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Abstract

Omega 3 polyunsaturated fatty acids (n-3 PUFA) are known to have beneficial effects on cardiovascular and
metabolic health. However, whether different sources of n-3 PUFA, for instance fatty fish vs vegetable oils, could
elicit different effects on glucose and lipid metabolism, remains to be determined. Herein we examine recent
findings showing that while a plant-based n-3 PUFA supplementation for six months can reduce fasting blood
glucose, marine-based n-3 PUFA can instead reduce serum levels of triglycerides. We also discuss the potential
molecular mechanisms that could underlie these different effects on the regulation of glycolipid metabolism.
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Introduction
Type 2 Diabetes Mellitus (T2DM) is commonly associated
with dyslipidemia, leading to a higher risk of atherosclerosis
and cardiovascular diseases [1, 2]. Hypertriglyceridemia
represents an important risk factor for atherosclerosis, es-
pecially in diabetic patients [3]. Henceforth, nutraceutical
supplementations might help reduce the risk of adverse
events and/or improving the quality of life of these subjects
[4], in combination with improved lifestyle habits and
pharmacological intervention, to prevent/delay the onset of
cardiovascular complications.
Hyperglycemia and hyperlipidemia are known to

strongly impact the pathophysiology of coronary artery
disease, also by driving endothelial dysfunction [3, 5–7].
Moreover, endothelial dysfunction remains among the
main mechanisms underlying the onset of cardiovascular
adverse events and outcomes in people with Type 1
Diabetes Mellitus (T1DM) or T2DM [7–12]. A dietary
intervention with 500 g/week of fatty fish, equivalent to

~ 1 g/day of omega 3 polyunsaturated fatty acids (n-3
PUFA), like eicosapentaenoic acid (EPA; 20:5n-3) and
docosahexaenoic acid (DHA; 22:6n-3), have been shown
to have a cardioprotective effect by inhibiting platelet-
monocyte aggregation, and a higher dietary intake can
also improve endothelial function [13].

Discussion
The potential different effects of diverse sources of n-3
PUFA (e.g. fish vs vegetable [14, 15]) on glycolipid me-
tabolism have not been fully investigated. A known dif-
ference between vegetable and marine n-3 PUFA is the
cholesterol lowering effect vs triglyceride lowering effect,
respectively; nevertheless, whether vegetable n-3 PUFA
may have an effect on blood glucose has not been estab-
lished [15–18]. In an elegant double-blind clinical trial,
Liu and colleagues evaluated the different effects of
marine-derived and plant-derived omega-3 PUFA on the
fatty acids of erythrocytes and glycolipid metabolism in
patients with diabetes [19]. The study was conducted on
150 patients with a diagnosis of T2DM, of which 52
were randomly assigned to the fish oil group, 50 to the
perilla oil group, and 48 to the linseed and fish oil group.
All patients were followed up for six months.
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Intriguingly, while the supplementation with perilla oil
(a vegetable oil rich in alpha-linolenic acid [20]) signifi-
cantly decreased fasting blood glucose compared to
baseline, fish oil supplementation prompted a marked
reduction of serum triglycerides (TG) levels. Therefore,
marine-based and plant-based n-3 PUFAs exhibited dif-
ferent effects on the regulation of glycolipid metabolism
(Fig. 1). Intriguingly, the administration of all types of n-
3 PUFA significantly reduced insulin and C-peptide con-
centrations compared to baseline. Similarly, serum total
cholesterol, apolipoprotein A1, and IL-6 levels signifi-
cantly decreased in all the treatment groups compared
to baseline values (Fig. 1).
These findings are noteworthy inasmuch as the associ-

ation of diabetes mellitus and dyslipidemia is known to sig-
nificantly increase the risk of cardiovascular complications
[1, 21, 22], particularly coronary artery disease [23, 24].
Furthermore, the diverse impact on glucose and lipid
homeostasis shown by the different sources of n-3 PUFA
might help explain numerous controversial results in stud-
ies examining the effects on n-3 PUFA consumption in
people with T2DM [14, 15, 25–29].
The molecular mechanisms underlying the different ef-

fects of plant-based vs marine-based n-3 PUFAs are not
explored by the Authors and deserve further dedicated in-
vestigation. Potential mechanisms include the existence of
different receptors for n-3 PUFA, which could trigger dif-
ferent glucometabolic responses. For instance, G-protein

coupled receptor 120 (GPR120) is a functional receptor
for alpha-linolenic acid [30] expressed on endocrine L-
cells lining the gut which has been shown to directly me-
diate PUFA-induced increases in glucagon like peptide-1
(GLP-1) [31]. Other receptors activated by free fatty acids
include GPR40, mostly engaged by long chain fatty acids,
GPR84 engaged by medium chain fatty acids, and GPR41
and GPR43, engaged by short chain fatty acids [32–34].
An action on pancreatic islets (direct or mediated by
GLP-1 [35–37]), or on hepatic and adipose tissue, repre-
sent other, not mutually exclusive possibilities. Supporting
the latter hypothesis, marine n-3 PUFA have been shown
to lower plasma levels of proprotein convertase subtilisin
kexin type 9 (PCSK9) [38]; since PCSK9 inhibitors are
used as a medication to reduce hypercholesterolemia, this
finding could have major implications for CVD treatment
[7, 39, 40].
The study by Liu and collaborators is not exempt from

limitations. For instance, the sample size was relatively
small. Additionally, many patients had a high body mass
index and the mean systolic blood pressure at baseline
was above 140mmHg in all three groups, suggesting that
most of the patients in the study were hypertensive.
These aspects imply that the findings should not be ex-
tended to normotensive and non-overweight patients.
Some concerns on the blinding process are mentioned
by the Authors (“the assessors who gathered the infor-
mation and analysts were not fully blinded”) but not

Fig. 1 Different effects of marine-derived and plant-derived n-3 PUFA on lipid and glucose metabolism in people with T2DM. FBG: fasting blood
glucose; Hb1Ac: glycated hemoglobin; IL-6: interleukin-6; n-3 PUFA: long chain polyunsaturated fatty acids; T2DM: type 2 diabetes mellitus; TG:
triglycerides. Some images have been created with biorender.com
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better addressed. Therefore, further studies in larger
populations, ideally not limited to T2DM patients, and
with a longer follow-up are warranted. Nevertheless, the
result of this clinical trial shed light on the importance
of the source of n-3 PUFA in the evaluation of glucose
and lipid metabolism.
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