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Reprogramming of lipid metabolism has received increasing recognition as a hallmark of cancer cells because lipid
dysregulation and the alteration of related enzyme profiles are closely correlated with oncogenic signals and
malignant phenotypes, such as metastasis and therapeutic resistance. In this review, we describe recent findings
that support the importance of lipids, as well as the transcription factors involved in cancer lipid metabolism. With
recent advances in transcription factor analysis, including computer-modeling techniques, transcription factors are
emerging as central players in cancer biology. Considering the limited number and the crucial role of transcription
factors associated with lipid rewiring in cancers, transcription factor targeting is a promising potential strategy for

Introduction

Cancer is a fundamental disorder of cell proliferation
that requires many cellular building blocks, such as pro-
teins, nucleic acids, and lipids. Cancer cells alter metab-
olism to accumulate metabolic intermediates as sources
of these building blocks [1]. The best understood meta-
bolic change is the Warburg effect, which involves ex-
acerbation of glucose uptake and glycolysis [2]. Under
normal conditions, glucose undergoes glycolysis to pro-
duce pyruvate. The tricarboxylic acid cycle and oxidative
phosphorylation then extract energy in the form of ad-
enosine triphosphate. However, in the absence of oxy-
gen, glucose is metabolized to pyruvate, while excess
glucose is converted to lactate. Cancer cells tend to pre-
fer the Warburg effect even in the presence of oxygen,
leading to increased glucose uptake and consumption,
along with decreased oxidative phosphorylation [3]. An-
other commonly observed metabolic change is glutamine
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metabolism [4]. Glutamine consumption by cancer cells
provides carbon and amino-nitrogen to synthesize nucle-
otides, amino acids, and lipids [5]. The third hallmark of
cancers is altered lipid metabolism. Although changes in
lipid metabolism have received less attention than other
changes in cancer cells, recent studies have demon-
strated a relationship between lipid reprogramming and
cancer progression [6].

Lipids are a class of micro-biomolecules that encom-
pass cholesterol (CHO), fatty acids (FAs), and their de-
rivatives (e.g., mono-, di-, and triglycerides [TGs]).
Lipids exert multiple biochemical functions in cells, such
as membrane synthesis, energy production, and the acti-
vation of intracellular signaling pathways. For example,
glycerol-lipids are stored lipids used for energy synthesis,
while glycerophospholipids are used as structural com-
ponents of cell membranes. Additionally, sphingolipids
serve as signaling molecules to regulate various bio-
logical processes, such as cell growth, differentiation,
and apoptosis [7]. Because highly proliferating cells re-
quire an aberrantly high supply of lipids, the changes in
lipid composition and metabolism are considered hall-
marks of cancer aggressiveness (e.g., breast, colon, liver
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and prostate cancers) [8]. Indeed, FA profiles and the
levels of TGs and CHO change in the tissues and plasma
of patients with various cancers [9-12]. Lipoproteins,
such as low-density lipoprotein (LDL), are also higher in
the plasma of cancer patients [13]. Importantly, cancer
cells obtain the bulk of their lipids from de novo synthe-
sis via transcription factor-dependent regulation,
whereas most normal cells acquire their lipids from cir-
culating exogenous lipids [14].

Transcription factors are responsible for the expres-
sion of genes needed to adapt to highly proliferating cel-
lular conditions. Recent studies have demonstrated that
several diseases are associated with changes in transcrip-
tion factors. For example, Boyadjiev et al. reported that
one-third of human developmental disorders and birth
defects can be attributed to dysfunction and gene muta-
tions encoding transcription factors [15]. Additionally,
164 transcription factors have been directly implicated
in 277 diseases [16]. In cancers, 294 transcription factors
have been identified by comparing a list of 1571 candi-
date oncogenic proteins with a list of 1988 human tran-
scription factors and regulators [17, 18], which
corresponds to approximately 19% of all known onco-
genes [19]. In addition, fine-tuning of regulatory systems
by transcription factors involved in lipid metabolism
helps cancer cells adapt to the challenging microenvir-
onment. For example, upregulation of lipogenic gene ex-
pression in cancers results from elevated expression and
activation of sterol regulatory element-binding proteins
(SREBPs) [20]. Excess carbohydrate intake and hypergly-
cemia caused by carbohydrate-response element-binding
protein (ChREBP) lead to energy storage as TGs and
promote tumor progression [21]. Although transcription
factors are undruggable targets, an advanced under-
standing of transcription factors (including their struc-
ture) and the dynamics of binding to DNA can provide
strategies for fighting cancers.

In this review, we focus on comprehensive insights
into lipid metabolism in view of transcription factors,
and highlight the complex interplay between lipids and
immune system in cancer cells. We propose that lipids
and lipid-related transcription factors have the potential
to serve as effective therapeutic targets for anticancer
immunotherapy.

Roles of lipids in cancer cells

Lipids in plasma membranes

Cell membranes contain hundreds of lipids and proteins;
they are composed of sphingolipid- CHO-rich mem-
brane rafts known as lipid rafts [22]. Rysman et al. ana-
lyzed cellular lipid extracts using a mass spectrometry-
based approach and determined the tendency for lipid
saturation in clinical tumor tissues, compared with nor-
mal tissues. Notably, lipid saturation results from lipid
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uptake toward de novo lipogenesis, combined with in-
creases in saturated fatty acids (SFAs) and monounsatu-
rated fatty acids (MUFAs), as well as a decrease in
polyunsaturated fatty acids (PUFAs). SFAs are less prone
to lipid peroxidation, compared with PUFAs [23]. Add-
itionally, SFAs reduce membrane fluidity, resulting in
changes in death receptors, apoptotic stimuli, and me-
tastasis in cancer cells [24]. Overall, these changes pro-
vide cancer cells with a survival benefit.

Lipids as signaling molecules

Lipids act as intra- and extracellular messengers; they
can become potent mediators of malignant behavior.
Sphingolipids are a class of lipids that contain ceramide
and sphingosine, and they have multiple roles in cancer
cell survival [7]. For example, sphingosine-1-phosphate,
which is produced from sphingosine, increases cell pro-
liferation and tumor malignancy by activating both sig-
nal transducer and activator of transcription 3 (STAT3)
and the Warburg effect [25, 26]. Phosphoinositides are
central mediators of the phosphoinositide 3-kinase
(PI3K)/Akt/mammalian target of rapamycin (mTOR)
signaling axis. PI3K activates the rapid conversion of
phosphatidylinositol (PI; 4,5) P2 into PI (3,4,5) P3, which
leads to the recruitment and activation of Akt [27]. PIP3
is also the substrate for phosphatase and tensin homolog
(PTEN), and PTEN is most frequently mutated or de-
leted in cancer [28]. Increased levels of lysophosphatidic
acid receptors have been described in several cancers;
these increased levels contribute to cell invasiveness
[29]. Lysophosphatidic acid is produced by the lysopho-
spholipase autotaxin; it activates cell proliferation and
tumor invasiveness by binding to G-protein-coupled re-
ceptors [30]. Prostaglandin E2 is an eicosanoid [31] that
activates the Ras pathway and induces cell proliferation,
which is associated with a poor prognosis [32]. There-
fore, lipids are involved in multiple cellular signaling
processes, many of which are linked to oncogenesis.

Lipids as protein modulators

Lipids regulate proteins by dynamic lipid post-
translational modifications. Among these modifications,
palmitoylation has attracted considerable interest, be-
cause it is essential for the functioning of key signaling
oncoproteins [33]. For example, palmitoylation is re-
quired for Wnt secretion because it facilitates the inter-
action between Wnt and its intracellular chaperone
Whtless [34]. The key oncoprotein Ras is also palmitoy-
lated, thus facilitating membrane localization of Ras [35].
Epidermal growth factor receptor palmitoylation pro-
motes PI3K/Akt signaling, leading to cell proliferation in
lung cancer [36]. Another type of lipid-related post-
translational modification is prenylation, in which the
farnesyl group is covalently attached to target proteins
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[37]. Drugs targeting prenyltransferases have been
used in preclinical trials; they show protective effects
in several solid cancers [38]. Guanosine triphosphate
(GTP) enzymes (e.g., Cell division cycle 42, G-
protein-coupled receptors, Ras, and Pho) may be pre-
nylated, which is crucial for their membrane associ-
ation and activation [39]. Indeed, the deletion of
prenyltransferases inhibits the association between the
Ras family and the plasma membrane; this delays
Ras-induced lung tumor formation [40]. The role of
lipids in cancers is illustrated in Fig. 1.

Lipid reprogramming in cancer

Changes in the lipid profile and cancer development
Recent advances in technologies including tandem mass
spectrometry, RAMAN scattering microscopy, and elec-
trospray ionization have enabled the quantitative analysis
of lipids [41]. Differences in lipid profiles between malig-
nant tumor specimens and matched normal tissues
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indicate that lipids are potential diagnostic biomarkers.
For example, Qiu et al. investigated phospholipid com-
position in plasma samples of patients with hepatocellu-
lar carcinoma (HCC); they detected increases in SFAs
and MUFAs. However, they found that PUFAs decrease
in the plasma of HCC patients [42]. A decrease in lino-
leic acid and an increase in OA were found in patients
with bladder cancer [43], lymphoma [44], and colorectal
cancer [9]. An abundance of diverse lysophospholipids is
present in colorectal cancer, compared with benign
counterpart tissue [10]. Another study revealed reduced
levels of TGs, stearic acid, myristic acid, palmitic acid,
and OA in colorectal cancer patients; total phospholipids
and PUFAs were increased in those patients [11]. Chil-
dren with lymphoblastic leukemia have higher serum
levels of TGs and LDL [13]. Similarly, plasma CHO and
LDL are higher in breast cancer patients than in con-
trols. Thysell et al. demonstrated higher levels of CHO
in prostate cancer patients with bone metastasis than in
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other types of cancer patients with bone metastasis from
different tissues, as well as normal bone [12]. Changes of
the lipid profile in cancers are presented in Table 1.
Polar lipids, multiple phospholipids, and other metab-
olites are also upregulated in prostate cancer cell lines
[45]. Other studies have shown that high levels of SFAs
and MUFAs are present in association with high meta-
static potential in breast and melanoma cell lineages [46,
47]. Diglyceride is overexpressed in metastatic osteosar-
coma cells; diglyceride targeting reduces cell migration,
providing a clue that pharmacological targeting of cer-
tain lipids could be therapeutic [48]. Changes in the lipid
profiles of various cancers are summarized in Table 1.

Abnormal levels of lipogenic enzymes in cancer

More than 90% of lipids required by cancer cells are re-
portedly derived from de novo synthesis. Consistent with
these published findings, cancer cells often show upregu-
lation of de novo lipogenic enzymes involved in the syn-
thesis of FAs and CHO. For example, adenosine
triphosphate citrate lyase and acetyl-coenzyme A carb-
oxylase are upregulated and activated in most cancers

Table 1 Diagnostic lipid signatures in cancers
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[49]. Fatty acid synthase (FASN) is a metabolic onco-
gene, because elevated levels of FASN are detected in
various solid tumors, including breast, prostate, colon,
lung, bladder, ovary, stomach, endometrium, kidney,
skin, esophagus, and tongue [50]. In addition, the upreg-
ulation of FASN is associated with unfavorable outcomes
in patients with the most aggressive tumors. Abnormally
elevated CHO levels in cancer cells result from 3-
hydroxy-3-methylglutaryl coenzyme A reductase. High
expression of 3-hydroxy-3-methylglutaryl coenzyme A
reductase has been associated with poor pathological
features and survival in breast cancer patients [51].
Overall, aberrantly high levels of lipids and lipogenic en-
zymes are significantly associated with the development,
progression, and poor prognosis of several cancers.

Transcription factors leading to lipid metabolism
rewiring in cancer

ChREBP

Glucose and other simple sugars obtained from the
diet are metabolized to provide acetyl-CoA for the
synthesis of FAs. During this process, ChREBP,

Cancer
samples

Control
samples

Cancer type

Biofluid Altered lipids

References

Hepatocellular 14 23 Plasma

carcinoma

SFA (120, 140, 15:0, 16:0, 20:0, 22:0) [42]
MUFA (16:1n-7, 17:1n-9, 18:1n-9, 22:1n-9)

PUFA (18:2n-6, 20:4n-6, 22:5n-3)

42 42 Tissue

SFA (140, 15:0)

MUFA (14:1, 16:1n-7, 17:1n-9, 18:1n-9, 24:1n-9)
PUFA (18:2n-6, 20:3n-6, 22:2n-6, 22:4n-6, 22:5n-3, 22:6n-3)

Bladder cancer 31 31 Tissue

SFA (4.0, 6:0, 7:0, 80, 16:0) [43]

MUFA (16:1n-7, 20:1n-9)
PUFA (18:2n-6, 18:3n-3, 18:4n-3 20:1n-9, 20:2n-6, 20:5n-3, 22:2n-6, 22:3n-3,
22:5n-3, 22:6n-3), CHO

Lymphoma 29 47 Plasma  SFA (16:0)

MUFA (18:1n-9)
PUFA (18:2n-6, 20:5n-3, 22:4n-6, 22:6n-3)

Colorectal cancer 12 17 Plasma  SFA (16:0)

MUFA (18:1n-7, 18:1n-9)
PUFA (18:2n-6, 20:3n-6)

TG, CHO

20 20 Tissue

SFA (14:0, 18:0)

MUFA (16:1, 18:1)
PUFA (18:2, 20:4, 20:5, 22:2, 22:3)

TG, CHO

25 25 Tissue

SFA (16:0, 18:0)

MUFA (16:1, 18:1)
PUFA (183, 20:4, 20:5, 22:6)

TG, CHO

Lymphoblastic 22 80 TG, LDL

leukemia

Plasma

Prostate cancer 14 20 Plasma  SFA (18:0)

PUFA (18:2n-6, 20:4)

TG, CHO

SFA saturated fatty acids; MUFA monounsaturated fatty acids; PUFA polyunsaturated fatty acids; TG triglyceride; CHO cholesterol; LDL low-density lipoprotein; HDL

high-density lipoprotein



Jeong et al. Lipids in Health and Disease (2021) 20:163

encoded by the MLXIPL gene, acts as a transcrip-
tional mediator to convert excess glucose to fat in the
liver [52]. ChREBP binds to the carbohydrate-
response elements of glycolytic and lipogenic genes,
such as liver-type pyruvate kinase, FASN, and acetyl-
coenzyme A carboxylase; through these interactions,
ChREBP coordinates the carbohydrate induction of
lipogenesis. Increased hepatic glucose accumulation
and decreased hepatic FAs are detected in ChREBP
knockout mice, compared with wild-type mice [53].

ChREBP has major roles in the pathogenesis of differ-
ent types of cancer. ChREBP knockdown by siRNA sig-
nificantly inhibits aerobic glycolysis and the synthesis of
lipids in colon cancer cells. Additionally, ChREBP
knockdown activates p53, induces cell cycle arrest, and
reduces colon cancer growth in vivo, indicating an onco-
genic function for ChREBP [54, 55]. Positive correlations
of MLXIPL mRNA with glycolytic and lipogenic genes
were also observed in a comprehensive chromatin im-
munoprecipitation analysis of human HCC and breast
cancer. Glucose transporter 1 increases significantly in
HCC patients, and its expression is positively correlated
with ChREBP. In contrast, the opposite association has
been observed between the ChREBP protein and pyru-
vate dehydrogenase kinase 2 genes, which inactivate
acetyl-CoA production [56]. Cancer cells favor the con-
version of pyruvate into acetyl-CoA, rather than the ac-
cumulation of pyruvate [57]. Considering that the
ChREBP protein is positively correlated with tumor ma-
lignancy [56], these results show that the oncogenic role
of ChREBP/MLXIPL results from the conversion of glu-
cose to fat [58].

FXR

Farnesoid X receptor (FXR), encoded by the NRI1IH4
gene, was originally identified as a nuclear receptor acti-
vated by farnesol metabolites [59]. However, more re-
cent studies have revealed that FXR is an endogenous
bile acid-receptor that contributes to the maintenance of
CHO/bile acid homeostasis by regulating various meta-
bolic enzymes [60]. Because bile acids constitute a major
factor that facilitates the absorption of dietary fats and
steroids, the functions of FXR in metabolic diseases are
well-established [61]. For example, FXR-null mice de-
velop elevated serum CHO and TGs levels; however,
they also show reduced adipocyte size and protective ef-
fects against high-fat diet (HFD)-induced obesity [62].
Genetic depletion of intestinal FXR in mice markedly
decreases HFD-induced insulin resistance and fatty liver
because of reductions in ceramide levels in the intestines
and serum [63]. Although FXR-deficient mice are resist-
ant to HFD-induced obesity, FXR agonists protect the
liver from inflammation and fibrosis in the non-
alcoholic steatohepatitis mouse model [64].
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Similarly, FXR has crucial roles in the pathogenesis of
several cancers. Loss of FXR function promotes intes-
tinal fat absorption and synergistically increases liver
carcinogenesis [65]. In mice, HFD-induced bile acid ac-
cumulation inhibits FXR function and subsequently
leads to the progression of colorectal cancer. In contrast,
the activation of intestinal FXR by a selective agonist re-
stricts colon cell growth, regardless of HFD conditions
[66]. Lipids isolated from bone induce the migration of
breast cancer cells; FXR modulates this tumorigenic ef-
fect of bone-derived lipids, and eventually regulates the
metastasis of breast tumor cells to bone [67]. Anakk
et al. reported that loss of the FXR disrupts bile acid me-
tabolism; it leads to activation of the Yes-associated pro-
tein and subsequent hepatocarcinogenesis [68]. Because
studies of the FXR-mediated metabolic pathways have
mainly focused on bile acid signaling, the mechanisms

regulated by FXR in cancers require further
investigation.
LXRs

Liver X receptors (LXRs) have been an intriguing target
for the treatment of inflammation, Alzheimer’s disease,
and cancer. LXRs are related to nuclear receptors (e.g.,
PPAR, FXR, and RXR) and are classified as a subfamily
of NRI1IH3 (LXRa) and NRIH2 (LXRpP) [69]. LXRa is
mainly expressed in liver tissue [70], whereas LXRp is
expressed in most tissues [71]. LXRs are upstream of the
SREBP1c and ChREBP proteins; they directly regulate
glycolysis and increase lipogenesis [72]. Compared with
wild-type mice, LXR knockout mice show decreased
levels of key lipogenic genes, including SREBPIc, FASN,
and stearoyl-CoA desaturasel (SCDI), as well as de-
creased production of TGs [73].

LXRs are CHO sensors that exert anticancer effects in
various cancers. For example, LXR-driven genes, such as
adenosine triphosphate binding cassette subfamily G
member 1 (ABCGI) and apolipoprotein E, are expressed
less frequently in breast cancer. The ABCGI and apoli-
poprotein E proteins are involved in CHO efflux from
the cell to extracellular acceptors; the loss of LXR-
mediated genes results in higher lipid contents in cells,
as well as greater cancer cell viability. Similarly, LXR ag-
onists degrade the LDL receptor and increase the ex-
pression of the adenosine triphosphate binding cassette
subfamily A member 1 (ABCA1l) CHO efflux trans-
porter, preventing exogenous CHO uptake in glioblast-
oma. Because glioblastoma cells require high levels of
CHO for growth, LXR agonists promote tumor cell
death [74]. Another LXR agonist induces increases in
the ABCGI level and subsequently stimulates reverse
CHO transport in prostate cancer cells. Atomic force
microscopy scanning of the plasma membrane has re-
vealed thinner lipid rafts after LXR stimulation. Thus,
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LXR agonists suppress the growth of prostate cancer
cells in both xenografted nude mice and cell culture
[75]. Furthermore, activation of LXRs decreases the ex-
pression of lipogenic genes (e.g.,, SREBPIc, SCDI, and
FASN) in breast cancer cells. LXR agonists subsequently
suppress cell cycle genes, indicating an anti-proliferative
role for LXRs [76]. However, LXR antagonists inhibit
both the Warburg effect and lipogenesis, thereby indu-
cing apoptosis in colon, lung, and prostate cancer cells;
notably, these antagonists have no toxic effects on non-
malignant cells [77]. Considering that LXR agonists and
antagonists show different effects, the development of a
strategy for LXRs (NRIH3 and NRIH?2) as an anticancer
drug should be carefully considered.

PPARs

Peroxisome proliferator-activated receptors (PPARs) are
transcription factors that control gene expression by
binding to peroxisome proliferator response elements in
the promoters of target genes [78, 79]. According to
their tissue distribution and ligand specificity, PPARs are
divided into three nuclear receptor subtypes: -a, —p/9,
and -y [80]. PPARa is mainly expressed in tissues with
high rates of FA [-oxidation, such as the liver, kidneys,
heart, and muscle. PPAR[/8 is ubiquitously expressed in
most tissues, and PPARy is mainly expressed in adipose
tissue [79, 81]. These PPAR isoforms modulate lipid me-
tabolism in different manners. PPARa is a main energy-
producing factor during nutrient deficiency and partici-
pates in FA B-oxidation. Additionally, PPARa downregu-
lates hepatic apolipoprotein A-I and C-III; it also
increases lipoprotein lipase gene expression, leading to a
decrease in plasma TGs [82]. PPARP/S induces glucose
6-phosphate dehydrogenase activity, increases FA p-
oxidation in muscle, and inhibits the release of FAs from
white adipose tissue [83]. In diet-induced obese mice,
the activation of PPARP/S normalizes serum insulin and
TGs concentrations; it also acts as a new target for the
treatment of type 2 diabetes [84]. Similarly, PPARP/S
protects pancreatic islets against FA-induced p-cell dys-
function [85]. PPARy promotes energy storage by direct-
ing FAs toward esterification and accumulation as TGs
[86]. Dietary supplementation of the PPARy agonist rosi-
glitazone suppresses type 2 diabetes in obese mice, but
chronic treatment with rosiglitazone markedly aggra-
vates hepatic steatosis [87].

In addition, clinically or preclinically relevant relation-
ships between PPARs and cancers have been observed.
Pan-cancer datasets of patients with 21 cancers show
that altered PPARs signaling dysregulates numerous
tumor cell lipid metabolic-related pathways to directly
impact patient survival [88]. Moreover, mice fed a
PPARa agonist exhibit lower body weights and an in-
creased incidence of hepatic carcinogenesis. Tumors and
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visible nodules up to approximately 11 mm in diameter
were apparent in livers from PPARa agonist-fed mice
[89]. PPARS induces xenograft tumor growth of prostate
cancer cells by regulating the ATP binding cassette
transporter 1 (ABCAI) gene. ABCAI is a CHO efflux-
related gene; PPARS directly increases the levels of
ABCAI mRNA and membrane CHO expression, which
is followed by tumor growth [90]. PPARy has tumor-
suppressive and oncogenic effects in several cancers. In
lung cancer cells, PPARy-mediated lipid synthesis
strongly induces mitochondrial reactive oxygen species
stress and contributes to tumor suppression [91]. In
addition, the chemical activation of PPARy increases
fatty acid binding protein 4 (FABP4) expression, which
is accompanied by increased levels of intracellular re-
active oxygen species in lung cancer cells. PPARy-
driven induction of FABP4 and lipoprotein lipase re-
sults in a better prognosis for lung and renal cancer
patients [92]. In contrast, the interaction between
PPARy and Nur77 plays an antagonistic role in breast
cancer. Nur77 recruits PPARy to the CD36 promoter
and FABP4 to suppress transcription of these genes,
thus preventing FA uptake and cell proliferation.
PPARy physically binds to Nur77 and facilitates ubi-
quitin  ligase Triml3-mediated ubiquitination of
Nur77, thereby aggravating breast cancer [93].

Notably, dietary FAs directly bind to PPARs and
mimic the effects of synthetic agonists that activate
PPARs [94]. In this manner, PPARs sense the FA signals
derived from dietary lipids and serve as lipid modulators
to facilitate cancer progression. For example, an HFD
promotes tumor cell growth and metastasis of colorectal
cancer cells to the liver in mice. However, PPARS dele-
tion in mice completely inhibits the effect of an HFD,
along with expression of Nanog and CD44, demonstrat-
ing that PPARs mediate the tumorigenic effect of HFD
on cancer progression [95].

SREBPs

Lipid homeostasis is regulated by SREBP transcription
factors. SREBPs directly activate the expression of more
than 30 genes; they also contribute to the synthesis and
uptake of CHO, FAs, and TGs. The N-terminal domain
of SREBP must be proteolytically processed to act as a
transcription factor. When cells experience CHO deple-
tion, the SREBP cleavage activation protein (SCAP) es-
corts the SREBP from the endoplasmic reticulum to the
Golgi apparatus. The SREBP is subsequently cleaved in
the Golgi apparatus [96], and the mature SREBP translo-
cates to the nucleus where it binds to a sterol response
element in the promoter of the target gene [97]. The
mammalian genome encodes three SREBP isoforms:
SREBP1a, SREBP1c, and SREBP2 [98]. The same gene
on human chromosome 17p11.2 encodes SREBPla and



Jeong et al. Lipids in Health and Disease (2021) 20:163

SREBP1c. However, SREBP2 is encoded by distinct genes
on human chromosome 22q13 [99]. SREBP1a is a potent
activator of all SREBP-responsive genes, including genes
involved in the synthesis of LDL receptor, CHO, and
FAs; SREBP1c preferentially enhances the expression of
genes related to FA synthesis. Additionally, cells produce
both SREBP1la and - 2 to activate CHO synthesis in the
presence of increased demands for CHO [97].

Recent studies have shown that SREBPs regulate lipid
metabolism in cancers. Inhibition of SREBPs at the tran-
scriptional level attenuates the expression of lipogenic
genes and lipid uptake in patients with ovarian cancer.
In this context, silencing of the SREBP genes abrogates
ovarian tumor growth, blood vessel formation, and lipid
content both in vitro and in vivo [100]. Consistent with
these published findings, silencing of SREBP down-
stream genes showed that de novo FA synthesis and
membrane phospholipids are required for breast and
pancreatic cancer growth [24, 101]. SREBPs enhance the
prenylation of N-Ras, leading to its activation and onco-
genic effects [102].

Studies targeting the SREBP maturation pathways in
cancers are well-established. Li et al. reported that
pharmacological inhibition of SREBP proteolysis reduces
HCC progression by regulating FA and CHO metabol-
ism [103]. In various cancer cell lines, such as HelLa,
T98, and U20S, inhibition of SREBP-SCAP complex
transport from the endoplasmic reticulum to the Golgi
apparatus reveals anti-tumor properties. In addition to
suppressing lipid metabolism, the inhibition of SREBP
maturation perturbs tubulin polymerization and mitotic
spindle assembly, leading to decreased cancer cell prolif-
eration and migration [104].

SREBPs also provide survival advantages to cancer
cells. Nuclear SREBP1 is correlated with high LDL re-
ceptor levels in glioblastoma patients. Because cancer
cells use high levels of CHO for growth, SREBP-driven
upregulation of the LDL receptor prevents apoptotic cell
death [74]. In addition, SREBPs protect cancer cells from
reactive oxygen species and endoplasmic reticulum
stress by altering the ratio of SFAs to unsaturated long-
chain FAs [105]. Because SFAs are less lipotoxic than
PUFAs, SREBPs allow cancer cells to survive the harsh
microenvironment [23]. These findings emphasize that
SREBPs and their regulatory systems could serve as po-
tential therapeutic targets. The role of lipid-related tran-
scription factors in cancer is presented in Fig. 2.

Therapeutic strategies targeting lipid metabolism

Due to the central role of lipids and related transcription
factors in cancer, continuous efforts have been made to
adjust lipid metabolism as anticancer drugs. This ap-
proach was employed in preclinical models both in vitro
and in vivo, and some of the drugs have entered clinical
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trials. Interestingly, lipids themselves showed promising
effects on cancer. Here, we listed a brief overview of
therapeutic drugs targeting transcription factors and
lipid-related enzymes and lipids.

Drugs targeting FXR

GW4064 is a synthetic FXR agonist that increases cell
proliferation and invasion by activating NF-kB and N-
cadherin in HCC and pancreatic cancer cells [106, 107].
However, some drugs that target FXR have shown a pro-
tective effect on tumors. GW4064 inhibits proliferation
and migration and induces apoptosis in esophageal and
liver cancer [108, 109]. The FXR antagonist, guggulster-
one, inhibits migration in liver cancer and pancreatic
cancer by regulating NF-kB [106, 107]. Since the effect-
iveness of drugs targeting FXR varies with the type of
cancer tissue, treatments should be designed for specific
organs.

Drugs targeting LXR

The LXR inhibitor, SR9243, inhibits the Warburg effect
and lipogenesis, and induces apoptosis of cancer cells,
but is not toxic to non-malignant cells [77]. Pommier
et al. The elucidated LXR activator T0901317 down-
regulates the Akt pathway and induces apoptosis in vivo
and in prostate cancer cells [75]. The LXR agonist
GW3965 induces cell death by degrading LDL receptors
and increasing the expression of ABCA1 CHO efflux
transporter [74]. Another LXR agonist, LXR-623, crosses
the blood-brain barrier and reaches therapeutic levels in
glioblastoma cells [110].

Drugs targeting PPARs

The PPARa agonist, fenofibrate, inhibits tumor growth
and angiogenesis in melanoma and fibrosarcoma [111].
In breast cancer, fenofibrate promotes chemotherapy
sensitivity by down-regulating Mcl-1 and Bcl-x] and up-
regulating Bok and Bax at the transcriptional level [112].
Fenofibrate reduces the migration of oral cancer cells
and promotes the autophagy of prostate tumors in vivo
by interfering with the Warburg effect and regulating
the adenosine monophosphate-activated protein kinase
(AMPK)-mTOR pathway [113, 114]. In addition, as a se-
lective PPAR«a ligand, Wy-14,643 down-regulates cyto-
chrome P450 CYP2C, an enzyme that catalyzes the
epoxidation of PUFA, and also inhibits endothelial cell
proliferation and tumorigenesis [115, 116]. However,
chronic treatment of Wy-14,643 increases the incidence
of liver cancer through induction of oxidative stress
in vivo [89].

Genetic suppression of PPARS inhibits tumor growth
of prostate cancer cells [90], however, some of the stud-
ies have reported the anticancer activity of PPARB/S ag-
onists. Zaveri et al. suggested that PPARB/S antagonist,
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Fig. 2 A summary of the role of lipid-related transcription factors in cancer cells

SR13904, inhibits the proliferation of the lung cancer
cell [117]. PPARP/S agonist, GW0742, can improve the
efficacy of preventing skin tumors, especially when com-
bined with cyclooxygenase 2 inhibitors [118, 119].
Thiazolidinedione (also known as glitazones) is
newly developed synthetic ligand of PPARy. Mechan-
istically, thiazolidinedione directly binds and leads to
conformational change in PPARy, and activates the
transcriptional machinery. PPARy agonists are used
clinically as antidiabetic agents, resulting in sensitiz-
ing insulin and lowering blood glucose concentration
[120]. Besides the metabolic actions, thiazolidine-
dione leads to «cell death by targeting cyclin-
dependent kinase in malignant cell lines (e.g., colon,
liver and pancreatic cancer) [121-125]. Thiazolidine-
dione decreases the release of endothelial growth
factor from smooth muscle cells and inhibits angio-
genesis in glioblastoma, liposarcoma, lung and pros-
tate cancer [126, 127]. Importantly, epithelial-
mesenchymal transition-derived breast cancer cells
can differentiate into post-mitotic adipocytes, and
lose their invasive and oncogenic phenotypes. Thia-
zolidinedione forces trans-differentiation of cancer
cells into adipocyte and prevents tumor invasion and
metastasis. PPARy antagonists, T0070907 and
GW9662, have protective effects on bladder cancer
cells [128]. However, drugs targeting PPARs have
not been conclusive on the beneficial effect for pa-
tients [129, 130]. Clinical trials need more research.

Drugs targeting SREBPs

Silibinin is isolated from the seeds of the milk thistle
plants, and mechanistically increases SREBP1 phosphor-
ylation and inhibits its nuclear translocation. In breast
cancer cells, silibinin promotes autophagy by inhibiting
estrogen receptor-a and upregulating estrogen receptor-
B [131]. Silibinin inhibits cell invasion by decreasing the
production of urokinase-plasminogen activator and
matrix metalloproteinase-2 in human lung cancer cells
[132]. Silibinin also showed strong effect on head and
neck and prostate cancer [133-135].

Betulin, fatostatin and nelfinavir suppress the processing
of SREBPs and have anti-tumor properties. Li et al. found
that betulin dramatically reduces diethylnitrosamine-
induced HCC progression by downregulating tumor pro-
moting cytokines such as interleukin-6 and -1f [103].
Fatostatin inhibits cell proliferation and invasion both
in vitro and in vivo (e.g., glioblastoma, osteosarcoma,
breast and prostate cancer) [104, 136, 137]. Compound 24
is a derivative of fatostatin, which was developed to im-
prove chemical properties in a variety of disease models
[138]. Compound 24 decreases the levels of FAs and cellu-
lar growth in glioma, prostate, and breast cancer cell lines
[105]. Nelvinavir was approved by the Food and Drug Ad-
ministration for HIV treatment in humans at first, and is
currently in phase II clinical trials for myeloma, glioblast-
oma, pancreatic and lung cancer. In vitro, nelfinavir in-
hibits cell proliferation in liposarcoma and prostate cancer
cells [139, 140].
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Drugs targeting lipid metabolism

FASN inhibitors have been the subject of many studies
and one of the drugs that have entered clinical trials is
TVB-2640. TVB-2640 showed significant anti-cancer ac-
tivities across multiple tumor types including lung, ovar-
ian, and breast cancer [141]. C75, another compound
targeting FASN, directly increases FA oxidation and re-
sults in apoptosis during S phase in breast cancer cells
[142]. Cerulenin reduces the transactivation of estrogen
receptors in ovarian cancer, and suppresses liver metas-
tasis of colon cancer, and induces cancer cell death both
in vivo and in vitro [143, 144]. Orlistat is a drug ap-
proved for obesity management by the Food and Drug
Administration in 1999. Orlistat induces endoplasmic
reticulum stress and subsequently increases apoptosis in
breast, colon and prostate cancer cells [145, 146].

Preclinical investigations are ongoing on the use of an
inhibitor of acetyl-CoA carboxylase (ACC). Soraphen A
induces cell growth arrest and cytotoxicity in prostate
cancer cells [147]. ND-646 is an allosteric inhibitor of
ACC, which inhibits the growth of non-small cell lung
tumor growth in vitro and in vivo [148]. Another allo-
steric inhibitor of ACC, TOFA, induces cell death by re-
leasing proapoptotic proteins from mitochondria in
breast, colon, lung and ovarian cancer [149-151]. SCD1
inhibitor A939572 induces endoplasmic reticulum stress
and enhances cell death in clear cell renal cell carcinoma
[152]. A939572 decreases the phosphorylation of the
PI3K/Akt pathway and significantly suppresses the cell
vitality of lung cancer cells in vivo [153]. Blockage of
SCD1 with CAY10566 induces cell apoptosis by inacti-
vating the AMPK signaling in HCC [154]. CAY10566
also showed protective effect on glioblastoma, melan-
oma, ovarian and lung cancer [155-157].

Targeting CHO synthesis could be another potential
approach. Statin is a B-hydroxy p-methylglutaryl-CoA
reductase (HMGCR) iinhibitor and has shown promis-
ing outcomes in vitro and in vivo. Statin inhibits lipid
metabolism and leads to cell survival in various can-
cers (e.g., colon, pancreatic, liver, breast, prostate,
bladder, lung and skin cancer) [158, 159]. In 3129 hu-
man epidemiologic studies, the use of statin reduces
incidence and recurrence of various cancers (e.g.,
bladder, breast, colon, kidney, lung, skin, pancreas
and prostate cancer) [160-163]. Another CHO syn-
thesis inhibitor simvastatin also inhibits the Akt path-
way and induces apoptosis in prostate cancer cells
[164]. However, a recent meta-analysis of cancers re-
vealed no significant effect of statin on cancer therapy
indicating that the clinical use of drugs targeting
CHO should be carefully considered [165, 166].

The challenge of targeting lipid uptake is focused on
CD36 and FABPs. ABT-510 is a synthetic analog of
thrombospondin-1 and reaches phase I clinical studies
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against glioblastoma, melanoma and renal cell carcinoma
[167-169]. Mechanistically, ABT-510 directly binds to
CD36 and induces the death receptor Fas expression
[170, 171]. In addition, Al-Jameel et al. produced a
highly efficient recombinant FABP5 inhibitor, named
dmrFABP5. FABP5 binds and transports medium and
long chain FAs into the nucleus of cancer cells.
dmrFABPS5 is synthesized by switching three amino acids
of FABPS5, losing its ability to bind FAs. dmrFABP5 sig-
nificantly suppresses proliferation, migration, and inva-
sion of prostate cancer cells [172]. SBFI-102 and SBFI-
103 increase cytotoxicity in prostate cancer cells and
stimulate tumor-suppressive effects of other chemicals,
taxanes [173]. EI-05, FABP5 activator, enhances lipid
droplet and interferon- production, which further
promotes the anti-tumor activity of macrophages during
inflammation. In breast cancer cells, administration of
EI-05 in vivo significantly inhibits cell growth [174]. The
list of lipid-related drugs is summarized in Table 2.

Dietary lipids and cancer

Because excess calorie intake and obesity are linked to a
high risk of cancer aggressiveness, many studies have fo-
cused on dietary adjustments as a potential target for
cancer therapy [177]. An HFD has been regarded as a
common pathogenic factor in many diseases. However,
recent studies have identified that the effect of dietary
fat depends on the composition of individual FAs. SFAs
are positively associated with carcinogenesis, whereas n-
3 PUFAs are more likely to have protective effects
against cancer [178, 179]. Data regarding the effects of
MUFAs and n-6 PUFA on cancer progression are
controversial.

The protective effects of n-3 PUFAs have been con-
firmed in numerous cancer cell lines. Docosahexaenoic
acid is a major n-3 PUFA involved in anticancer activity.
In vitro studies have demonstrated that docosahexaenoic
acid inhibits cancer cell proliferation and resistance to
irradiation by regulating the Akt and Wnt pathways
[180, 181]. Docosahexaenoic acid alleviates cancer ag-
gressiveness by modulating the STAT3/nuclear factor
kappa B (NF-kB) axis and M2 macrophage polarization
[182, 183]. The outcomes of animal studies show that
dietary n-3 PUFAs decrease proliferation and angiogen-
esis, while increasing apoptosis [184, 185]. An n-3
PUFA-enriched diet inhibits genomic DNA methylation,
as well as Wnt, Akt, and mTOR signaling; this leads to
suppressed cancer growth [186—189]. The beneficial ef-
fects of n-3 PUFAs on the risk of cancer have also been
shown in human studies. Other cohort studies have re-
vealed protective effects of n-3 PUFAs against breast,
colon and endometrial cancer [190, 191].

The effect of MUFAs and n-6 PUFAs on the risk of
development of cancer is inconsistent. Dietary n-6
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Target Drug Phase of development Cancer type Reference

FXR GW4064 Preclinical Eesophagus, liver and pancreatic cancer [106-109]
Guggulsterone Preclinical Liver and pancreatic cancer [106, 107]

LXR GW3965 Preclinical Glioblastoma [74]

LXR-623 Phase | Glioblastoma [110]
SR9243 Preclinical Colon cancer [771
T0901317 Preclinical Prostate cancer [75]

PPARa  Fenofibrate Preclinical Breast, oral and prostate cancer, Melanoma [111-114]
Wy-14,643 Preclinical Breast, colon, lung and liver cancer [89, 115]

PPARB/  SR13904 Preclinical Lung cancer [117]

g GW0742 Preclinical Melanoma [118, 119]

PPARy  Thiazolidinedione Phase Il Colon, pancreatic, liver and breast cancer, Liposarcoma [121-126]
GW9662 Clinical Bladder cancer [128]

SREBPs  Sibilinin Preclinical Breast, head and neck, lung, and prostate cancer [131-135]
Betulin Preclinical HCC [103]
Fatostatin Preclinical Glioblastoma, osteosarcoma, breast and prostate cancer [104, 136, 137]
Compound 24 Preclinical Glioblastoma [105]

S1P/S2P  Nelfinavir Phase |l Glioblastoma, liposarcoma, myeloma, lung, pancreatic, and prostate [139, 140, 175]

cancer

FAS TVB-2640 Phase |l Lung, ovarian and breast cancer [141]

C75 Preclinical Breast, colon, ovarian, and prostate cancer [142, 144, 145,
176]
Cerulenin Preclinical Colon and ovarian cancer [143, 144]
Orlistat Approved for anti- Breast, colon and prostate cancer [145, 146]
obesity

ACC Soraphen A Preclinical Prostate cancer [147]

ND-646 Preclinical Lung cancer [148]
TOFA Preclinical Breast, colon, lung, and prostate cancer [149-151]

SCD A939572 Preclinical Clear cell renal cell carcinoma, Lung cancer [152, 153]
CAY10566 Preclinical Colon and ovarian cancer, glioblastoma, melanoma, HCC [154-157]

HMGCR  Statin Approved Many cancers [158-163, 165,

166]
Simvastatin Preclinical Prostate cancer [164]

CD36 ABT-510 Phase | Glioblastoma, melanoma and renal cell carcinoma [167-169]

FABP5  dmrFABPS Preclinical Prostate cancer [172]
SBFI-102 and SBFI-  Preclinical Prostate cancer [173]

103
EI-05 Preclinical Breast cancer [174]

FXR Farnesoid X receptor; SREBP Sterol regulatory element-binding protein; STP site-1 protease; LXR Liver X receptor; ChREBP Carbohydrate-response element-

binding protein; PPARs Peroxisome proliferator-activated receptor; FASN Fatty acid synthase; ACC Acetyl-coenzyme A carboxylase; SCD Stearoyl-CoA desaturase;

HCC Hepatocellular carcinoma; HMGCR (3-Hydroxy -methylglutaryl-CoA reductase

PUFAs were significantly higher in malignant tissues and
associated with prostate carcinogenesis [192]. On the
other hand, a 2020 meta-analysis from all types of can-
cers showed n-6 PUFA were not related to carcinogen-
esis [193]. Another 2020 meta-analysis conducted by
Kim et al. showed that intake of n-6 PUFAs was not sig-
nificantly related with risk of cancer. However, blood

levels of n-6 PUFAs were inversely associated with the
risk of cancer [194]. Regarding MUFAs, OA treatment
increases hypoxia-inducible factor-1 at the protein level
and mediates cell survival, as well as colony and spher-
oid formation in HCC cells [195]. OA increases migra-
tion by regulating the PI3K/Akt pathway and NF-«xB
activity in breast cancer cells [196]. Additionally, a high
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olive oil diet promotes cell growth and metastasis of
HeLa xenografts in mice [197]. In contrast, OA treat-
ment decreases cell growth in breast cancer cells by sup-
pressing HER-2 expression [198]. OA induces apoptosis
and autophagy by inhibiting the Akt/mTOR pathway in
tongue squamous cell carcinoma [199]. Li et al. reported
that the various effects of OA on cell survival and migra-
tion result from AMPK dependency [200]. A meta-
analysis of studies revealed a negative association be-
tween olive oil consumption and the risk of tumors
[201]. Because olive oil contains several physiological
substances with anti-inflammatory and antioxidant prop-
erties, an additional meta-analysis of cancer studies dem-
onstrated a negative relationship between total MUFAs
and the risk of cancer [202, 203]. In contrast, Liss et al.
determined that MUFA consumption increases the risk
of prostate cancer [204].

Dietary lipids, particularly n-3 PUFA supplements, im-
prove clinical outcomes. When patients modulate the
extent of lipid composition, they could be potential can-
didates for cancer therapy.

Interplay between lipids and immune system in
cancer cells

Lipid-mediated modulation of immune system in cancer
cells

The modulation of the immunity setting has been dem-
onstrated to be an effective cancer treatment. Similar to
cancers, the impact of immune responses depends on in-
dividual lipid composition. N-3 PUFAs have been shown
antioxidant and anti-inflammatory properties by coun-
teracting pro-inflammatory cytokines [205], whereas n-6
PUFAs exert pro-inflammatory effects in immune cells
[206]. Excessive n-3 PUFAs in dendritic cells upregulate
the expression of major histocompatibility complex class
(MHC) class I like molecule, CD1d. The natural killer T
cells recognize lipid antigens presented by CD1d, and n-
3 PUFAs block optimal natural killer T cells activation
and negatively affect the tumor progression [207]. Pa-
tients with a high-very long-chain FA consumption rate
and lower serum very long-chain FA levels represent im-
munosuppressive tumor microenvironment [208]. Short-
chain FAs recover an impaired immune response by in-
creasing regulatory T cells frequency and affecting
CD4(+) T cells and antigen-presenting cells [209]. In-
deed, high levels of short-chain FA are associated with
longer progression-free survival in patients with melan-
oma and lung cancer [210, 211]. In terms of CHO, cell
receptor signaling is enhanced by increased CHO levels.
An inhibitor of a CHO esterification enzyme increases
the activities of CD8(+) T cells, thereby enhancing the
efficacy of cancer immunotherapy based on programmed
death 1 (PD-1) blockade [212].
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Protein lipidation (e.g., myristoylation, prenylation and
palmitoylation) can rewire the response of immune-
related molecules that are responsible for cancer pro-
gression. For instance, a myristoyltransferase inhibitor
prevents early B-cell receptor signaling events critical for
cell survival. This inhibitor induces the degradation of
the Src family and leads to the death of B-cell lymphoma
cells [213]. RAS signaling in human cancer cells has
anti-endoplasmic reticulum stress effect. Inhibition of
RAS prenylation enhances endoplasmic reticulum stress
and leads to the CD8(+) T cell-mediated cell death of
colon cancer cells [214]. Palmitoylation stabilizes the
programmed-death ligand 1 (PD-L1) by blocking its
lysosomal degradation. The silencing of palmitoyl-
transferase DHHC3 activates anticancer immunity of
breast and colon cancer cells [215, 216]. Also, depletion
of DHHC3 enhances recruitment of innate immune cells
(antitumor M1-like macrophages and natural killer cells)
and reduces the sizes of both the primary tumor and
metastatic lung colonies [217]. Palmitoylation can
stabilize interferon gamma receptor 1 and the MHC
class I signaling pathways. In this way, palmitoylation
can enhance T cell immunity and increase the sensitivity
of colorectal cancer checkpoint treatment [218].

Lipids and checkpoint inhibitors

Immune checkpoints such as PD-1, PDL-1 and cluster
of differentiation 152 are molecules on immune cells
that protect the immune system from cell death. Cancer
cells use immune checkpoints to avoid being attacked by
the immune system. Therefore, drugs targeting the im-
mune environment of cancer have been applied. These
drugs are called checkpoint inhibitors [219].

Recent studies suggest that lipid metabolism could
be a modulator of anticancer immune responses. For
instance, short chain FAs have beneficial effects on
checkpoint inhibitors. Fecal and plasma samples from
melanoma patients indicated that high levels of short
chain FAs are associated with a positive response to
PD-1 inhibitors (nivolumab and pembrolizumab)
[210]. This result was also shown in a cohort study of
patients with non-small cell lung cancer receiving
PD-1 blockade [211]. Finally, the blood samples of pa-
tients with renal cell and urothelial carcinoma who
were treated with checkpoint inhibitors (such as nivo-
lumab, atezolizumab, and bevacizumab) were ana-
lyzed. Metabolomic analysis has shown that tumors
with low levels of very long chain FA evade successful
immune checkpoint inhibition [208].

The metabolic crosstalk between cancer cells and im-
mune cells is a crucial determinant. Therefore, targeting
lipid metabolism in the immune system will produce
new therapies for cancer.
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Comparisons with other studies and what does
the current review add to the existing knowledge
Most of the studies have focused on the expression patterns
of lipids and their role in cancer. However, there is no com-
prehensive analysis to explore the role of transcription fac-
tors related to lipid metabolism in cancer cells. In this
review, we discussed how transcription factors rewire can-
cer progression by regulating lipid metabolism.

Study strengths and limitations

This review summarizes the role of transcription factors
as a tumor regulator from the metabolic perspective,
emphasizing that transcription factors could be potential
targets for cancer therapy. We also have integrated the
lipid-mediated regulation of cancer-immune interplay.
However, this review has a limitation such as the lack of
quantification of the altered levels of lipogenic enzymes.
Because the levels of lipogenic enzymes are different be-
tween cancer tissues and patient’s sample types, compre-
hensive studies to analyze the profiles of lipogenic
enzymes are necessary.

Discussion
Cancer is one of the leading causes of mortality, and its
incidence is closely related to metabolic change. Besides
cancer-mediated metabolism, lipid metabolism is re-
sponsible for both carcinogenesis and cancer progres-
sion. In terms of start point of carcinogenesis, in vivo
study and meta-analysis study from 3129 cancer patients
showed that interference with lipid metabolism has the
potential to decrease the cancer incidence [89, 163]. In
both preclinical and clinical studies, genetic suppression
or therapeutic administration targeting lipid metabolism
revealed its importance in malignant phenotypes. There-
fore, strategies targeting lipid metabolism will provide a
new dimension to both preventive and therapeutic trials.
With all this information, cancer cells depend on tran-
scription factors to support their growth and survival. High
expression of transcription factors is associated with poor
prognosis, and about 20% of oncogenes have been identified
as transcription factors [19]. Besides lipid-mediated regula-
tion, many transcription factors involved in carcinogenesis
include inflammatory proteins, such as NF-kB, STAT3, and
activator protein 1 [220-222]. Additionally, tumor microen-
vironmental proteins (e.g., hypoxia-inducible factors) con-
tribute to oncogenesis by helping tumor cells survive
hypoxia and nutrient deprivation [223]. As a nuclear recep-
tor interacts with estrogen and progesterone, estrogen
receptor-a activates signaling pathways of breast, ovarian,
and prostate cancer [224]. Other well-established transcrip-
tion factors in cancers are the epithelial-mesenchymal tran-
sition and proliferation markers. p-catenin/Wnt signaling
stimulates the migration and activates downstream targets,
such as cyclin D and the c¢-Myc transcription factors [225,
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226]. The Myc family induces cell proliferation by activating
the transcription of cyclin-dependent kinases and E2Fs [227,
228]. E2F is a family of transcription factors, including eight
genes, such as E2F1-8, which a play critical role in regulat-
ing the G1-S phase of the cell cycle transition [229]. Many
survival signals including PI3K/Akt, Wnt/Hedgehog, and
MAPK pathways are closely associated with E2Fs, and
hyper-activated E2Fs in tumors have been linked with a
poor prognosis [230, 231].

Cancer studies revealed the crucial role of lipid metabol-
ism in cancer progression. However, there are existing chal-
lenges: 1) the levels of lipids and lipid-related transcription
factors vary between cancer types; 2) drugs have not been
conclusive on the beneficial effect for patients. Drugs
should be targeted carefully and more studies should be
performed for the better management of cancers.

Conclusion and future perspectives

Lipid metabolism has high potential as novel biomarkers
for the diagnosis, prognosis, and therapy of cancer. Since
the regulation of lipid metabolism is also an important
gene for normal cells, it is still a huge challenge to find
substances that target lipid metabolism and non-toxic
effects of lipids. Fortunately, the quantitative determin-
ation of in vivo lipidomes and the cellular response to
different growth conditions can be monitored in real-
time using imaging modalities [232]. Additionally,
current lipidomic approaches have identified more than
200,000 predicted lipid species [233]. Such efforts pro-
vide a route to a better understanding of disease biology
and will be a promising strategy to treat cancer.
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