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Abstract

Background: Obesity, especially presenting with excessive amounts of visceral adipose tissue (VAT), is strongly
associated with insulin resistance (IR), atherosclerosis, metabolic syndrome, and cardiovascular diseases (CVDs).

Aims: To construct a predication equation for estimating VAT mass using anthropometric parameters and validate
the models with a validation group.

Methods: Five hundred fifteen subjects (366 for the derivation group and 149 for the validation group) were
enrolled in the study. The anthropometric parameters, blood lipid profile, and VAT mass were accessed from
medical records. Stepwise regression was applied to develop prediction models based on the dual X–ray
absorptiometry (DXA)-measured VAT mass in the derivation group. Bland–Altman plots and correlation analysis
were performed to validate the agreements in the validation group. The performance of the prediction equations
was evaluated with the Hosmer–Lemeshow test and area under the curve (AUC).

Results: Model 1, which included age, sex, body mass index (BMI), triglyceride (TG), high-density lipoprotein (HDL),
and the grade of hepatic steatosis, had a variance of 70%, and model 2, which included age, sex, weight, height,
TG, HDL, and the grade of hepatic steatosis, had a variance of 74%. The VAT mass measured by DXA was correlated
with age, sex, height, weight, BMI, TG, HDL, and grade of hepatic steatosis. In the validation group, the VAT mass
calculated by the prediction equations was strongly correlated with the DXA–VAT mass (r = 0.870, r = 0.875,
respectively). The AUC, sensitivity, and specificity of the two prediction equations were not significantly different
(both P = 0.933).

Conclusion: The study suggests that prediction equations including age, sex, height, BMI, weight, TG, HDL, and the
grade of hepatic steatosis could be useful tools for predicting VAT mass when DXA is not available.
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Introduction
Obesity is a global public health issue involving excessive
adipose tissue deposition, and its prevalence has surged
over the last half century and continues to increase
worldwide. Obesity is a heterogeneous disorder, which
means that obese individuals may have substantial differ-
ences in body fat deposition and health risk levels des-
pite similar body weight [1, 2]. Surging evidence
suggests that the regional distribution rather than the
total amount of adipose tissue is more important for the
morbidity and mortality of metabolic diseases [1, 2]. Fat
that is mainly present in subcutaneous areas is defined
as subcutaneous adipose tissue (SAT), and fat mainly de-
posits in the mesentery and omentum is named visceral
adipose tissue (VAT). There are substantial differences
between SAT and VAT in terms of cellular, molecular,
physiological and metabolic aspects [3]. Current studies
show that VAT is likely a stronger indicator than hepatic
steatosis, insulin resistance (IR), dyslipidemia, metabolic
syndrome and cardiovascular risk.
Several factors, such as age, sex, race and genes, might

be involved in the regional distribution of adipose tissue
[1]. Males have significantly higher VAT mass than fe-
males among both young and aged individuals and in-
creases with age in both males and females [4, 5]. The
ratios of VAT mass to total body mass were approxi-
mately 10–20% in males and 5–8% in females [6]. Body
mass index (BMI), weight or waist circumference (WC)
is mostly used as an alternative measurement for the
obesity of individuals in clinical practice due to its con-
venience and simplicity. However, the surrogate mea-
surements of obesity are not highly correlated with
directly measured fat mass, SAT, or VAT, which sug-
gests that they do not sufficiently reflect the variation in
total body fat and VAT because fat is not evenly distrib-
uted. WC might crudely estimate the degree of abdom-
inal obesity; however, distinctions cannot be made
between VAT and SAT when WC decreases with weight
loss [1]. Magnetic resonance imaging (MRI) and com-
puted tomography (CT) have been shown to evaluate
body composition in total and local regions, allowing the
measurement of body fat, muscles, and bones. Recently,
dual energy X–ray absorptiometry (DXA) has gradually
become the preferred method for assessing the body fat
mass, lean mass, and bone mineral content of total and
specific anatomical regions. Estimation of VAT can also
be done based on the measurements of the abdominal
region. Although the method for measuring VAT by
DXA is different from that by CT or MRI, DXA has
been proven to be strongly correlated with MRI and CT
[7–11]. The association of DXA–VAT with IR, cardio-
vascular factors, and blood lipids was comparable to that
of CT–VAT [12, 13]. Compared with MRI or CT, DXA
has higher efficiency and lower effective radiation

exposure. However, DXA has limitations for healthy
screening due to its high cost, lack of convenience, and
feasibility issues; hence, finding an indirect simple pre-
diction equation to estimate VAT mass is necessary. In
this study, we attempted to construct prediction models
based on age, sex, weight, height, BMI, high-density lipo-
protein (HDL), triglyceride (TG), and grading of hepatic
steatosis with a derivation group and validated the
model with a validation group.

Materials and methods
Subjects
A total of 515 subjects older than 20 years who under-
went whole-body DXA and abdominal ultrasound from
November 2019 to August 2021 at Shandong University
Affiliated Qianfoshan Hospital were included. Partici-
pants with alcohol intake > 20 g per day, autoimmune
hepatic disease, viral hepatitis, systematic disease, serious
chronic illness, or malignant disease or who used medi-
cine that might interfere with adipose infiltration were
excluded. The ethics committee of Shandong University
Affiliated Qianfoshan Hospital approved this retrospect-
ive study. (NO. S1181).
The clinical data of all subjects were obtained from

their medical documentation, including age; sex; height;
weight; lipid profiles; systolic blood pressure (SBP) and
diastolic blood pressure (DBP); history of diabetes melli-
tus (DM) and hypertension. VAT mass was measured by
a DXA Lunar scanner (GE Healthcare, Madison, WI,
USA), and the measured values were collected from the
DXA dataset.
All retrospective images were obtained with LOGIQ®

E9 (GE Healthcare with Encore version 17.0, Waukesha,
WI, USA) and collected from the ultrasound dataset.
Hepatic steatosis is usually classified as normal, mild,
moderate, or severe by ultrasound based on liver echo
pattern, liver–kidney contrast, and the visual appearance
of intrahepatic vessels and diaphragm. All participants
were divided into four groups based on a previous study
[14]. Group 1 (normal): normal echogenicity; Group 2
(mild): slightly brighter liver echogenicity with well-seen
liver vessels and diaphragm; Group 3 (moderate): mod-
erately brighter liver echogenicity with slightly affected
visualization of the liver vessels and diaphragm; Group 4
(severe): markedly brighter liver echogenicity with poor
or no visualization of the liver vessels, diaphragm, and
right lobe posterior segment of the liver.
Three experienced sonographers with more than 5

years of experience blinded to the subjects’ clinical de-
tails independently reviewed the ultrasound images to
evaluate the interobserver reliability. One week later, 150
subjects were randomly selected, and the images were
reviewed by one sonographer to evaluate the intraobser-
ver reliability.
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Statistical analyses
All statistical analyses were performed with SPSS 24.0
(SPSS Inc., Chicago, IL, USA) and MedCalc 19.0.4 (Med-
Calc Software Inc., Ostend, Belgium) software. A P value
less than 0.05 was considered statistically significant.
The Kolmogorov–Smirnov test was used to evaluate the
normal distribution of the data. Categorical and continu-
ous variables were expressed as numbers with percent-
ages and medians ± interquartile ranges (IQRs),
respectively. Differences in categorical variables were
tested using the chi–square test. Inter- and intraobserver
agreements were determined by the intraclass correl-
ation coefficients (ICCs) with the two-way random-
effects model. An ICC of greater than 0.80 was consid-
ered to be excellent. A 95% confidence interval (CI) was
calculated for each ICC. The differences in anthropo-
metric parameters, blood lipid profiles and VAT mass
between the two groups were evaluated with the Mann–
Whitney U test. The Kruskal–Wallis test with adjust-
ment by Bonferroni correction was performed to deter-
mine the differences in VAT mass among groups with
different grades of hepatic steatosis. The correlation co-
efficients between the VAT mass and included parame-
ters were evaluated with Spearman’s correlation analysis.
Multiple linear stepwise regression analysis was used to
develop prediction models with DXA–VAT mass as a
dependent variable for males and females both together
and separately. The correlations between DXA–VAT
mass and the predicted VAT mass were assessed using
Spearman’s correlation. Bland–Altman plots were drawn
to illustrate the agreement of the prediction models.
Separate receiver operating characteristic (ROC) curves
were constructed for DXA–VAT masses less than and
greater than1280g. The sensitivity, specificity, and area
under the curve (AUC) were calculated to determine the
performance of the prediction models. The differences
in the AUC between the two models were compared
using DeLong’s test. The Hosmer–Lemeshow test was
performed to assess the calibration of the prediction
models.

Results
Study demographics and anthropometric characteristics
A total of 515 subjects (262 males and 253 females) were
recruited for our study. The median age was 58 years
(IQR = 50–65 years) for all participants, 57 years (IQR =
49–64 years) for males and 60 years (IQR = 52–66 years)
for females (Suppl. Table 1).
Subjects were randomly assigned to the derivation

group (n = 366) or validation group (n = 149). The clin-
ical anthropometric and metabolic parameters of the
derivation group and validation group are shown in
Table 1. The differences between the two groups in age,
sex, weight, height, BMI, ALT, TC, TG, HDL, LDL,

VAT, DM% or HBP% had no statistical significance. The
fasting plasma glucose (FPG) and AST levels were sig-
nificantly different between the two groups (Table 1).

Observer reliability
The inter- and intraobserver agreements were excellent.
The interobserver correlation coefficient for the three
sonographers was 0.905 (95% CI: 0.891–0.918). The
intraobserver correlation coefficient for the sonographer
was 0.921 (95% CI: 0.891–0.943).

Correlation between VAT mass and clinical characteristics
The DXA–VAT mass and the grade of hepatic steatosis
measured by ultrasound was moderately correlated
(r = 0.527, P < 0.001, Table 2); that is, the VAT mass
gradually increased as the severity of hepatic steatosis in-
creased. Subjects in Group 3 and Group 4 had a larger
VAT mass than those in the normal and mild groups,
while subjects in Group 2 had a larger VAT mass than
those in Group 1 (all P < 0.001). However, no statistical
significance was found in terms of VAT mass between
the moderate and severe groups (P = 0.121) (Fig. 1). The
correlations between VAT mass and age, height, weight,
BMI, TG, and HDL are shown in Table 2.

Regression model construction and validation
In the derivation group, the final stepwise linear regres-
sion model included all the tested variables. Linear
regression model 1 for estimating VAT mass included
age, sex, BMI, HDL, TG, and the grade of hepatic steato-
sis (F = 143.074, P < 0.001). Linear regression model 2 for
estimating VAT mass included age, sex, height, weight,
HDL, TG, and the grade of hepatic steatosis
(F = 156.734, P < 0.001). The final prediction equations
generated using multiple stepwise methods for the deriv-
ation group are shown in Table 3. The detailed regres-
sion equations for each model in the derivation group
are shown in Suppl. Table 2 and Suppl. Table 3. The
subgroup models for males and females were also con-
structed (Suppl. Table 4). The variances of subgroup
model 1 for males and females were 0.683 and 0.681,
respectively, which were slightly lower than the variance
of model 1 for both sexes. The variances of subgroup
model 2 for males and females were 0.739 and 0.706,
respectively, which were also slightly lower than those of
model 2 for both sexes.
In the validation group, DXA–VAT mass was signifi-

cantly correlated with the predicted VAT mass calcu-
lated from model 1 (r = 0.875, P < 0.001, Fig. 2a) and that
calculated from model 2 (r = 0.870, P < 0.001, Fig. 3a).
There was a mean bias of 12.8 between the DXA–VAT
mass and predicted VAT mass estimated by model 1
(95% IC: − 55.266–80.876, Fig. 2b), and the proportional
bias was not significant (r = 0.005, P = 0.953). The mean
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bias between the DXA–VAT mass and predicted VAT
mass by model 2 was 12.1 (95% IC: − 54.479–78.646,
Fig. 3b), and the proportional bias was also not statisti-
cally significant (r = 0.004, P = 0.962).

Prediction model performance
ROC curves were drawn for DXA–VAT < 1280 g (n =
70) and VAT ≥1280 g (n = 79). The AUC, sensitivity, and
specificity of the two prediction equations for estimating
VAT are shown in Table 4. The AUCs of the two equa-
tions revealed no statistical significance (P = 0.933). The
Hosmer–Lemeshow test showed that the P values of
model 1 and model 2 were 0.696 and 0.683, respectively.

Discussion
In the present study, prediction models were con-
structed to estimate the DXA–VAT. Both constructed
prediction models had favorable variances. Although

Table 2 The statistical correlation with DXA–VAT mass

Parameters r P-value

Age 0.007 0.877

Height 0.456 < 0.001

Weight 0.800 < 0.001

BMI 0.746 < 0.001

TG 0.371 < 0.001

HDL −0.374 < 0.001

Grade of hepatic steatosis 0.527 < 0.001

Abbreviations: BMI body mass index, HDL high density lipoprotein,
TG triglyceride

Table 1 Basic anthropometric and metabolic parameters

Total Derivation group Validation group P-value

Number 515 366 149

Sex 0.259

Male 262 (50.9%) 192 (52.5%) 70 (47.0%)

Femal 253 (49.1%) 174 (47.5%) 79 (53.0%)

Age (years) 58 (50–65) 58 (51–65) 58 (50–64) 0.338

HR 79 (72–88) 79 (72–88) 80 (73–88) 0.894

SBP 133 (122–147) 133.5 (122–147) 133 (121–148) 0.673

DBP 79 (72–87) 79 (71–87) 80 (72–88) 0.417

Grade of hepatic steatosis 0.237

Normal 216 (41.9%) 156 (42.6%) 60 (40.3%)

Mild 176 (34.2%) 127 (34.7%) 49 (32.9%)

Moderate 100 (19.4%) 71 (19.4%) 29 (19.5%)

Severe 23 (4.5%) 12 (3.3%) 11 (7.4%)

Height(cm) 167 (160–173) 167 (160–174) 167 (160–172) 0.122

Weight(kg) 69.4 (61.0–81.7) 70.8 (60.6–81) 68 (61.5–83.4) 0.986

BMI(kg/m2) 25.3 (22.9–28.2) 25.2 (22.8–28.2) 25.4 (23.3–28.1) 0.568

VAT 1283 (843–1837) 1252.5 (836.5–1840.75) 1357 (857.5–1835.5) 0.253

FPG 6.3 (5.0–8.71) 6.5 (5.0–9.0) 6.0 (4.8–8.6) 0.007

ALT 15.8 (11.5–23.8) 15.8 (11.5–24.1) 15.7 (11.9–22.4) 0.200

AST 17.0 (13.9–21.7) 17.0 (13.7–21.8) 16.9 (14.0–21.0) 0.009

TC 4.5 (3.7–5.3) 4.5 (3.7–5.3) 4.7 (3.8–5.3) 0.316

TG 1.3 (0.9–1.9) 1.3 (0.9–1.9) 1.4 (0.9–1.9) 0.477

HDL 1.1 (1.0–1.3) 1.1 (1.0–1.4) 1.1 (0.9–1.3) 0.143

LDL 2.6 (2.0–3.2) 2.6 (2.0–3.2) 2.8 (1.9–3.3) 0.709

DM (n/%) 343/66.6% 251/68.6% 92/61.7% 0.136

Hypertension (n/%) 234/45.4% 160/43.7% 74/49.7% 0.219

It shows mean median and interquartile range (IQR). Abbreviations: ALT alanine aminotransferase, AST aspartate aminotransferase, BMI body mass index, DBP
diastolic blood pressure, DM Diabetes mellitus, FPG fasting plasma glucose, HBP high blood pressure, HDL high density lipoprotein, HR heart rate, SBP systolic
blood pressure, TC total cholesterol, TG triglyceride, VAT visceral adipose tissue
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Fig. 1 Distribution of visceral adipose tissue (VAT) mass in subjects with different grading of hepatic steatosis

Table 3 Regression models for predicting VAT mass in the derivation group

Models U-β S-β P-value R2 Adjusted R2 SEE D-W

Model 1 0.705 0.700 447.399 2.122

Constant − 2117.622 < 0.001

BMI 121.839 0.674 < 0.001

Sex − 479.438 −0.293 < 0.001

Age 16.845 0.241 < 0.001

Grade of hepatic steatosis 125.787 0.131 < 0.001

HDL − 157.300 −0.086 0.003

TG 39.668 0.076 0.013

Model 2 0.754 0.749 409.229 2.014

Constant 1901.611 0.026

Weight 45.290 0.900 < 0.001

Age 19.325 0.277 < 0.001

HDL −157.105 −0.086 0.001

Grade of hepatic steatosis 91.653 0.096 0.005

Height −26.518 −0.268 < 0.001

Sex − 328.137 −0.201 < 0.001

TG 33.212 0.063 0.023

Abbreviations: BMI body mass index, HDL high density lipoprotein, TG triglyceride
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linear regression model 2 better explained the variance
than model 1, the AUCs were not significantly different
between the two models.
First, the general correlations between VAT mass and

included parameters were assessed. The VAT mass was
strongly correlated with weight and BMI, which was
consistent with the findings in Spadaccini et al.’s study
[15]. In a study by Spadaccini et al., the correlation as-
sessments between VAT mass and different variables
suggested that weight and BMI were better independent
variables associated with VAT mass. Linear regression in
the present study indicated that weight and BMI were

the top variables in the equations, while the inclusion of
additional variables increased the variance of the regres-
sion model over using BMI or weight alone, although ei-
ther weight or BMI might be useful for estimating VAT
mass. This might be because combining weight and
height better explains the VAT mass differences between
males and females.
VAT mass was not strongly correlated with age in this

study, which was similar to the findings in a previous
study [15]. However, age was an independent parameter
associated with VAT mass after correcting for con-
founders. Several studies have demonstrated that body

Fig. 2 a Correlation between DXA–VAT mass and predicted VAT by Model 1. b Bland–Altman plots for DXA–VAT mass and predicted VAT by
Model 1 with 95% limits of agreement. The middle line indicates the mean difference between DXA measured VAT and predicted VAT. The red
dotted lines represent the limits of agreement (LoA)

Fig. 3 a Correlation between DXA–VAT mass and predicted VAT by Model 2. b Bland–Altman plots for DXA–VAT mass and predicted VAT by
Model 2 with 95% limits of agreement. The middle line indicates the mean difference between DXA measured VAT and predicted VAT. The red
dotted lines represent limits of agreement (LoA)
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fat distribution is associated with age and sex. Excess
adipose tissue is stored preferentially in SAT rather than
VAT in young and middle-aged individuals [16]. How-
ever, VAT increased with age, while SAT showed the
opposite trend. Large sample studies on the reference
for DXA–VAT mass suggest that males have larger
VAT mass than females across the whole age range and
that VAT mass basically increases with age in both sexes
[5, 17]. In this study, males had significantly higher VAT
mass than females. Sex increased the variance by 8% in
model 1, which was larger than that in model 2 (1.5%).
The height and weight were considerably different be-
tween males and females. Therefore, the variance differ-
ence between the two models was mostly explained by
the larger coefficient of height and weight in model 2.
Abnormal lipid levels combined with excessive vis-

ceral fat included an increase in TG, a decrease in
HDL cholesterol, and almost unchanged LDL choles-
terol [2]. HDL is more sensitive to degradation in
visceral obesity subjects and more prone to be clear
from the blood [2]. Amato et al. [18] proposed a vis-
ceral adiposity index (VAI) according to sex, WC,
TG, and HDL, which was corroborated to be a valu-
able index for reflecting visceral fat function and
assessing cardiometabolic risk. In this study, the cor-
relation between VAT mass and HDL was negative,
while the correlation between VAT and TG was
positive, which was consistent with a previous study
[15, 18].
Abdominal ultrasound is widely used as a diagnostic

modality to assess hepatic steatosis in the clinic and
is recommended as a screening method for
metabolic-associated fatty liver disease (MAFLD) [19].
It is possible that the performance of the prediction
equations could have been compromised by the inclu-
sion of ultrasound due to its reliability. In this study,
the intra- and interobserver reliability of the sonogra-
phers was excellent. The sensitivity and specificity of
ultrasound have been shown to be relatively consider-
able compared to those of histology in assessing hep-
atic steatosis [20–22]. In Hamaguchi et al.’s study
[22], the severity of hepatic steatosis reflected visceral
fat accumulation in healthy people without excessive
alcohol consumption. In this study, the severity of
hepatic steatosis was positively correlated with the
amount of DXA–VAT mass. In the regression ana-
lysis, the grade of hepatic steatosis in the two models
developed in this study demonstrated similar variance.

Excess adipose tissue induced VAT and ectopic fat de-
position in the liver, muscle and pericardium. Epicardial
adipose tissues (EAT), present in the epicardium, could
promote higher proinflammatory cytokines and influ-
ence the myocardial function and structure of the left
atrium (LA) and left ventricle (LV) [23]. HDL is thought
to reverse cholesterol transport, reduce cholesterol de-
position in blood vessel walls, and prevent atheroscler-
osis, while the accumulation of LDL promotes
atherosclerosis. The lipoprotein (a) [Lp(a)] combining an
apolipoprotein(a) [apo(a)] with an apolipoprotein B 100
(apoB100) of LDL was also a predictor for atheroscler-
osis and CVD [24, 25]. Hence, VAT was associated with
ectopic fat deposition, atherosclerosis, and cardiovascu-
lar disease (CVD).
Ideally, the limits of agreement of the Bland–Altman

plots would be smaller for an equation to be considered
more accurate when estimating VAT mass. In this study,
the VAT mass estimated by the equations was in good
agreement with those measured by DXA in the valid-
ation group. The agreements were highly significant,
with small mean biases for the two models and no sys-
tematic errors in the two equations. Both models had fa-
vorable calibration and AUCs, which suggested that
their performance was perfect.

Comparisons with other studies
Previous studies have reported several prediction models
that can evaluate VAT based on the measurement of CT
or MRI [26–29]. However, there are few studies that
predict VAT based on the measurement of DXA [30]. In
previous studies, age, sex, BMI, height, or WC were
mostly included, which resulted in variances ranging
from 40 to 76% [26–29]. Unlike those studies, the blood
lipid profile and an abdominal ultrasound were included
in the regression models in this study. The total models
and subgroup models were constructed using stepwise
regression analysis, and two models with the highest
variance were proposed. In this study, although the lipid
profile was considered, only TG and HDL were included
in the models using stepwise regression analysis. The re-
sults suggest that TG and HDL are the two main param-
eters in abnormal lipid metabolism that are associated
with excessive VAT. The grade of hepatic steatosis eval-
uated by ultrasound was also included in the regression
models. Correlation analysis demonstrated that the se-
verity of hepatic steatosis measured by ultrasound was
positively correlated with the amount of DXA–VAT,

Table 4 The AUC of ROC,sensitivity, and specificity of two equations in the validation group

Model Model Sensitivity Specificity p

1 0.952 (0.904-0.980) 91.43% (82.8%-96.8%) 88.61%(79.5%-94.7%) 0.933

2 0.951(0.903-0.980) 92.86%(84.1%-97.6%) 86.08%(76.5%-92.8%)
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which suggests that this parameter might reflect the vis-
ceral fat amount to a certain degree in individuals with
hepatic steatosis. Weight and BMI were included in the
two models because they had a similar degree of associ-
ation with DXA–VAT. Combining more parameters re-
sulted in higher variance than BMI or weight alone.

Strengths and limitations
The study offers several strengths. First, this study con-
structed prediction models to evaluate VAT mass
assessed by DXA for the first time. Multiple stepwise re-
gression analysis was used to select the most favorable
models. Second, this study included the parameters of
the lipid profile and abdominal ultrasound, BMI, or
weight in models, which obtained higher variances. Fur-
thermore, Bland–Altman plots, ROC curves and the
Hosmer–Lemeshow test were performed to test the per-
formance of the models.
Nevertheless, the clinical data obtained were single-

center data from China, and the sample size was limited.
Thus, further studies should include large sample sizes
to better assess the reliability of the equations. Retro-
spective data limit the observation of individual changes
in VAT mass within a period of time. Longitudinal stud-
ies are required to observe whether the prediction equa-
tions are suitable for subjects whose VAT mass changes.

Conclusions
The prediction models constructed in this study are
based on several common and easily measured parame-
ters, and these models demonstrated high performance
with DXA. This study demonstrates that these predic-
tion equations could be useful and easily applicable tools
for predicting VAT mass when DXA is unavailable in
the clinic. They could also be used in conditions in
which DXA is unavailable for the diagnosis, treatment,
and prognosis of visceral obesity–related diseases. This
might be of certain clinical value and have several public
health implications. These prediction models might also
provide new information for future research. This might
be a novel area of interest and new point for future
studies.
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