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Abstract 

Low-density lipoprotein cholesterol (LDL-C) plays a central role in the pathology of atherosclerotic cardiovascular dis-
ease. For decades, the gold standard for LDL-C lowering have been statins, although these drugs carry a moderate risk 
for the development of new-onset diabetes. The inhibitors of proprotein convertase subtilisin/kexin type 9 (PCSK9) 
have emerged in the last years as potential alternatives to statins due to their high efficiency and safety without 
indications for a diabetes risk so far. Both approaches finally eliminate LDL-C from bloodstream by upregulation of LDL 
receptor surface expression. Due to their low antioxidant capacity, insulin producing pancreatic β-cells are sensitive to 
increased lipid oxidation and related generation of reactive oxygen species. Thus, PCSK9 inhibition has been argued 
to promote diabetes like statins. Potentially, the remaining patients at risk will be identified in the future. Otherwise, 
there is increasing evidence that loss of circulating PCSK9 does not worsen glycaemia since it is compensated by local 
PCSK9 expression in β-cells and other islet cells. This review explores the situation in β-cells. We evaluated the relevant 
biology of PCSK9 and the effects of its functional loss in rodent knockout models, carriers of LDL-lowering gene vari-
ants and PCSK9 inhibitor-treated patients.
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PCSK9 inhibitors improve dyslipidaemia 
without diabetes risk
Circulating low-density lipoprotein cholesterol (LDL-
C) has long been recognised for its central role in the 
development and progression of atherosclerosis, which 
is the pathological basis of cardiovascular disease (CVD). 
According to a 2021 World Health Organisation report, 
CVD is the leading cause of morbidity and mortal-
ity worldwide [1], and is particularly associated with 
worse outcomes in patients with diabetes [2]. Lowering 
of LDL-C is therefore an important clinical goal, which 
is commonly addressed with statins as the first choice 
therapy.

Statins inhibit cholesterol synthesis by blocking the 
rate-limiting 3-hydroxy-3-methyl-glutaryl-coenzyme 
A reductase (HMGCR). The subsequent depletion of 
cellular cholesterol activates proteolytic cleavage of 
membrane-bound sterol regulatory element-bind-
ing protein (SREBP)-2 in the endoplasmic reticulum 
(ER). The released N-terminal domain migrates into 
the nucleus and acts as a transcription factor to acti-
vate gene expression of the LDL receptor (LDLR) and 
other genes to rebalance cellular cholesterol homeosta-
sis [3, 4]. Statins are overall safe with a remaining risk 
for raised transaminase levels and increased incidents 
of new onset diabetes (about 50–100 cases in 10,000 
patients treated for 5 years), which is much outweighed 
by lowered CVD risk [5].

It is suspected that, in susceptible patients, sta-
tin-induced upregulation of LDLR results in cellular 
cholesterol overload, which triggers dysfunction of insu-
lin-producing pancreatic β-cells. These cells are sensitive 
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to excessive lipid import since they express only low 
levels of the antioxidants catalase, sodium dismutase 
(SOD)1 and SOD2 compared to other cell types, espe-
cially hepatocytes [6–8]. Their low antioxidant capacity 
makes β-cells susceptible to increased lipid oxidation and 
associated production of reactive oxygen species (ROS). 
Moreover, statin-mediated HMGCR inhibition leads to 
the depletion of isoprenoids like farnesyl pyrophosphate 
(FPP), which is a G protein-coupled receptor (GPR)92 
agonist [9]. GPR92 is present in pancreatic islet mac-
rophages and its activation with FFP reduced high-fat 
diet-induced islet inflammation and increased insulin 
secretion in wild type but not in GPR92 knockout (KO) 
mice [10].

In support of the assumed statin-mediated lipotox-
icity, a number of in  vitro studies observed that LDL-C 
exposure impairs insulin secretion and survival in rodent 
pancreatic islets and β-cell lines [11–14], which was not 
observed in pancreatic islets from Ldlr KO mice [12]. 
Similarly, increased cholesterol levels in islets from apoli-
poprotein E (Apoe) KO mice correlate with impaired 
glucose-stimulated insulin secretion, which is further 
worsened in obese ob/ob;Apoe KO mice [15]. The harm-
ful effects of cholesterol accumulation are associated 
with activated signalling of c-Jun N-terminal kinase [14] 
and p38 mitogen-activated protein kinase as well as oxi-
dative stress due to lipid oxidation [16].

In addition, mice with β-cell specific SREBP-2 over-
expression develop severe diabetes due to loss of β-cell 
mass and function [17]. The idea of critical LDL-C over-
load in β-cells of statin-treated patients is further sup-
ported by the contradictory situation in patients with 
hypercholesterolemia due to mutations in APOB and 
LDLR genes [18]. These patients exhibit high plasma lev-
els of LDL-C and a substantial risk for CVD, but display 
a lower prevalence of type 2 diabetes (T2D) than unaf-
fected relatives.

Statins are meanwhile challenged by a new class of 
inhibitors that target the proprotein convertase subtili-
sin/kexin type 9 (PCSK9), the natural inhibitor of the 
LDLR [19]. The currently available PCSK9 inhibitors are 
the antibodies alirocumab and evolocumab. These anti-
bodies bind to PCSK9, preventing its interaction with 
LDLR, which is then not targeted for degradation and 
becomes recycled repeatedly. Consequently, inhibition 
of PCSK9 increases numbers of LDLR on the cell surface. 
This results in LDL-C lowering by about 60%, a value that 
is comparable to high-intensity statin therapy (50–60%) 
[20]. Alirocumab and evolocumab are safe overall and so 
far without any indication for a diabetes risk [21, 22].

With regard to the common upregulation of LDLR, 
clinical PCSK9 inhibition is suspected to confer a similar 

diabetes risk as statins. Ongoing research has intensively 
investigated this point and widened the view on the mul-
tifaceted functions of PCSK9 beyond LDL-C lowering 
[19, 23]. In the following, we present the current under-
standing of the biology of PCSK9 and the consequences 
of loss-of-function mutations and clinical inhibition rel-
evant to function and dysfunction of pancreatic β-cells.

PCSK9 and cholesterol homeostasis
Cholesterol is an essential component of cell mem-
branes and functional cholesterol homeostasis is of vital 
importance for all living cells including insulin produc-
ing pancreatic β-cells. However, cholesterol homeostasis 
must be carefully balanced. Cholesterol overload alters 
lipid raft composition and membrane fluidity, lead-
ing to a reduction of cell surface glucose transporters, 
increased glucokinase retention in insulin granules and 
altered Ca2 + and K + channels [24]. Its impact on mito-
chondrial membranes reduced energy production by the 
electron transport chain, increased ROS production and 
reduced antioxidants (glutathione), leading to mitochon-
drial stress and cellular apoptosis. In addition, cholesterol 
accumulation in ER membranes depletes Ca2 + storage, 
thus increasing ER stress.

Nevertheless, cells basically need cholesterol, which 
can be absorbed from food via the intestinal trans-
porter Niemann-Pick C1-Like 1 (NPC1L1). Inhibi-
tion of NPC1L1 by ezetimibe lowered LDL-C levels by 
about 20% [20, 25]. Thus, most cholesterol comes from 
endogenous synthesis or storage. Although most cells 
are capable of synthesising cholesterol, the liver is of cen-
tral importance as it contributes about 50% of circulat-
ing cholesterol and is also the main site for elimination of 
cholesterol from the bloodstream [26].

The liver releases acquired or newly synthesised cho-
lesterol as very low-density lipoprotein (VLDL), which 
is processed in the blood stream to generate LDL for 
LDLR-mediated uptake into all cells of the organism 
[27]. LDL/LDLR complexes undergo endocytosis. LDLR 
dissociates from its ligand due to pH change during 
the late endosome to lysosome transition and becomes 
recycled. PCSK9 disrupts LDLR recycling through its 
binding to the extracellular epidermal growth factor 
(EGF)-A domain of LDLR, which is stabilized by acidic 
lysosomal pH, leading to the degradation of PCSK9/
LDLR complexes [28]. A process that is also considered 
the main route to remove circulating PCSK9 from the 
bloodstream [29].

The liver is also central for the release of circulating 
PCSK9. Hepatocytes appear to be the only source, as cir-
culating PCSK9 is not detectable in mice with liver-spe-
cific deletion [30]. Similar profiles of circulating LDL-C 
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levels in mice with Ldlr KO and combined Ldlr/Pcsk9 
double KO indicate that PCSK9 regulates cholesterol 
homeostasis exclusively through LDLR. Hepatic expres-
sion and circulating levels of PCSK9 decrease during 
fasting and increase with food intake [31, 32]. PCSK9 
is mainly regulated by SREBPs, in particular SREBP-
2, which is also the principle activator of LDLR gene 
expression [33].

Newly translated pro-PCSK9 gets autocatalytically 
cleaved in the ER but remains associated to its pro-
domain [19]. Both cleavage and pro-domain facilitate the 
exit of PCSK9 from the ER towards the Golgi for matu-
ration and subsequent vesicle transport towards the cell 
surface for secretion. In  vitro experiments suggest that 
PCSK9 can already bind LDLR intracellularly in order 
to direct it from the trans-Golgi network to lysosomal 
degradation [34]. However, the functional significance 
of the proposed internal degradation pathway remains 
unknown in vivo [19].

Expression in extrahepatic tissues
Beyond the liver, PCSK9 is also expressed in many other 
tissues, including intestine, lung, kidney, the brain and 
pancreatic β-cells [30, 35]. In this regard, circulating 
cholesterol is reduced by 42% in mice with systemic 
Pcsk9 KO and by 27% in mice with liver-specific KO 
[30]. Thus, about one third of PCSK9-mediated choles-
terol regulation in mice is independent of circulating 
PCSK9, indicating a functional role of local PCSK9 in 
extrahepatic tissues.

This notion has been further evaluated in the heart. 
Pcsk9 KO mice exhibit reduced running resistance asso-
ciated with increased left ventricular wall thickness 
suggestive of heart failure with preserved ejection frac-
tion (HFpEF) [36]. This was not observed in wild type 
controls and mice with liver-specific Pcsk9 gene dele-
tion. The development of HFpEF in Pcsk9 KO mice was 
associated with impaired energy metabolism in cardio-
myocytes and was not changed in Ldlr/Pcsk9 double KO 
mice. Thus, PCSK9 mediates its effects on cardiomyo-
cyte energy metabolism independent of LDLR by locally 
expressed PCSK9.

In this regard, PCSK9 exerts multiple functions beyond 
the regulation of LDLR [19]. Notably, PCSK9 targets the 
free fatty acid (FFA) scavenger CD36 and VLDL receptor 
(VLDLR) for degradation [37, 38]. Consequently, mice 
with Pcsk9 KO show increased uptake of FFA and triglyc-
erides leading to accumulation of lipid droplets in hepat-
ocytes, hypertrophy of adipocytes and a substantially 
enlarged visceral adipose tissue. This is relevant to the 
overall situation in obesity, as in particular, the increase 
in visceral adipose tissue is closely associated with low-
grade inflammation and insulin resistance in mice and 

patients [39]. A negative regulation of CD36 and VLDL 
by PCSK9 has also been shown in human pancreatic 
EndoC-βH1 β-cells [40]. PCSK9 is expressed in human 
pancreatic β-cells [41, 42], suggesting that combined lim-
itation of cholesterol, FFA and triglyceride import com-
pensates for the low antioxidant capacity of β-cells and 
their sensitivity to ROS generation during increased lipid 
oxidation [6, 7].

Cholesterol export
Cellular cholesterol homeostasis not only depends on 
regulated import but also on balanced export and high-
density lipoprotein (HDL) generation (see Fig. 1 for over-
view). Mechanistically, surplus cellular cholesterol can be 
stored in lipid droplets or exported by the ATP-binding 
cassette (ABC)A1 and ABCG1 efflux transporters to 
apoA-I, which generates HDL-C destined for uptake into 
the liver via the scavenger receptor class B type 1 (SR-B1) 
[43]. A process referred to as reverse cholesterol trans-
portation (RCT). Increased HDL-C blood levels have 
been associated with a lower risk of CVD, although the 
exact role of HDL in this context is still debated [44]. 
Beneficial effects of HDL have been attributed to its anti-
inflammatory, antioxidant and antithrombotic functions 
[45]. These properties have been shown protective for 
β-cells. In vitro, HDL-incubation protects mouse β-TC-3 
β-cells from LDL-induced apoptosis [12] and decreased 
basal and IL-1β-induced apoptosis in mouse and human 
islets [13]. HDL exposure further improved insulin secre-
tion up to 5-fold in mouse MIN6 β-cells [46]. Consist-
ently, T2D patients who received a 4-hour infusion of 
reconstituted HDL showed significantly increased insu-
lin secretion and decreased blood glucose levels, with no 
change in insulin sensitivity [1].

The critical role of functional cholesterol export in 
insulin producing β-cells has been further shown in 
heterozygote Tangier patients with validated loss-of-
function (LOF) gene variants of the ABCA1 gene. These 
patients show a 60% reduction in HDL-C levels with nor-
mal LDL-C levels and insulin sensitivity, but substantially 
impaired first-phase insulin secretion during hypergly-
caemic clamps [47]. Similarly, mice with β-cell-specific 
deletion of Abca1 displayed impaired glucose tolerance 
[48], which worsened to substantial islet inflammation 
and diabetes in mice with additional deletion of Abcg1 
[49]. In this regard, patients treated with PCSK9 inhibi-
tors showed no worsening of glycaemia and consistent 
increase in HDL-C serum levels by 4.6 to 8.9% depend-
ing on trial and therapeutic regime [50]. This supports 
the idea that ABCA1 and ABCG1 are capable to maintain 
critical cholesterol efflux in states of augmented LDL-C 
influx due to clinical PCSK9 inhibition. Consistent with 
this,  PCSK9 has been shown to inhibit Abca1 gene 
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expression and export function in mouse macrophages 
[51]. Thus, inhibition of PCSK9 simultaneously increases 
both LDLR-mediated cholesterol import and its export 
via ABC transporters.

In addition to cellular storage and export towards HDL 
formation, excess cholesterol can also be eliminated from 
the organism by excretion to the bile or intestine. In both 
routes, cholesterol excretion is mediated by ABCG5/
ABCG8 and ABCB1 transporters [52]. PCSK9 also 
appears to inhibit these cholesterol transporters since 
Pcsk9 KO mice show increased transintestinal cholesterol 

excretion (TICE), which decreases after the injection of 
recombinant human PCSK9 [52].

PCSK9 and glucose homeostasis
The hepatic expression of PCSK9 is influenced by insu-
lin and glucagon. Insulin-stimulated Pcsk9 gene expres-
sion involves activation of Srebp-2 in rat hepatoma cells 
and of Srebp-1 in primary rat hepatocytes [53]. Vice 
versa, glucagon-treatment reduced hepatic Pcsk9 mRNA 
levels in mice [54]. In contrast, it has also been reported 
that loss of insulin signalling in mice with shRNA-medi-
ated knockdown of insulin receptor signalling lead to 

Fig. 1  Schematic overview of cellular regulation of PCSK9 expression, processing, secretion, interaction with LDLR and degradation. (1) Gene 
expression of both PCSK9 and LDLR is induced by SREBP-2.  (2) After maturation in the Golgi, PCSK9 is either routed to exocytosis or is intended 
together with LDLR to degradation in lysosomes. (3) LDL binds LDLR and both will be internalized. LDLR will be recycled if it is not bound to 
PCSK and thereby marked for degradation. (4) PCSK9 inhibits the expression of ABCA1, which together with ABCG1 exports intracellular surplus 
cholesterol to HDL formation in the blood stream and subsequent RCT to liver or TICE. (5) Cholesterol can also be excreted to bile or intestine via 
ABCG5/ABCG8 and ABCB1a/b. As alternative LDL-lowering drugs, (5) ezetimibe inhibits NPC1L1-mediated cholesterol uptake from intestine and 
(6) statins inhibit HMGCR-mediated cholesterol synthesis. The figure contains elements from Smart Servier Medical Arts (https://​smart.​servi​er.​com/​
categ​ory/​cellu​lar-​biolo​gy/​intra​cellu​lar-​compo​nents/)

https://smart.servier.com/category/cellular-biology/intracellular-components/
https://smart.servier.com/category/cellular-biology/intracellular-components/
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increased hepatic PCSK9 expression in association with 
decreased signalling of the mammalian target of rapamy-
cin complex 1 (mTORC1) and upregulation of hepatocyte 
nuclear factor 1a (HNF1a) [55]. Potentially, this upregula-
tion is a regulatory feedback to reduced mTORC1 activ-
ity in certain conditions.

In the human context, circulating PCSK9 levels were 
found to be similar in healthy subjects and T2D patients 
[56] with no change in both groups upon 24 h exposure 
to moderate hyperinsulinemia [57]. In support, plasma 
PCSK9 levels in IT-DIAB (233 patients with prediabetes, 
follow-up 5 years) and the ELSA-Brasil (1,751 patients, 
27.5% with prediabetes, follow-up 4 years) were not sig-
nificantly associated with new-onset diabetes or glu-
cose homeostasis, except for a positive correlation with 
insulin resistance in ELSA-Brasil [58]. These data do 
not favour an important link between circulating insu-
lin and PCSK9. Likely, insulin and glucagon are rather 
fine-tuning hepatic PCSK9 expression than to be major 
regulators. Nevertheless, PCSK9 has been epidemiologi-
cally shown to mediate 11% of the association between 
depression and insulin resistance in a cohort of 389 obese 
patients [59].

Local PCSK9 expression in islets and β-cells has been 
assumed to compensate for the loss of circulating PCSK9 
upon clinical inhibition or liver-specific gene deletion in 
mice. This is different in carriers of PCSK9 LOF variants 
since such mutations affect both local and circulating 
PCSK9. Several PCSK9 LOF variants have been reported 
with variable effects on glucose homeostasis [60]. For 
example, in a black South African population, variant 
A443T had no significant effect on glucose homeostasis, 
while C679X carriers showed reduced fasting glucose 
levels, albeit without changes in HbA1c [61, 62]. Also 
French Canadian carriers of the insLEU variant showed 
normal glycaemia [63]. However, individuals with addi-
tional familial hypercholesterolemia displayed a trend for 
higher incidence of prediabetes and diabetes as well as 
slightly but significantly increased plasma glucose levels 
[64]. Similarly, French and French Canadian carriers of 
the variant R46L also showed normal glucose homeosta-
sis [63, 65] unless additional APOE3/E2 polymorphism 
resulted in a trend towards insulin resistance with higher 
plasma insulin levels [63].

The meaning of these findings from small populations 
was further investigated at large-scale by a mendelian 
randomisation study using data from 550,000 individuals 
including 51,623 cases of T2D [66]. The combined analy-
ses of four LDL lowering PCSK9 gene variants finds an 
association with elevated fasting glucose levels and an 
increased risk of T2D [odds ratio of 1.29 (1.11 to 1.50)]. 
The individual risk of the variants was depending on 
the individual extent of functional loss, with the highest 

risk of diabetes occurring in the variant with the highest 
LDL-C lowering (lowest PCSK9 function). However, a 
complete functional loss of PCSK9 is only well defined in 
animal knockout models.

An initial study generated Pcsk9 KO mice by inbreed-
ing Pcsk9+/- mice from The Jackson Laboratories 
(Maine, USA) and reported strong upregulation of LDLR 
on β-cells, but normal islet cholesterol content and func-
tional insulin secretion [67]. Another study backcrossed 
the Jackson Lab Pcsk9+/- males with B6 females before 
generating the Pcsk9 KO. These mice showed accumula-
tion of cholesterol in islets and impaired glucose-stim-
ulated insulin secretion irrespective of gender and diet 
[68, 69]. However, only males but not females showed 
substantial worsening of glucose tolerance, which was 
further similar between wild type and KO. Probably, KO 
genotype was superimposed by the genetic predisposi-
tion to insulin resistance and diabetes in aged male mice. 
Note that healthy mice were studied at 2–3 months of age 
and mice with impaired insulin secretion at 4–6 months 
of age.

The initial findings have been readdressed by compar-
ing an alternative systemic KO and liver-specific gene 
deletion [70]. Systemic loss in these Pcsk9 KO mice aged 
5–7 months (no gender indicated) was associated with 
increased cholesterol accumulation in islets and impaired 
insulin secretion independent of normal diet or 20 weeks 
high fat diet. The disturbed insulin exocytosis goes along 
with increased insulin storage and results in significant 
but moderate loss of glucose tolerance. In contrast, mice 
with liver-specific Pcsk9 KO remained normoglycae-
mic. The same applies to 3 months old (male) mice with 
β-cell-specific Pcsk9 KO [71]. However, in this study 
insulin response and sensitivity were also not worsened 
in 4.5 months old mice with systemic Pcsk9 KO. There-
fore, the phenotype of moderate β-cell dysfunction is 
not consistent in different models of systemic Pcsk9 KO, 
but so far absent in mouse models with liver- and β-cell-
specific KO.

All in all, this supports the idea that PCSK9 tissue 
expression in islets compensates for loss of liver-derived 
PCSK9 in circulation. PCSK9 is expressed in the rodent 
β-cell lines RIN-m5F, β-TC-3 [35], MIN6 and in mouse 
islets [69] as well as in human EndoC-βH1 β-cells [42] 
and human islets [41]. β-cells appear to be an abundant, 
but not the only source for PCSK9 in endocrine pan-
creas since islets from mice with β-cell-specific Pcsk9 
KO showed substantial but not complete reduction of 
PCSK9 mRNA and protein by 48% and 78%, respectively 
[71]. Similarly, sorted human islet cells from healthy 
donors showed marked Pcsk9 gene expression in β-cell 
enriched fractions, which was less pronounced in frac-
tions enriched of other islet cell types [41].
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These findings point out that PCSK9 is still expressed in 
islets after β-cell-specific loss, e.g. by δ-cells [67, 70, 72]. 
This plausibly explains maintained β-cell function in mice 
with β-cell-specific Pcsk9 KO [71]. The situation changed 
in mice with pancreas-specific Pcsk9 KO and complete 
loss of all local PCSK9 in islets, which showed a moder-
ately impaired insulin response and glucose tolerance [72]. 
However, the situation is contradictory in  vitro. Insulin 
response was not significantly altered in human EndoC-
bH1 β-cells treated with recombinant PCSK9, alirocumab 
or siRNA-mediated PCSK9 knockdown [42]. In contrast, 
siRNA-mediated silencing of PCSK9 in rat INS-1E β-cells 
significantly reduced glucose-induced insulin response in 
association with decreased levels of vesicle-related solu-
ble N-ethylmaleimide-sensitive factor attachment protein 
receptor (SNARE) proteins [72]. If not cell line-specific, this 
would suggest a role for PCSK9 in the secretory pathway.

Bottom down
The cholesterol homeostasis in insulin producing β-cells 
appears to be robust to loss of circulating PCSK9, as 
mice with liver-specific Pcsk9 gene deletion and inhib-
itor-treated patients show no significant worsening of 
insulin secretion or glycaemia (see Fig. 2 for summary). 
PCSK9 is locally expressed in islets by δ-cells and β-cells. 
Since PCSK9 targets not only LDLR but also VLDLR 
and CD36, it can be assumed that its local expression 
in islets protects β-cells from lipid overload. Note that 
β-cells have only a very low antioxidant capacity and are 
therefore sensitive to generation of ROS during lipid oxi-
dation. Local PCSK9 expression in islets appears to be 
essential for β-cell-function since its loss in mice with 
systemic and pancreas-specific Pcsk9 KO resulted in 
moderate impairment of insulin secretion and glucose 
tolerance. However, β-cell dysfunction is not present 

in all mouse models with systemic Pcsk9 KO. Impair-
ment of glycaemia is also variable in human carriers of 
PCSK9 LOF variants, where the diabetes risk correlates 
with the individual degree of functional loss. The over-
all rather moderate deterioration of glucose homeostasis 
and diabetes risk could indicate a compensatory choles-
terol export via ABCA1 and ABCG1. In macrophages, 
ABCA1 is inhibited by PCSK9 and thus activated by its 
functional loss. Collectively, the current molecular and 
metabolic evidence supports the notion of the safety 
of PCSK9 inhibitor therapy. However, prolonged use, 
future clinical trials and meta-analyses may define yet 
undiscovered patients at risk for diabetes.
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