inhibits
IL-17/IL-23 axis and thus, mediates its anti-
inflammatory actions [212, 213]. This lends support to
the concept that both salt and glucose bring about their
pro-inflammatory actions by enhancing the production
of IL-17.
In this context, it is noteworthy that regulatory T cells

(Tregs) express FOXP3, which is needed for natural

Tregs (nTregs) along with TGFβ and retinoic acid for in-
duced Tregs (iTreg). Interestingly, the signature tran-
scription factor for Th17 cells, RORγt, is induced by
TGFβ, thus linking the differentiation of the Treg and
TH17 lineages. FOXP3 can inhibit RORγt function and
drive Treg differentiation. However, when the cell re-
ceives a signal from IL-6, FOXP3 function is inhibited
and the differentiation pathway is induced. Thus, the
balance between FOXP3 and RORγt function determines
CD4 T cell fate and the type of immune response that
will be generated [214]. It is important to note that
PGE2, LTs, and other bioactive lipids regulate the ex-
pression of FOXP3 and thus, regulate/control the gener-
ation of TH17 cells, their ability to secrete IL-17; Tregs
and thus, modulate inflammatory process [179, 181,
215–232] (see Figures 3 and 4).
Based on these results, it is suggested that in addition

to reducing the intake of salt, carbohydrate and energy
dense foods, it is worthwhile to supplement various
EFAs, especially AA/EPA/DHA, their co-factors that are
essential for the normal physiological action of desa-
turases such as vitamin C, folic acid, B1, B6, B12, zinc,
and magnesium to prevent the development of HTN
and T2DM and to inhibit their progression if they are
already present.
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