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Abstract 

Background  Prostate cancer (PCa), the second most prevalent solid tumor among men worldwide, has caused 
greatly increasing mortality in PCa patients. The effects of lipid metabolism on tumor growth have been explored, but 
the mechanistic details of the association of lipid metabolism disorders with PCa remain largely elusive.

Methods  The RNA sequencing data of the GSE45604 and The Cancer Genome Atlas-Prostate Adenocarcinoma 
(TCGA-PRAD) datasets were extracted from the Gene Expression Omnibus (GEO) and UCSC Xena databases, respec-
tively. The Molecular Signatures Database (MSigDB) was utilized to identify lipid metabolism-related genes. The limma 
R package was used to identify differentially expressed lipid metabolism-related genes (DE-LMRGs) and differentially 
expressed microRNAs (DEMs). Moreover, least absolute shrinkage and selection operator (LASSO), extreme gradient 
boosting (XGBoost), and support vector machine-recursive feature elimination (SVM-RFE) were applied to select sig-
nature miRNAs and construct a lipid metabolism-related diagnostic model. The expression levels of selected differen-
tially expressed lipid metabolism-related miRNAs (DE-LMRMs) in PCa and benign prostate hyperplasia (BPH) speci-
mens were verified using quantitative real-time polymerase chain reaction (qRT‒PCR). Furthermore, a transcription 
factor (TF)-miRNA‒mRNA network was constructed. Eventually, Kaplan‒Meier (KM) curves were plotted to illustrate 
the associations between signature miRNA-related mRNAs and TFs and overall survival (OS) along with biochemical 
recurrence-free survival (BCR).

Results  Forty-seven LMRMs were screened based on the correlation analysis of 29 DE-LMRGs and 56 DEMs, in which 
27 LMRMs were stably expressed in the GSE45604 dataset. Subsequently, receiver operating characteristic (ROC) 
curves and machine learning methods were employed to develop a lipid metabolism-related diagnostic signature, 
which may be of diagnostic value for PCa patients. qRT‒PCR results showed that all seven key DE-LMRMs were differ-
entially expressed between PCa and BPH tissues. Eventually, a TF-miRNA‒mRNA network was constructed.

Conclusions  These results suggested that 7 key diagnostic miRNAs were closely related to PCa pathological pro-
cesses and provided new targets for the diagnosis and treatment of PCa. Moreover, CLIC6 and SCNN1A linked to miR-
200c-3p had good prognostic potential and provided valuable insights into the pathogenesis of PCa.
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Introduction
Prostate cancer (PCa) is the most prevalent urological 
tumor [1]. Prostate-specific antigen (PSA), secreted by 
prostate epithelial cells, is used extensively for screen-
ing and diagnosing PCa. PSA screening significantly 
improves the PCa detection rate [2]. However, PSA is 
high in benign diseases, including prostatitis and BPH. 
Unnecessary prostate biopsies caused by the poor spec-
ificity of PSA lead to discomfort, bleeding, infection, 
and other complications [3]. Consequently, novel bio-
markers for PCa diagnosis and risk stratification along 
with decision-making for prostate biopsy are needed.

Recent studies have shown that abnormal metabolic 
reprogramming, particularly in glycolysis [4], fatty acid 
metabolism [5], and cholesterol metabolism [6], can 
lead to many pathological changes, including inflam-
mation and cancerization. Lipids provide nutrients 
for tumor cells and enhance their ability to adapt to 
the immune microenvironment. Intake of high-calorie 
foods and saturated animal fat is related to an increased 
incidence of PCa [7]. PCa cells show increased expres-
sion of several lipogenic enzymes [8]. MicroRNAs 
(miRNAs) are endogenous and short (22–25 nucleo-
tides in length) noncoding RNAs [9] that degrade or 
inhibit mRNA translation by binding to the 3’ untrans-
lated region of target mRNAs [10]. miRNAs act as 
regulatory factors for lipid metabolism and traffick-
ing through associated enzymes and have been impli-
cated in tumor cell proliferation and progression [11]. 
Numerous studies suggest that miRNAs can serve as 
diagnostic and prognostic biomarkers as well as thera-
peutic targets in PCa [12–17]. Nevertheless, the role of 
LMRMs in PCa and their mechanisms remain unclear.

The present study sought to identify key diagnostic 
miRNAs related to lipid metabolism and establish a 
potential TF-miRNA‒mRNA network using the RNA 
sequencing data of PCa, which might serve as clinically 
significant biomarkers and provide a reference for PCa 
diagnosis and prognosis.

Materials and methods
Data sources
The RNA sequencing data of the TCGA-PRAD data-
set, including 499 PCa and 52 normal samples, were 
obtained from the UCSC Xena database (https://​
xenab​rowser.​net/​datap​ages/), and 495 PCa samples 
with complete corresponding survival information 
were utilized for prognostic analysis. The GSE45604 
dataset was acquired from the GEO database (https://​
www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE45​
604). MSigDB was utilized to extract lipid metabolism-
related genes (LMRGs) [18].

Identification of differentially expressed (DE)‑LMRGs
DEGs between 499 PCa and 52 normal samples from 
the TCGA-PRAD dataset were selected by the limma R 
package (version 3.44.3) based on the threshold of |log-
2fold change (FC)|> 1 and P < 0.05. The expression levels 
of DEGs were displayed by heatmap and volcano plot via 
the pheatmap (version 4.1.0) and ggplot2 (version 3.3.2) 
R packages, respectively. DE-LMRGs were then identified 
by obtaining the intersection between LMRGs and DEGs, 
and DE-LMRG expression was assessed by the Wilcoxon 
test and visualized using a heatmap plotted using the 
pheatmap package (version 4.1.0).

Specimens
PCa tissues (n = 10) and BPH tissues (n = 10) were col-
lected from prostate biopsy specimens from patients 
admitted to The Second Affiliated Hospital of Xi’an 
Jiaotong University from December 2021 to May 2022. 
The Ethics Committee of the Xi’an Jiaotong University 
Health Science Center approved the research design 
on December 27, 2021 (protocol #: 2021–1700). Writ-
ten consent was obtained from the patients before they 
donated their tissue samples.

RNA extraction and qRT‒PCR
TRIzol® reagent (Ambion, MA, USA) was used to iso-
late total RNA from tissues. The M-MLV Kit (Accu-
rate Biology, Changsha, China) was used to reverse 
transcribe (RT) total RNA (290  ng). The SYBR® 
Green qPCR Kit (Accurate Biology) was utilized for 
qPCR. U6 was the internal control. Fig. S 1 shows the 
U6 expression levels at the tissue and cellular levels. 
Table 1 shows the primer sequences. All reactions were 
repeated at least three times, and calculations were 
performed using the 2−ΔΔCt method [19].

Identification of DE‑lipid metabolism‑related miRNAs 
(DE‑LMRMs)
To identify LMRMs, DEMs between 52 normal and 
499 PCa samples of the TCGA-PRAD dataset were 
first screened using the limma R package, consider-
ing |log2FC|> 1 and P < 0.05 as the screening criteria 
[20]. Next, DE-LMRMs were identified by performing 
Pearson’s correlation analysis between DEMs and DE-
LMRGs, and correlation < -0.3 and P < 0.05 were consid-
ered screening criteria. The overlapping DE-LMRMs and 
miRNAs expressed in samples from the GSE45604 data-
set were used to identify stably expressed DE-LMRMs.

Identification and validation of key diagnostic miRNAs
To assess the diagnostic utility of stably expressed 
DE-LMRMs, diagnostic miRNAs were identified from 

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45604
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45604
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45604
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stably expressed DE-LMRMs (area under the ROC 
curve (AUC) > 0.8) by ROC curves constructed using 
the pROC package (version 1.17.0.1) [21] and were 
selected for further analysis. Thereafter, LASSO regres-
sion, support vector machine (SVM), and XGBoost 

algorithms were used to obtain candidate miRNAs 
using the glmnet package (version 4.0–2) [22], caret 
(version 6.0–92), and XGBoost (version 1.5.2.1), respec-
tively. Overlapping miRNAs obtained from these three 
algorithms were defined as key diagnostic miRNAs. 

Table 1  Sequences of qRT‒PCR primers

Abbreviations: F forward, RT reverse transcribe, R reverse

Gene Primer Sequences (5’-3’)

miR-148a-3p RT: GTC​GTA​TCC​AGT​GCA​GGG​TCC​GAG​GTA​TTC​GCA​CTG​GAT​ACG​ACA​CAA​AG

F: CGT​CAG​TGC​ACT​ACA​GAA​CTT​

miR-187-3p RT: GTC​GTA​TCC​AGT​GCA​GGG​TCC​GAG​GTA​TTC​GCA​CTG​GAT​ACG​ACC​CGG​CT

F: CTC​GTG​TCT​TGT​GTT​GCA​GC

miR-200c-3p RT: GTC​GTA​TCC​AGT​GCA​GGG​TCC​GAG​GTA​TTC​GCA​CTG​GAT​ACG​ACT​CCA​TC

F: CTA​ATA​CTG​CCG​GGT​AAT​GAT​

miR-3074-3p RT: GTC​GTA​TCC​AGT​GCA​GGG​TCC​GAG​GTA​TTC​GCA​CTG​GAT​ACG​ACC​GGT​GC

F: CGA​TAT​CAG​CTC​AGT​AGG​CA

miR-375-3p RT: GTC​GTA​TCC​AGT​GCA​GGG​TCC​GAG​GTA​TTC​GCA​CTG​GAT​ACG​ACT​CAC​GC

F: CTT​TGT​TCG​TTC​GGC​TCG​C

miR-660-5p RT: GTC​GTA​TCC​AGT​GCA​GGG​TCC​GAG​GTA​TTC​GCA​CTG​GAT​ACG​ACC​AAC​TC

F: CGC​GTA​CCC​ATT​GCA​TAT​CG

miR-93-3p RT: GTC​GTA​TCC​AGT​GCA​GGG​TCC​GAG​GTA​TTC​GCA​CTG​GAT​ACG​ACC​TAC​CT

F: CAA​AGT​GCT​GTT​CGT​GCA​GG

universal primer R: AGT​GCA​GGG​TCC​GAG​GTA​TT

U6 F: CTC​GCT​TCG​GCA​GCACA​

R: AAC​GCT​TCA​CGA​ATT​TGC​GT

Fig. 1  DE-LMRGs in PCa. A Volcano plot of DEGs in PCa versus normal tissues. B DEG-based cluster analysis of the PCa and normal samples. C 
Identification of DE-LMRGs between LMRGs and DEGs. D Expression of the 29 DE-LMRGs. ****P < 0.0001 vs. normal tissues. E Heatmap of DE-LMRG 
expression profiles
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Furthermore, ROC curves were drawn to examine the 
predictive power of the diagnostic signature compris-
ing the key diagnostic miRNAs and the individual key 
diagnostic miRNAs from the TCGA-PRAD dataset 
and GSE45604 dataset. Simultaneously, the levels of 
expression of key diagnostic miRNAs between different 
clinical subgroups were compared by Wilcoxon’s tests 
(P < 0.05) and visualized using violin plots drawn using 
the ggplot2 (version 3.3.2) package to investigate the 
correlation between the key diagnostic miRNAs and 
different clinical characteristics.

Establishment of a TF‑miRNA‒mRNA network 
and prognostic analysis
To investigate the potential regulatory mechanism of key 
miRNAs, the StarBase and miRNET databases [23, 24] 
were utilized to predict potential binding sites of key diag-
nostic miRNAs and establish miRNA‒mRNA/TF-miRNA 
networks. The opposite expression patterns between 
miRNA and mRNA as well as TF were included to reduce 

the false-positive rate and exhibited through the Venn 
diagram. Then, the miRNA‒mRNA and TF-miRNA inter-
actions were imported into Cytoscape software (version 
4.0.2) [25] to generate the TF-miRNA‒mRNA network. 
Moreover, the correlations of PCa survival with gene 
expression of the factors involved in the network were 
analyzed based on the OS and BCR information of PCa 
cohorts, and the prognosis between the high- and low-
expression groups was evaluated through KM survival 
curves using the survival package (version 3.1–12) [26].

Results
DE‑LMRGs in PCa
A total of 519 DEGs were derived from the TCGA-PRAD 
cohort, comprising 157 upregulated and 362 down-
regulated mRNAs (Fig.  1A and B). The intersection of 
lipid metabolism-related genes and LMRGs revealed 24 
upregulated and 5 downregulated DE-LMRGs (Fig. 1C). 
The gene expression profiles of 29 genes are shown in 
Fig. 1D and Fig. 1E.
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DE‑LMRMs in PCa
A total of 56 DEMs were found between 52 normal and 
499 PCa samples, including 48 upregulated and 8 down-
regulated miRNAs (Fig.  2A and B). Subsequently, 47 
DE-LMRMs closely related to lipid metabolism were 
identified based on the correlation between DEMs and 
DE-LMRGs (Fig. 2C), whereby 27 stably expressed miR-
NAs were utilized for further analysis (Fig. 2D).

Identification and validation of key diagnostic miRNAs 
in PCa
To screen key diagnostic miRNAs, an ROC analysis was 
performed to preliminarily narrow down the diagnostic 

miRNAs. As shown in Fig.  3A and Supplementary 
Table  1, 25 miRNAs showed a good distinguishing 
ability between normal and PCa samples and were 
regarded as diagnostic miRNAs. Subsequently, 7 key 
diagnostic miRNAs were screened by LASSO regres-
sion (Fig.  3B and C), SVM-RFE (Fig.  3D and E), and 
XGBoost (Fig.  3F) algorithms, including miR-148a-3p, 
miR-187-3p, miR-200c-3p, miR-3074-3p, miR-375-3p, 
miR-660-5p, and miR-93-3p (Fig.  3G). To validate the 
diagnostic signature’s predictive ability, ROC curves 
based on the 7 key diagnostic miRNAs were plot-
ted for the training set and validation set, suggesting 
that the AUCs were 0.99 and 1, respectively (Fig.  3H 

Fig. 3  Identification and validation of key diagnostic miRNAs in PCa. A ROC curves for DE-LMRMs in distinguishing normal from PCa tissues. B 
The coefficient profile of 25 DE-LMRMs in LASSO regression. C The plot displays the cross-validation error according to the log of lambda value in 
the LASSO analysis. D, E Plots of generalization error and prediction accuracy versus the number of features in SVM, respectively. F Feature ranking 
based on the XGBoost machine learning algorithm. G Venn diagram for the diagnostic miRNAs screened by LASSO regression, SVM-RFE, and 
XGBoost algorithms. H, I ROC curves for the diagnostic signature in the training set and validation set, respectively. J, K ROC curves for each key 
diagnostic miRNA in the training and validation sets
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and I). Specifically, each key diagnostic miRNA also 
exhibited excellent distinguishing ability between the 
two datasets (Fig.  3J and K). Moreover, miR-3074-3p 
(P = 0.0033) and miR-148a-3p (P = 0.03) showed a high 
correlation with age (Fig.  4). qRT‒PCR data showed 
that the levels of expression of 7 key diagnostic miR-
NAs in PCa tissues differed significantly from those in 
BPH tissues (P < 0.05; Fig. 5).

TF‑miRNA‒mRNA network and prognostic analysis
Through the StarBase and miRNET databases, a total 
of 76 downregulated and two upregulated predicted 
mRNAs were considered key miRNA target sites and 
used to construct the miRNA‒mRNA regulatory 

network (Fig.  6A-D). Similarly, two TF binding sites 
of miR-200c-3p were predicted, namely, GATA3 and 
SANI2 (Fig.  6E-F). Following the integration of the 
obtained miRNA-TF (Fig.  6F) and miRNA‒mRNA net-
works (Fig.  6D), 25 targeted mRNAs as well as two TF 
binding sites of miR-200c-3p were used to construct the 
TF-miRNA‒mRNA network (Fig.  6G). Of these, only 
3 mRNAs (VTCN1, CLIC6, and SCNN1A) exhibited 
significant correlations with the OS of 495 PCa sam-
ples (P < 0.05) (Fig. 7). Simultaneously, 21 of 25 mRNAs 
(PDE5A, CLIC6, BDNRB, etc.) were confirmed to affect 
the BCR of PCa patients (Fig.  8). The results suggested 
that CLIC6 and SCNN1A may have good prognostic 
value for PCa and warrant further analysis.

Fig. 4  Differential analysis for signature miRNAs in different age groups
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Discussion
Accumulating evidence has linked lipid metabolism dis-
orders to the oncogenesis and development of several 
cancers, including bladder cancer [27], gastric cancer 
[28], and PCa [29]. PCa is characterized by increased 
fatty acid oxidation and de novo lipogenesis to satisfy the 
anabolic and energy demands of cancer cells [30]. Fur-
thermore, hypercholesterolemia promotes the develop-
ment of PCa and is a risk factor for progression toward 
castration-resistant PCa [6, 31]. Unfortunately, no stud-
ies on the role of LMRMs in PCa prognosis have been 
released. In contrast to previous methodological stud-
ies that directly investigated the relevance of miRNAs 
to diseases (e.g., breast cancer and lung cancer) by con-
structing similarity- or machine-learning-based models 
[32–35], the present study first identified DE-LMRMs by 
performing Pearson’s correlation analysis between DEMs 
and DE-LMRGs and subsequently used three machine 
learning algorithms to finalize a diagnostic model for PCa 
consisting of seven signature miRNAs and constructed 
a lipid metabolism-related TF-miRNA‒mRNA network, 
providing novel targets for diagnosing and treating PCa.

Using ROC curves and three machine learning 
algorithms, along with qRT‒PCR verification, 7 key 

DE-LMRMs were identified, which may have great 
diagnostic value for PCa patients. Most of them are 
reportedly related to lipid metabolism and the develop-
ment of PCa. For instance, miR-148-3p, as an impor-
tant regulator of liver low-density lipoprotein receptor 
expression and lipoprotein metabolism, is upregulated 
in the serum of PCa patients [15, 36, 37]. miRNA-
187-3p expression is significantly low in PCa tissues; 
its levels are lowered further in metastatic PCa patients 
[38]. miR-200c-3p has been reported to be positively 
associated with the development of nonalcoholic fatty 
liver disease (NAFLD) [39, 40]. High serum miR-
200c-3p levels are reported in high-risk PCa patients, 
and low miR-200c-3p expression inhibits PCa cell pro-
liferation [12, 41]. miR-375-3p is significantly upregu-
lated in the serum of NAFLD patients [42]. Circulating 
and urinary miR-375-3p levels are markedly high in 
PCa patients [13, 43, 44]. Similarly, miR-660-5p is 
reportedly upregulated in the urine vesicles of PCa 
patients [45]. miR-93-3p promotes PCa cell invasive-
ness, and increased miR-93-3p levels are related to the 
progression and metastasis of PCa [14, 17]. The above 
findings are consistent with this study, strongly indi-
cating that these LMRMs are promising diagnostic 

Fig. 5  Expression levels of 7 key diagnostic miRNAs in PCa and BPH tissues
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biomarkers for PCa. Interestingly, the present findings 
showed that miR-148a-3p and miR-3074-3p expression 
were positively correlated with the age of PCa patients.

Furthermore, a comprehensive study exploring 
both upstream transcription and downstream tar-
get regulation by LMRMs was conducted. A potential 
TF-miRNA‒mRNA regulatory network containing 1 

miRNA, 25 mRNAs, and 2 TFs was established. SNAI2 
and GATA3 may have a repressive role in miR-200c-3p 
transcription in PCa. The expression of SNAI2 has dif-
ferential clinical significance across the stages of PCa. 
Silencing SNAI2 in PCa contributes to its high prolif-
eration. However, metastatic tumors are characterized 
by high invasiveness and slow cellular proliferation, 

Fig. 6  Establishment of the TF-miRNA‒mRNA regulatory network. A Venn diagram of upregulated mRNAs in PCa specimens and downregulated 
miRNA target genes. B Venn diagram of downregulated mRNAs in PCa and upregulated miRNA target genes. C The top 10 mRNAs in the miRNA‒
mRNA network. D The miRNA‒mRNA network. E Venn diagram of downregulated mRNAs in PCa and TFs of upregulated miRNAs. F The miRNA-TF 
pairs. G The TF-miRNA‒mRNA network
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Fig. 7  OS analysis based on TF-miRNA‒mRNA network-related genes
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Fig. 8  Biochemical recurrence-free survival analysis based on TF-miRNA‒mRNA network-related genes
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supported by the activation of SNAI2 [46]. GATA3, a 
zinc-binding TF, inhibits PCa progression and metas-
tasis [16, 47]. Among the target genes of miR-200c-3p, 
high expression of CLIC6 and SCNN1A was related 
to a better prognosis in terms of OS and BCR in PCa 
patients, as reported here for the first time. However, 
CLIC6 has no reported significance in tumorigenesis 
and tumor progression to date. SCNN1A promotes 
ovarian and pancreatic cancer cell proliferation and 
migration and inhibits osteosarcoma growth [48, 49]. 
Nevertheless, the specific biological functions of CLIC6 
and SCNN1A in PCa warrant further investigation.

Comparisons with other studies and what does the current 
work add to the existing knowledge
When investigating the relationship between lipid 
metabolism and PCa, most previous studies focused 
on the role of LMRGs in the oncogenesis, progression, 
and prognosis of these patients or on the role of a spe-
cific miRNA in promoting or inhibiting the progres-
sion of PCa through lipogenic enzymes or regulating 
key TFs regulating lipid metabolism. However, the role 
of LMRMs in PCa and its related mechanisms remain 
unclear. For the first time, this study applied LASSO, 
SVM-RFE, and XGBoost algorithms to select signature 
miRNAs and constructed a lipid metabolism-related 
diagnostic model. In addition, a TF-miRNA‒mRNA 
network was established to investigate the regulatory 
mechanism of LMRM action in PCa.

Study strengths and limitations
The study’s strength is that it investigated the role of 
LMRMs in PCa for the first time and identified seven 
hub genes with excellent diagnostic value in PCa. Fur-
thermore, this study established a TF-miRNA‒mRNA 
network, providing a novel target for diagnosing and 
treating PCa. The flaws of this study are shown below. 
First, the diagnostic hub genes were detected only and 
validated by public datasets, and the diagnostic value 
needs to be further validated in large numbers of clini-
cal samples. Second, a large prospective investigation 
and more in vivo and  in vitro experimental studies are 
required to corroborate our results. Finally, the miRNA‒
mRNA-TF network lacked experimental validation.

Conclusions
The present study established a lipid metabolism-related 
diagnostic signature, which may have important diagnos-
tic value for PCa patients. The TF-miRNA‒mRNA net-
work may provide new diagnostic and therapeutic targets 
for PCa.

Abbreviations
DEGs	� Differentially expressed genes
qRT‒PCR	� Quantitative real-time polymerase chain reaction
FC	� Fold change
KEGG	� Kyoto Encyclopedia of Genes and Genomes
ROC	� Receiver operating characteristic; CI: confidence interval
SVM	� Support vector machine
MSigDB	� Molecular Signatures Database
SVM-RFE	� Support vector machine recursive feature elimination
XGBoost	� Extreme gradient boosting
KM	� Kaplan‒Meier
BCR	� Biochemical recurrence-free survival
RT	� Reverse transcribe
OS	� Overall survival
GEO	� Gene Expression Omnibus
LMRMs	� Lipid metabolism-related miRNAs
DEMs	� Differentially expressed miRNAs
PSA	� Prostate-specific antigen
TCGA-PRAD	�The Cancer Genome Atlas Prostate Adenocarcinoma
LMRGs	� Lipid metabolism-related genes
PCa	� Prostate cancer
miRNAs	� MicroRNAs
DE-LMRGs	� Differentially expressed lipid metabolism-related genes
DE-LMRMs	� Differentially expressed lipid metabolism-related miRNAs
BPH	� Benign prostate hyperplasia
LASSO	� Least absolute shrinkage and selection operator
TF	� Transcription factor
AUC​	� Area under the ROC curve
NAFLD	� Nonalcoholic fatty liver disease

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12944-​023-​01804-4.

Additional file 1: Supplementary Figure 1. U6 expression levels at 
the tissue and cellular levels. A Analysis of the expression levels of U6 in 
PCa (n=10) and BPH (n=10) tissue samples. B Analysis of the expression 
levels of U6 in PCa (DU145 and 22Rv1) cells and non-tumorigenic prostate 
epithelial (RWPE-1) cells. Supplementary Table 1. Receiver operating 
characteristic analysis for 27 differentially expressed lipid metabolism-
related miRNAs.

Acknowledgements
Not applicable.

Authors’ contributions
TZ, ZW, TC, and LX designed the study. TZ, LZ, and YM performed the experi-
ments. TZ, HW, MD, and FL analyzed the data and drafted the article. All authors 
reviewed the manuscript. The author(s) read and approved the final manuscript.

Funding
This research did not receive any specific grant from funding agencies in the 
public, commercial, or not-for-profit sectors.

Availability of data and materials
The raw data used in this study were extracted from the GEO database 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE45​604) and TCGA-
PRAD database (https://​portal.​gdc.​cancer.​gov).

Declarations

Ethics approval and consent to participate
The Ethics Committee of the Xi’an Jiaotong University Health Science Center 
approved the study design on December 27, 2021 (protocol #: 2021–1700). 
Written consent was obtained from the patients before they donated their 
tissue samples.

https://doi.org/10.1186/s12944-023-01804-4
https://doi.org/10.1186/s12944-023-01804-4
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45604
https://portal.gdc.cancer.gov


Page 12 of 13Zhai et al. Lipids in Health and Disease           (2023) 22:39 

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Urology, The Second Affiliated Hospital of Xi’an Jiaotong Uni-
versity, Xi’an 710004, Shaanxi, China. 2 Department of Kidney Transplantation, 
Nephropathy Hospital, The First Affiliated Hospital of Xi’an Jiaotong University, 
Xi’an 710061, Shaanxi, China. 

Received: 21 December 2022   Accepted: 7 March 2023

References
	1.	 Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. 

Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and 
Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Jour-
nal for Clinicians. 2021;71(3):209–49. https://​doi.​org/​10.​3322/​caac.​21660.

	2.	 Fritz H Schröder JHMJ, Lujan M, Lilja H, Zappa M, Denis LJ, Recker F, et al. 
Screening and prostate-cancer mortality in a randomized European 
study. New Engl J Med. 2009;360(13):1320–8. https://​doi.​org/​10.​1056/​
NEJMo​a0810​084.

	3.	 Lavallée LT, Binette A, Witiuk K, Cnossen S, Mallick R, Fergusson DA, et al. 
Reducing the harm of prostate cancer screening: repeated prostate-spe-
cific antigen testing. Mayo Clin Proc. 2016;91(1):17–22. https://​doi.​org/​10.​
1016/j.​mayocp.​2015.​07.​030.

	4.	 Hamaidi I, Zhang L, Kim N, Wang M, Iclozan C, Fang B, et al. Sirt2 Inhibition 
Enhances Metabolic Fitness and Effector Functions of Tumor-Reactive T Cells. 
Cell Metab. 2020;32(3):420–36. https://​doi.​org/​10.​1016/j.​cmet.​2020.​07.​008.

	5.	 Nardi F, Franco OE, Fitchev P, Morales A, Vickman RE, Hayward SW, et al. 
DGAT1 Inhibitor suppresses prostate tumor growth and migration by reg-
ulating intracellular lipids and non-centrosomal MTOC protein GM130. 
Sci Rep-Uk. 2019;9(1):3035. https://​doi.​org/​10.​1038/​s41598-​019-​39537-z.

	6.	 Yue S, Li J, Lee S, Lee HJ, Shao T, Song B, et al. Cholesteryl ester accumula-
tion induced by PTEN loss and PI3K/AKT activation underlies human 
prostate cancer aggressiveness. Cell Metab. 2014;19(3):393–406. https://​
doi.​org/​10.​1016/j.​cmet.​2014.​01.​019.

	7.	 Matsushita M, Fujita K, Nonomura N. Influence of diet and nutrition on 
prostate cancer. Int J Mol Sci. 2020;21(4):1447. https://​doi.​org/​10.​3390/​
ijms2​10414​47.

	8.	 Khanmi K, Arnab S, Gabriel PM, Stephen S, Vandana R, Kekungu-U P, et al. 
Roles of microRNA in prostate cancer cell metabolism. Int J Biochem Cell 
B. 2018;102:109–16. https://​doi.​org/​10.​1016/j.​biocel.​2018.​07.​003.

	9.	 De Robertis M, Poeta ML, Signori E, Fazio VM. Current understanding and 
clinical utility of miRNAs regulation of colon cancer stem cells. Semin Cancer 
Biol. 2018;53:232–47. https://​doi.​org/​10.​1016/j.​semca​ncer.​2018.​08.​008.

	10.	 Wang H, Tang Y, Yang D, Zheng L. MicroRNA-591 Functions as a Tumor 
suppressor in hepatocellular carcinoma by lowering drug resistance 
through inhibition of far-upstream element-binding protein 2-mediated 
phosphoinositide 3-Kinase/Akt/Mammalian target of rapamycin axis. Phar-
macology. 2019;104(3–4):173–86. https://​doi.​org/​10.​1159/​00050​1162.

	11.	 Gharib E, Nasrabadi PN, Zali MR. miR-497-5p mediates starvation-induced 
death in colon cancer cells by targeting acyl-CoA synthetase-5 and 
modulation of lipid metabolism. J Cell Physiol. 2020;235(7–8):5570–89. 
https://​doi.​org/​10.​1002/​jcp.​29488.

	12.	 Lin J, Lu Y, Zhang X, Mo Q, Yu L. Effect of miR-200c on proliferation, 
invasion and apoptosis of prostate cancer LNCaP cells. Oncol Lett. 
2019;17(5):4299–304. https://​doi.​org/​10.​3892/​ol.​2019.​10102.

	13.	 Foj L, Ferrer F, Serra M, Arévalo A, Gavagnach M, Giménez N, et al. Exosomal 
and non-exosomal urinary mirnas in prostate cancer detection and prog-
nosis. Prostate. 2017;77(6):573–83. https://​doi.​org/​10.​1002/​pros.​23295.

	14.	 Wang C, Tian S, Zhang D, Deng J, Cai H, Shi C, et al. Increased expression 
of microRNA-93 correlates with progression and prognosis of prostate 
cancer. Medicine. 2020;99(22):e18432. https://​doi.​org/​10.​1097/​MD.​00000​
00000​018432.

	15.	 Dybos SA, Flatberg A, Halgunset J, Viset T, Rolfseng T, Kvam S, et al. 
Increased levels of serum miR-148a-3p are associated with prostate 
cancer. APMIS. 2018;126(9):722–31. https://​doi.​org/​10.​1111/​apm.​12880.

	16.	 Wang L, Song G, Tan W, Qi M, Zhang L, Chan J, et al. MiR-573 inhibits prostate 
cancer metastasis by regulating epithelial-mesenchymal transition. Onco-
target. 2015;6(34):35978–90. https://​doi.​org/​10.​18632/​oncot​arget.​5427.

	17.	 Liu J, Zhang X, Wu X. miR-93 Promotes the Growth and Invasion of Prostate 
cancer by upregulating its target genes TGFBR2, ITGB8, and LATS2. Mol Ther 
Oncolytics. 2018;11:14–9. https://​doi.​org/​10.​1016/j.​omto.​2018.​08.​001.

	18.	 Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, 
Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 
2011;27(12):1739–40. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btr260.

	19.	 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using 
real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 
2001;25(4):402–8. https://​doi.​org/​10.​1006/​meth.​2001.​1262.

	20.	 Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers dif-
ferential expression analyses for RNA-sequencing and microarray studies. 
Nucleic Acids Res. 2015;43(7):e47. https://​doi.​org/​10.​1093/​nar/​gkv007.

	21.	 Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J, et al. pROC: 
an open-source package for R and S+ to analyze and compare ROC 
curves. BMC Bioinformatics. 2011;12:77. https://​doi.​org/​10.​1186/​
1471-​2105-​12-​77.

	22.	 Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized 
linear models via coordinate descent. J Stat Softw. 2010;33(1):1–22.

	23.	 Li J, Liu S, Zhou H, Qu L, Yang J. starBase v2.0: decoding miRNA-ceRNA, 
miRNA-ncRNA and protein-RNA interaction networks from large-scale 
CLIP-Seq data. Nucleic Acids Res. 2014;42(Database issue):D92–7. https://​
doi.​org/​10.​1093/​nar/​gkt12​48.

	24.	 Chang L, Zhou G, Soufan O, Xia J. miRNet 2.0: network-based visual ana-
lytics for miRNA functional analysis and systems biology. Nucleic Acids 
Res. 2020;48(W1):W244–51. https://​doi.​org/​10.​1093/​nar/​gkaa4​67.

	25.	 Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. 
Cytoscape: a software environment for integrated models of biomolecu-
lar interaction networks. Genome Res. 2003;13(11):2498–504. https://​doi.​
org/​10.​1101/​gr.​12393​03.

	26.	 Durisová M, Dedík L. SURVIVAL–an integrated software package for 
survival curve estimation and statistical comparison of survival rates of 
two groups of patients or experimental animals. Methods Find Exp Clin 
Pharmacol. 1993;15(8):535–40.

	27.	 Cheng S, Wang G, Wang Y, Cai L, Qian K, Ju L, et al. Fatty acid oxida-
tion inhibitor etomoxir suppresses tumor progression and induces cell 
cycle arrest via PPARγ-mediated pathway in bladder cancer. Clin Sci. 
2019;133(15):1745–58. https://​doi.​org/​10.​1042/​CS201​90587.

	28.	 Corona G, Cannizzaro R, Miolo G, Caggiari L, De Zorzi M, Repetto O, et al. 
Use of metabolomics as a complementary omic approach to implement 
risk criteria for first-degree relatives of gastric cancer patients. Int J Mol 
Sci. 2018;19(3):750. https://​doi.​org/​10.​3390/​ijms1​90307​50.

	29.	 Zadra G, Ribeiro CF, Chetta P, Ho Y, Cacciatore S, Gao X, et al. Inhibition of 
de novo lipogenesis targets androgen receptor signaling in castration-
resistant prostate cancer. P Natl Acad Sci USA. 2019;116(2):631–40. 
https://​doi.​org/​10.​1073/​pnas.​18088​34116.

	30.	 Chetta P, Zadra G. Metabolic reprogramming as an emerging mechanism 
of resistance to endocrine therapies in prostate cancer. Cancer Drug 
Resistance. 2021;4(1):143–62. https://​doi.​org/​10.​20517/​cdr.​2020.​54.

	31.	 Marín-Aguilera M, Pereira MV, Jiménez N, Reig Ò, Cuartero A, Victoria I, et al. 
Glutamine and cholesterol plasma levels and clinical outcomes of patients 
with metastatic castration-resistant prostate cancer treated with taxanes. 
Cancers. 2021;13(19):4960. https://​doi.​org/​10.​3390/​cance​rs131​94960.

	32.	 Ha J, Park S. NCMD: Node2vec-based neural collaborative filtering for pre-
dicting miRNA-disease association. Ieee Acm T Comput Bi. 2022. https://​
doi.​org/​10.​1109/​TCBB.​2022.​31919​72.

	33.	 Ha J. MDMF: predicting miRNA-disease association based on matrix 
factorization with disease similarity constraint. J Personal Med. 
2022;12(6):885. https://​doi.​org/​10.​3390/​jpm12​060885.

	34.	 Ha J, Park C, Park C, Park S. IMIPMF: Inferring miRNA-disease inter-
actions using probabilistic matrix factorization. J Biomed Inform. 
2020;102:103358. https://​doi.​org/​10.​1016/j.​jbi.​2019.​103358.

	35.	 Ha J, Park C, Park S. PMAMCA: prediction of microRNA-disease associa-
tion utilizing a matrix completion approach. BMC Syst Biol. 2019;13(1):33. 
https://​doi.​org/​10.​1186/​s12918-​019-​0700-4.

https://doi.org/10.3322/caac.21660
https://doi.org/10.1056/NEJMoa0810084
https://doi.org/10.1056/NEJMoa0810084
https://doi.org/10.1016/j.mayocp.2015.07.030
https://doi.org/10.1016/j.mayocp.2015.07.030
https://doi.org/10.1016/j.cmet.2020.07.008
https://doi.org/10.1038/s41598-019-39537-z
https://doi.org/10.1016/j.cmet.2014.01.019
https://doi.org/10.1016/j.cmet.2014.01.019
https://doi.org/10.3390/ijms21041447
https://doi.org/10.3390/ijms21041447
https://doi.org/10.1016/j.biocel.2018.07.003
https://doi.org/10.1016/j.semcancer.2018.08.008
https://doi.org/10.1159/000501162
https://doi.org/10.1002/jcp.29488
https://doi.org/10.3892/ol.2019.10102
https://doi.org/10.1002/pros.23295
https://doi.org/10.1097/MD.0000000000018432
https://doi.org/10.1097/MD.0000000000018432
https://doi.org/10.1111/apm.12880
https://doi.org/10.18632/oncotarget.5427
https://doi.org/10.1016/j.omto.2018.08.001
https://doi.org/10.1093/bioinformatics/btr260
https://doi.org/10.1006/meth.2001.1262
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1093/nar/gkt1248
https://doi.org/10.1093/nar/gkt1248
https://doi.org/10.1093/nar/gkaa467
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1042/CS20190587
https://doi.org/10.3390/ijms19030750
https://doi.org/10.1073/pnas.1808834116
https://doi.org/10.20517/cdr.2020.54
https://doi.org/10.3390/cancers13194960
https://doi.org/10.1109/TCBB.2022.3191972
https://doi.org/10.1109/TCBB.2022.3191972
https://doi.org/10.3390/jpm12060885
https://doi.org/10.1016/j.jbi.2019.103358
https://doi.org/10.1186/s12918-019-0700-4


Page 13 of 13Zhai et al. Lipids in Health and Disease           (2023) 22:39 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	36.	 Goedeke L, Rotllan N, Canfrán-Duque A, Aranda JF, Ramírez CM, Araldi 
E, et al. MicroRNA-148a regulates LDL receptor and ABCA1 expression 
to control circulating lipoprotein levels. Nat Med. 2015;21(11):1280–9. 
https://​doi.​org/​10.​1038/​nm.​3949.

	37.	 Wagschal A, Najafi-Shoushtari SH, Wang L, Goedeke L, Sinha S, DeLemos 
AS, et al. Genome-wide identification of microRNAs regulating choles-
terol and triglyceride homeostasis. Nat Med. 2015;21(11):1290–7. https://​
doi.​org/​10.​1038/​nm.​3980.

	38.	 Nayak B, Khan N, Garg H, Rustagi Y, Singh P, Seth A, et al. Role of 
miRNA-182 and miRNA-187 as potential biomarkers in prostate cancer 
and its correlation with the staging of prostate cancer. Int Braz J Urol. 
2020;46(4):614–23. https://​doi.​org/​10.​1590/​S1677-​5538.​IBJU.​2019.​0409.

	39.	 Zhu M, Wang Q, Zhou W, Liu T, Yang L, Zheng P, et al. Integrated analysis 
of hepatic mRNA and miRNA profiles identified molecular networks and 
potential biomarkers of NAFLD. Sci Rep-UK. 2018;8(1):7628. https://​doi.​
org/​10.​1038/​s41598-​018-​25743-8.

	40.	 Li Y, Cen C, Liu B, Zhou L, Huang X, Liu G. Overexpression of circ PTK2 
suppresses the progression of nonalcoholic fatty liver disease via the miR-
200c/SIK2/PI3K/Akt axis. Kaohsiung J Med Sci. 2022;38(9):869–78. https://​
doi.​org/​10.​1002/​kjm2.​12568.

	41.	 Alhasan AH, Scott AW, Wu JJ, Feng G, Meeks JJ, Thaxton CS, et al. Circulat-
ing microRNA signature for the diagnosis of very high-risk prostate 
cancer. P Natl Acad Sci USA. 2016;113(38):10655–60. https://​doi.​org/​10.​
1073/​pnas.​16115​96113.

	42.	 Lei L, Zhou C, Yang X, Li L. Down-regulation of microRNA-375 regulates 
adipokines and inhibits inflammatory cytokines by targeting AdipoR2 in 
non-alcoholic fatty liver disease. Clin Exp Pharmacol P. 2018;45(8):819–31. 
https://​doi.​org/​10.​1111/​1440-​1681.​12940.

	43.	 Jin W, Fei X, Wang X, Chen F, Song Y. Circulating miRNAs as Biomarkers for 
Prostate Cancer Diagnosis in Subjects with Benign Prostatic Hyperplasia. J 
Immunol Res. 2020:5873056. https://​doi.​org/​10.​1155/​2020/​58730​56.

	44.	 Benoist GE, van Oort IM, Boerrigter E, Verhaegh GW, van Hooij O, Groen L, 
et al. Prognostic value of novel liquid biomarkers in patients with meta-
static castration-resistant prostate cancer treated with enzalutamide: a 
prospective observational study. Clin Chem. 2020;66(6):842–51. https://​
doi.​org/​10.​1093/​clinc​hem/​hvaa0​95.

	45.	 Konoshenko MY, Lekchnov EA, Bryzgunova OE, Zaporozhchenko IA, Yar-
moschuk SV, Pashkovskaya OA, et al. The panel of 12 cell-free MicroRNAs 
as potential biomarkers in prostate neoplasms. Diagnostics. 2020;10(1):38. 
https://​doi.​org/​10.​3390/​diagn​ostic​s1001​0038.

	46.	 Mazzu YZ, Liao Y, Nandakumar S, Sjöström M, Jehane LE, Ghale R, et al. 
Dynamic expression of SNAI2 in prostate cancer predicts tumor progres-
sion and drug sensitivity. Mol Oncol. 2022;16(13):2451–69. https://​doi.​
org/​10.​1002/​1878-​0261.​13140.

	47.	 Jiang X, Chen Y, Du E, Yang K, Zhang Z, Qi S, et al. GATA3-driven expres-
sion of miR-503 inhibits prostate cancer progression by repressing 
ZNF217 expression. Cell Signal. 2016;28(9):1216–24. https://​doi.​org/​10.​
1016/j.​cells​ig.​2016.​06.​002.

	48.	 Wu L, Ling Z, Wang H, Wang X, Gui J. Upregulation of SCNN1A promotes 
cell proliferation, migration, and predicts poor prognosis in ovarian can-
cer through regulating epithelial-mesenchymal transformation. Cancer 
Biother Radiopharm. 2019;34(10):642–9. https://​doi.​org/​10.​1089/​cbr.​2019.​
2824.

	49.	 Chang J, Hu X, Nan J, Zhang X, Jin X. HOXD9-induced SCNN1A upregula-
tion promotes pancreatic cancer cell proliferation, migration and predicts 
prognosis by regulating epithelial-mesenchymal transformation. Mol 
Med Rep. 2021;24(5):819. https://​doi.​org/​10.​3892/​mmr.​2021.​12459.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1038/nm.3949
https://doi.org/10.1038/nm.3980
https://doi.org/10.1038/nm.3980
https://doi.org/10.1590/S1677-5538.IBJU.2019.0409
https://doi.org/10.1038/s41598-018-25743-8
https://doi.org/10.1038/s41598-018-25743-8
https://doi.org/10.1002/kjm2.12568
https://doi.org/10.1002/kjm2.12568
https://doi.org/10.1073/pnas.1611596113
https://doi.org/10.1073/pnas.1611596113
https://doi.org/10.1111/1440-1681.12940
https://doi.org/10.1155/2020/5873056
https://doi.org/10.1093/clinchem/hvaa095
https://doi.org/10.1093/clinchem/hvaa095
https://doi.org/10.3390/diagnostics10010038
https://doi.org/10.1002/1878-0261.13140
https://doi.org/10.1002/1878-0261.13140
https://doi.org/10.1016/j.cellsig.2016.06.002
https://doi.org/10.1016/j.cellsig.2016.06.002
https://doi.org/10.1089/cbr.2019.2824
https://doi.org/10.1089/cbr.2019.2824
https://doi.org/10.3892/mmr.2021.12459

	Lipid metabolism-related miRNAs with potential diagnostic roles in prostate cancer
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Introduction
	Materials and methods
	Data sources
	Identification of differentially expressed (DE)-LMRGs
	Specimens
	RNA extraction and qRT‒PCR
	Identification of DE-lipid metabolism-related miRNAs (DE-LMRMs)
	Identification and validation of key diagnostic miRNAs
	Establishment of a TF-miRNA‒mRNA network and prognostic analysis

	Results
	DE-LMRGs in PCa
	DE-LMRMs in PCa
	Identification and validation of key diagnostic miRNAs in PCa
	TF-miRNA‒mRNA network and prognostic analysis

	Discussion
	Comparisons with other studies and what does the current work add to the existing knowledge
	Study strengths and limitations

	Conclusions
	Anchor 25
	Acknowledgements
	References


