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Introduction
Our bodies utilize lipids for various fundamental pro-
cesses, ranging from the major energy source to the 
synthesis of vital macromolecules such as cholesterol, 
membrane phospholipids, and hormones. Like most 
cells, T cells are heavily dependent on lipid consumption 
for energy needs, but their naiveté, activation, and effec-
tor functions are influenced by the subtype and quantity 
of lipid intake [1]. A number of surface and intracellular 
proteins, such as differentiation 36 (CD36), fatty acid-
binding protein (FABP), fatty acid transporter protein 
(FATP), and sterol regulatory-element binding proteins 
(SREBPs), are responsible for processing lipids in T cells. 
Under normal circumstances, quiescent T cells process 
lipids into more energy-efficient oxidative phosphoryla-
tion (OXPHOS), which is replaced by aerobic glycolysis 
once T cells are activated. A complex cascade of co-stim-
ulatory triggers channel T cells into T-regulatory cells 
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Abstract
The tumor microenvironment (TME) is characterized by discrete changes in metabolic features of cancer and 
immune cells, with various implications. Cancer cells take up most of the available glucose to support their growth, 
thereby leaving immune cells with insufficient nutrients to expand. In the relative absence of glucose, T cells 
switch the metabolic program to lipid-based sources, which is pivotal to T-cell differentiation and activation in 
nutrient-stressed TME. Although consumption of lipids should provide an alternative energy source to starving T 
cells, a literature survey has revealed that it may not necessarily lead to antitumor responses. Different subtypes of 
T cells behave differently in various lipid overload states, which widely depends upon the kind of free fatty acids 
(FFA) engulfed. Key lipid metabolic genes provide cytotoxic T cells with necessary nutrients for proliferation in the 
absence of glucose, thereby favoring antitumor immunity, but the same genes cause immune evasion in Tmem and 
Treg. This review aims to detail the complexity of differential lipid metabolism in distinct subtypes of T cells that 
drive the antitumor or pro-tumor immunity in specific TME states. We have identified key drug targets related to 
lipid metabolic rewiring in TME.
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(Tregs) and helper T cells (Th cells), each with differential 
metabolic shifts. As the immune response approaches an 
end, activated T cells undergo apoptosis or are converted 
to nondividing T memory cells that revert to OXPHOS 
[2, 3].

The tumor microenvironment (TME) is a complex 
space characterized by multiple cell types and their inter-
woven interactions, predominantly favoring cancerous 
growth. The interdependence of nutrients, vasculature, 
and metabolic demands actively shapes the cellular fate 
in TME. The specialized metabolic switches, nutrient 
preferences, cellular growth demands, and secretion of 
various intrinsic and extrinsic factors prime the particu-
lar kind of cell in TME to behave in a specific manner [4, 
5]. For example, growth signals and upregulation of meta-
bolic features in tumor cells make them more suitable for 
proliferation, while immune cells undergo tumor evasion 
after metabolic switch at the same time [6, 7]. As prolifer-
ating cells, in contrast to normal cells, require macromol-
ecule biosynthesis and redox homeostasis in addition to 
their normal energy needs [8–10], rapidly growing can-
cerous cells overtake metabolic control in TME, resulting 
in compromised nutrients supply to immune system cells 
[11]. In fact, the effector functions of innate and adaptive 
cells are partially controlled by their ability to consume 
glucose, which is mediated by glucose transporter-1 
(GLUT1) receptors [12]. A glycolytic challenge within 
TME curbs the effector function of immune cells on one 
side while enabling tumor cells with additional glucose to 
thrive on the other. Beyond the evident impact of glucose 
metabolism on immune cell reprogramming in TME, the 
role of lipid metabolism remains relatively poorly studied 
despite its conceivable implications.

Cancer typically withstands nutrient deprivation by 
interacting with nearby stromal cells. Cancer cells acti-
vate neighboring adipocytes to provide a sustained sup-
ply of lipids for tumor survival and proliferation [13, 
14]. Another important source of lipids in TME are 
cancer-associated fibroblasts [15, 16]. Moreover, cancer 
cells reprogramming to initiate de novo lipid synthesis, 
upregulation of fatty acid binding, and uptake of proteins 
ensures the surplus energy source in TME. Preferential 
accumulation of lipids in TME, greater availability of 
fatty acids to cancer cells, and subsequent immune eva-
sion are the hallmarks of the lipid metabolism features 
in TME. Although the metabolic narrative of cancer is 
increasingly accepted, scattered data remain a challenge. 
This review aims to identify and highlight the lipid meta-
bolic features of T cells in TME.

Genes involved in fatty acid-driven differentiation of T cells 
in TME
Activated T cells have greater metabolic demands to 
assist their proliferation, which requires higher de novo 

fatty acid synthesis (FAS), manifested by the conver-
sion of glucose to fatty acids [17]. Previous studies have 
revealed that sterol-responsive element-binding proteins 
(SREBPs) induce FAS in activated T cells via mTORC1 
[18–20], while naïve T cells and memory T cells (Tmem) 
maintain fatty acid oxidation (FAO) as the default meta-
bolic program. FAS has to go through various steps medi-
ated by key enzymes before lipid synthesis can occur. 
Some of these enzymes affect the rewiring of T cells. 
For instance, it has been found that CD8+ T cells can-
not expand without SREBP signaling during viral infec-
tion; however, it was expendable for homeostatic growth. 
SREBPs in Teffs induce the expression of enzymes fatty 
acid synthetase (FASN), acetyl-CoA carboxylase (ACC) 
and hydroxy-methyl-glutaryl-CoA reductase (HMGCR) 
[17]. Seon Ah Lim et al. have reinforced these observa-
tions in a mouse model of TME, showing that inhibition 
of SREBP-dependent lipid synthesis and metabolic repro-
gramming in Tregs initiates a robust antitumor response 
without causing autoimmune disorders. It has been fur-
ther proven that depletion of an obligatory SREBP fac-
tor SCAP curtails tumor growth and upgrades anti-PD-1 
immunotherapy [21]. Similarly, Yang-An Wen et al. con-
firmed the tumor growth suppression after the knock-
down of either SREBP1 or SREBP2 target genes required 
for lipid biosynthesis [22]. At least theoretically, deple-
tion of SREBPs in cancer cells and Tregs yields anticancer 
benefits; however, deletion of SREBPs in Teffs can affect 
their blast, which may lead to immune evasion. These 
SREBPs might be context-dependent drug targets. Fur-
ther research is required to ascertain them in all subsets 
of T cells and cancer cells in complex TME.

In addition to SREBPs, ACC is another widely studied 
lipogenic gene in this direction, which has led to similar 
results. For instance, Luciana Berod and colleagues found 
that TH17 cells, but not Tregs, rely on the de novo lipid 
synthesis mediated by ACC1. Tregs do not follow this 
scheme as they tend to utilize exogenous FFAs. T cell–
specific deletion of ACC1 in mice is able to ameliorate 
autoimmune disease through anti-inflammatory actions 
[23]. Similarly, CD8 + T-cell expansion and proliferation 
are severely curtailed in the absence of ACC1 and sub-
sequently restored by exogenous fatty acid supply [24]. 
Inhibition and activation of ACC1 favor peripheral Tregs 
and Th17 cell differentiation, respectively, under TME 
[25].

FAS required for proliferation is heavily based on ace-
tyl-CoA produced from glycolysis. Inhibition of FAS-
related enzymes such as SREBPs, ACC1, or downstream 
targets leads to defective effector T-cell responses [26]. 
Although modulation of SREBPs or downstream path-
ways is rarely attempted in cancer, they may be good 
therapeutic targets for the future.



Page 3 of 9Lou et al. Lipids in Health and Disease           (2022) 21:94 

FAO, a key bioenergetic pathway [27], displays a criti-
cal role in the development of tolerogenic dendritic 
cells (DCs) [28]. Interestingly, DCs of cancerous origin 
tend to accumulate oxidized lipids, thereby suppressing 
T-cell effector functions, which indirectly favors tumor 
progression [29]. It is speculated that accumulated fatty 
acids support FAO and therefore promote tolerogenicity 
in the cancer setting [30]. Furthermore, a carnitine pal-
mitoyltransferase-1  A (CPT1A) inhibitor, etomoxir, has 
immunomodulatory actions on CD8+ Tmem cell differ-
entiation [31]. However, Brenda Raud et al. have pointed 
out the flexible metabolic fuel choices of Tmem and found 
that CPT1A-mediated long chain fatty acid oxidation 
(LC-FAO) is expendable for the expansion of CD8+ T cell 
memory [32].

PD-L1/2 in T-cell metabolism in TME
Programmed death ligand-1/2 (PD-L1/2) belongs to 
CD28 family, and is predominantly expressed on tumors 
and tumor-infiltrating myeloid cells [33, 34]. PD-L1/2 has 
been suspected to play a negative role in TME by sup-
pressing antitumor immunity by regulating inhibitory 
cascade on effector T cells [35, 36]. For example, a recent 
report has suggested that PD-1 participates in the meta-
bolic reprogramming of activated T cells [37] by reduc-
ing Akt (protein kinase B) activation and subsequently 
inhibiting mammalian target rapamycin (mTOR) activity 
[37–39]. Indeed, reduced activation of mTOR in PD-1+ 
CD8 + T cells activates transcription factor forkhead box 
O1 (FoxO1), allowing the survival of exhausted CD8 T 
cells [39]. As glycolysis is necessary for T cells to obtain 
the required amount of energy for proliferation, the 
diversion from glycolysis to FAO likely sabotages antitu-
mor immunity in TME. The preferential diversion from 
glycolysis to FAO leads to the longevity of Tmem cells, 
which possess substantial mitochondrial spare respira-
tory capacity (SRC) [40]. Consistently, inhibition of the 
PD-1 pathway in the early phases of a viral infection leads 
to raised mTOR signaling in virus-specific CD8 + T cells, 
resulting in quicker infection clearance [41]. Certainly, 
mTOR and Akt are key lipid regulators within the cell 
[42]. Similarly, inhibition of PD-1/PD-L1 leads to exten-
sive cytotoxic T-cell infiltration into TME as reported in 
ex vivo, in vitro, and in vivo experimental models [43]. 
Blocking PD-1 in cancer patients leads to decreased 
tumor progression and improved survival [44, 45].

PD-1 has also been reported in T-cell exhaustion, 
which is counterproductive to immunity [46]. Exhaus-
tion of PD-1–associated CD8 + T-cell existed in chronic 
viral infections in mice [47] and in clinical studies [48–
50]. It is not surprising that, in 2014, FDA approved the 
first blocking antibody targeting PD-1 to treat metastatic 
melanoma, and up to August 2017, many drugs against 
the PD-1 pathway had been applied in various cancers 

[46]. However, a recent study has contradicted the holis-
tic benefits of PD-1 blockade in TME as distinct respon-
siveness of T-cell subpopulations to PD-1 blockade was 
observed. The study observed that effector and cen-
tral memory phenotypes were among the most affected 
T-cell subpopulations after PD-1 blockade but had differ-
ent gene expression profiles with PD-L1 in comparison to 
PD-L2 [51].

T cells in TME of obese states
Although it is well established that obesity and lipid 
overload states are obvious causes of cancer and its pro-
gression [52–55], it has rarely been investigated how 
these conditions rewire the T-cell differentiation and 
metabolic switch in TME. Alison E Ringel et al. have 
recently addressed this important question and demon-
strated how obesity shifts the metabolic program of TME 
to inhibit T-cell function and promote tumor growth. 
Researchers have systematically shown in a murine 
model that a high-fat diet (HFD) is differentially taken 
up by tumor cells in TME as compared to CD8 + T cells, 
which leads to modified fatty acid partitioning, dimin-
ished CD8+ T-cell infiltration, and promotion of tumori-
genesis [56]. Of course, preferential fat consumption by 
tumor cells makes localized T cells less efficient as fat is 
required to raise the number and plasticity of T cells in 
TME.

There are several other genes and enzymes with limited 
evidence but with potential to be good drug targets. The 
consumption of fat is not only restricted to activate the 
T cells, but it is also evident that under normal circum-
stances de novo cardiolipin synthesis keeps the function 
of CD8 + T cells intact. Mauro Corrado and colleagues 
demonstrated poor T-cell antigenic responses in T cells 
deficient in the cardiolipin-synthesizing enzyme—pro-
tein tyrosine phosphatase, mitochondrial-1 (PTPMT1). 
PTPMT1-dependent cardiolipin synthesis is also impor-
tant for mitochondrial fitness, especially during Tmem 
cell differentiation or nutrition scarcity [57]. Monoacyl-
glycerol lipase (MGL) hydrolyzes monoglycerides into 
glycerol and fatty acids. It is abundantly present in tumor 
cells, and MGL knockout (KO) mice exhibit a reduced 
tumor size compared with control mice. Interestingly, the 
reduction in tumor progression is associated with a par-
allel upregulation in the number of CD8+ T cells. Further-
more, naïve CD8+ T cells exhibit enhanced tumoricidal 
activity in MGL KO mice [58]. P4HA2 is a metabolism-
related gene that is upregulated in cervical cancer tissues, 
and negatively correlates with CD8 + T cells. Knockdown 
of P4HA2 suppresses lipid droplet storage in cancer cells 
[59]. Teresa Manzo and colleagues demonstrated a pro-
gressive accumulation of long-chain fatty acids (LCFAs), 
which, instead of providing an energy source, hamper the 
mitochondrial function and rewire the lipid metabolism 
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pathways. In addition, intrapancreatic CD8 + T cells 
inhibit the very long-chain acyl-CoA dehydrogenase 
(VLCAD) enzyme, which worsens the accumulation of 
LCFAs and very-long-chain fatty acids (VLCFA), sub-
sequently inducing lipotoxicity. In fact, recently obesity 
has also been described as a booster of antitumor phar-
macotherapy in some cancers [60], but the mechanism 
remains unknown.

MDSCs in T-cell lipid (de)regulation
Myeloid-derived suppressive cells (MDSCs) manifest 
negative regulatory activity by promoting immunosup-
pression in immune-related diseases [61, 62]. In tumors, 
MDSCs accelerate tumor proliferation, tumor expan-
sion, and immune escape, thereby further exacerbating 
the TME [63, 64]. MDSCs reshape TME by inhibiting T 
cells and natural killer (NKT) cells while inducing regula-
tory T cells (Tregs) and regulatory B cells (Bregs) [65, 66]. 
From recent studies, it is evident that lipid metabolism 
in tumor-infiltrating MDSCs (T-MDSCs) is rewired for 
raised fatty acid uptake, FAO upgrade, oxygen consump-
tion rate (OCR), mitochondrial mass, and expression of 
core FAO enzymes [67]. It is interesting to note that only 
T-MDSCs, but not splenic MDSCs, raise lipid uptake 
[68], which implies that only infiltrating MDSCs undergo 
lipid metabolic reprogramming. This differential scheme 
of pro-tumor metabolic features sheds light on the com-
plexity of TME.

In mammals, Liver X receptors (LXRs) are involved in 
lipid homeostasis. Previous studies have revealed that 
administration of LXR agonists initiates MDSC apopto-
sis and reduces tumor volume [69, 70]. In addition, lec-
tin-type oxidized LDL receptor 1 (LOX-1) is present in 
PMN-MDSCs of cancer patients but is absent in healthy 
individuals [71]. Similarly, Caijun Wu et al. noticed the 
enhanced immunosuppressive role of monocytic MDSCs 
after administration of a multidose clinical regimen of 
gemcitabine (GEM). These authors have implicated that 
the deregulation of lipid metabolism in residual tumor 
cells is partially responsible for promoting immuno-
suppression [72]. It is plausible to conclude that tumor-
derived MDSCs are forced to rewire lipid metabolism 
primarily because of robust lipid storage and related sig-
naling activation.

CD36 and T-cell regulation in TME
CD36 is a scavenger receptor of oxidized lipids, and is 
expressed in multiple cell types, including T cells [73, 
74]. Previous studies have highlighted that tumor-asso-
ciated immune cells undergo CD36-oriented lipid meta-
bolic reprogramming, which leads to immune evasion 
and cancer progression [75]. Shihao Xu and coworkers 
have reported that CD8+ tumor-infiltrating lymphocytes 
(TILs) are responsive to lipids in the TME, mediated by 

CD36, which is associated with progressive T-cell dys-
function. It has been explained that T-cell dysfunction 
occurs in a CD36-dependent manner, which leads to a 
raise in oxidized low-density lipoproteins (OxLDL) in T 
cells, promotion of lipid peroxidation downstream, and 
occurrence of ferroptosis. Interestingly, overexpression 
of glutathione peroxidase 4 reverses lipid peroxidation to 
improve the effector capacity of T cells [76]. Similar evi-
dence has been provided by other research groups, asso-
ciating overexpression of CD36 with shorter survival of 
melanoma patients with tumor-infiltrating CD8+ T cells, 
while CD36-depleted CD8+ T cells showed greater anti-
tumor potential and survival compared with wild-type 
CD8+ T cells [77–80].

Importantly, there are very few identified metabolic 
drug targets that work in the same direction in both Tregs 
and Teffs. As presented above, metabolic drug targets are 
often context- and T-cell subtype–dependent, in which 
Tregs and Teffs promote or inhibit tumor, respectively. 
However, CD36 offers a rare opportunity because its 
deletion on both Tregs and Teffs results in enhanced anti-
tumor activities [81]. For instance, Wang et al. stated that 
genetic knockdown of CD36 in Treg cells reduced tumor 
growth and intratumoral Treg cells, promoting the anti-
tumor function of tumor-infiltrating lymphocytes [82]. 
Although only few studies have been reported in this 
direction, CD36 presents a viable common drug target 
that requires future research.

Effects of lipid metabolism on Tregs
The relative ratio of cytotoxic T cells and Tregs in TME 
plays a pivotal role in tumor progression and immune 
evasion [83]. Tregs contribute to immune evasion in TME 
[84–86]. Systematic ablation of Tregs in several cancer 
types has resulted in tumor suppression and cellular 
alterations within the TME [87, 88]. It is suspected that 
cytotoxic Teffs and Tregs follow different activation and 
proliferation pathways as Tregs are abundant even in the 
unfavorable metabolic states in TME [89]. Indeed, Wein-
berg et al. have stressed the necessity of mitochondrial 
metabolism in Tregs to maintain their immunosuppres-
sive function [90]. A recent study has shown raised pro-
duction of FFAs by RHOA Y42-mutated gastric cancer, 
modulated via the PI3K pathway, which favors the accu-
mulation of Tregs in a low-glucose TME. Similarly, the 
expression levels of FAS, CPT-1, PPARα, and PPARɣ were 
also higher in gastric cancer with RHOA Y42 mutation 
[91]. It remains unknown what metabolic switch enables 
Tregs to expand and proliferate differently from Teffs 
in the same TME. However, one study confirmed that 
intratumoral Tregs indirectly promote M2-like TAMs by 
boosting SREBP1-dependent lipid metabolism and then 
limiting the CD8+ T-produced interferon-gamma (IFNγ), 
thereby leading to tumor progression and orchestrating 
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tumor-associated immunosuppression [92]. In addi-
tion, inhibition of FABP5 on Tregs causes mitochondrial 
alterations characterized by impaired lipid metabolism, 
reduced OXPHOS, and loss of cristae structure. The 
authors concluded that FABP5 is a gatekeeper of mito-
chondrial integrity, which is necessary for normal func-
tioning of Tregs [93]. An interesting observation regarding 
the complicity of Tregs and tumor cells to suppress the 
T-cell functioning has recently been highlighted. Xia Liu 
et al. pointed out that senescent T cells presented unbal-
anced lipid metabolism, while tumor cells and Treg cells 
have driven increased expression of IVA phospholipase 
A2, which is responsible for modified lipid metabolism 
and senescence observed in T cells. The inhibition of 
group IVA phospholipase A2 initiated reprogramming in 
effector T-cell lipid metabolism, thereby stopping T-cell 
senescence in cancer models in vivo and in vitro [94].

Unconventional T cells in TME
γδ T cells are capable of differentiating into various sub-
types of immune cells depending on the TME conditions 
[95]. Although the scientific knowledge on γδ T cells is 
underdeveloped and their proclivity as pro-tumorigenic 
or anticancer immune cells is still unclear [96–98], γδ T 
cells are potential agents against cancer cells [99]. Various 
studies have reported the chameleon-like nature of γδ T 
cells, pointing at the flexibility they exhibit in TME [100–
102]. The phenomenon has been successfully explained 
in squamous cell carcinoma [103] and colorectal can-
cer [104], where it has been suggested that TME condi-
tions can affect the proliferation and functional nature 
of γδ T-cells. For example, a recent study has highlighted 
two distinct subtypes of γδ T cells, namely, antitumoral 
IFN-γ–producing γδ T cells (γδIFN cells) and IL17-pro-
ducing γδ T cells (γδ17 cells) [105]. Interestingly, it has 
been shown that Vδ2 cells are activated, independent of 
MHC, by small lipid molecules, phosphoantigens (pAgs), 
which are derived from the mevalonate pathway [106–
108]. Furthermore, Emmanuel Scotet et al. identified two 
different lipid-related ligands of Vɣ9Vδ2 TCR in tumor 
cells, namely apolipoprotein A1 (Apo-A1) and ATP syn-
thase/F1-ATPase (high-affinity apo A-I receptor). These 
authors revealed that Apo-A1, which is abundant in high-
density lipoproteins (HDL), is needed for the activation 
of Vɣ9Vδ2 T cells by tumors expressing F1-ATPase [109]. 
Similarly, a related study by Rodrigues et al. showed that 
Vδ2 T cells express low-density lipoprotein (LDL) recep-
tors when they are activated and their functions can be 
modified once LDL attaches to their activated receptors. 
It has also been demonstrated that expression levels of 
IFN, NKG2D, and DNAM-1 are downregulated when 
Vɣ9Vδ2 T cells are treated with LDL-cholesterol [110]. 
Furthermore, host-derived lipids from lung-infiltrating 

CD1d + B-1a cells are able to induce γδ T cells for the 
induction of IL-17 A [111].

As a specialized type of T lymphocytes, Natural killer 
T cells (NKT cells) recognize lipid antigens presented 
through CD1d [112, 113]. NKT cells are divided into 
two distinct types, including I and II NKT cells, which 
regulate the immune response in the development and 
progression of tumor [114–116]. Both type I and type II 
NKT cells show intermodulation, but type I NKT cells 
are known to increase antitumor responses, while type 
II NKT cells are inclined towards pro-cancer activities 
[117], with some contextual exceptions where type I can 
also suppress tumor immunity [115, 118, 119]. However, 
tumor growth in TME is bound to consume more lip-
ids to support its rapid proliferation and meet excessive 
energy needs. De novo lipid synthesis, greater and prefer-
ential fatty acid uptake from surrounding tissues in TME, 
and altered equilibrium of polyunsaturated fatty acids 
(PUFAs) and saturated fatty acids (SFAs) change the lipid 
repertoire of tumor cells, which can affect membrane flu-
idity, cell–cell interaction, and membrane protein land-
scape, subsequently affecting the downstream signaling 
cascade [120, 121] in cancers [122, 123]. The changes in 
lipid repertoire are also linked to the altered structure 
of bio-in cancer cells [124]. In this context, HFD rich in 
SFA can negatively affect the capability of DCs to acti-
vate naïve T cells [125], which is critical for antitumor 
responses. The availability of lipids is necessary for the 
NKT cells development [126] as mice deficient in lyso-
somal lipid transfer enzyme Niemann Pick C (NPC) 2 
have a decreased number of type I NKT cells [127]. There 
is no doubt that excess lipid states lead to the activation 
of type I NKT cells, which generates a proinflammatory 
environment in obese patients [128], while CD1d−/−mice 
show reduced inflammation under similar conditions 
[129]. Furthermore, the antitumor potential of NKT cells 
in obesity is reduced and does not inhibit tumor growth 
[130]. However, human studies were unable to show any 
changes in the number of NKT cells in a hepatocellular 
carcinoma (HCC) model [131]. It is interesting to note 
that higher lipids increase the NKT cell proliferation, 
leading to proinflammatory responses, but an obese state 
reduces NKT cells, causing hindrance in tumor immu-
nity. Further research in this direction is vital and has the 
potential to unveil anticancer drug targets.

Conclusion
Lipid metabolic features differ in their ability to ini-
tiate antitumor or pro-tumor responses in glucose-
diminished TME infiltrated by cytotoxic T cells, Tregs, 
Tmem, and NKT cells (Fig. 1). It may be oversimplified to 
argue that lipids proliferate Teffs and regress Tregs/Tmem 
in complicated TMEs where diversified forms of lipids 
exist. The predisposition of TME to attract and utilize 
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excessive lipids leaves little energy for Teffs to expand. In 
a complex TME, the identification of lipid-based T-cell 
drug targets is context-dependent as the same genes or 
enzymes responsible for attracting lipids to T cells pref-
erentially contribute to cancer cell fat intake. The type of 
lipid intake peculiarly affects different subsets of T cells. 
Formulation of a definitive hypothesis in this regard is 
too early. It is necessary to explore the expression dif-
ference of the same gene in different subtypes of T cells 
under TME to mark it as a drug target. Although CD36, 
SREBPs, PD-L1/2, FABP5, CPT-1, ACC1, GLUT1, and 
FAS has shown promising prospects to be potential met-
abolic drug targets of cancer, their context-dependence 
and varied implications in T-cell subtypes urge for more 
research. Identifying the differential expression of lipid-
related genes, gatekeepers, and enzymes on T-cell sub-
sets and cancer cells that can be manipulated to draw 
clinical gains presents an opportunity for future research.
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