
R E S E A R C H Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Rong et al. Lipids in Health and Disease           (2023) 22:66 
https://doi.org/10.1186/s12944-023-01832-0

Lipids in Health and Disease

*Correspondence:
Zhixun Bai
zhixunbai@zmu.edu.cn
Bei Shi
shibei2147@163.com

Full list of author information is available at the end of the article

Abstract
Background Myocardial infarction (MI) and post-MI-heart failure (pMIHF) are a major cause of death worldwide, 
however, the underlying mechanisms of pMIHF from MI are not well understood. This study sought to characterize 
early lipid biomarkers for the development of pMIHF disease.

Methods Serum samples from 18 MI and 24 pMIHF patients were collected from the Affiliated Hospital of 
Zunyi Medical University and analyzed using lipidomics with Ultra High Performance Liquid Chromatography 
and Q-Exactive High Resolution Mass Spectrometer. The serum samples were tested by the official partial least 
squares discriminant analysis (OPLS-DA) to find the differential expression of metabolites between the two groups. 
Furthermore, the metabolic biomarkers of pMIHF were screened using the subject operating characteristic (ROC) 
curve and correlation analysis.

Results The average age of the 18 MI and 24 pMIHF participants was 57.83 ± 9.28 and 64.38 ± 10.89 years, 
respectively. The B-type natriuretic peptide (BNP) level was 328.5 ± 299.842 and 3535.96 ± 3025 pg/mL, total 
cholesterol(TC) was 5.59 ± 1.51 and 4.69 ± 1.13 mmol/L, and blood urea nitrogen (BUN) was 5.24 ± 2.15 and 7.20 ± 3.49 
mmol/L, respectively. In addition, 88 lipids, including 76 (86.36%) down-regulated lipids, were identified between the 
patients with MI and pMIHF. ROC analysis showed that phosphatidylethanolamine (PE) (12:1e_22:0) (area under the 
curve [AUC] = 0.9306) and phosphatidylcholine (PC) (22:4_14:1) (AUC = 0.8380) could be potential biomarkers for the 
development of pMIHF. Correlation analysis showed that PE (12:1e_22:0) was inversely correlated with BNP and BUN, 
but positively correlated with TC. In contrast, PC (22:4_14:1) was positively associated with both BNP and BUN, and 
was negatively associated with TC.
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Background
Heart failure (HF) is a complex clinical syndrome char-
acterized by abnormal cardiac structure and function, 
which can impede ventricular filling and the discharge 
of blood into systemic circulation. Fibrosis is one of the 
most important contributors to tissue stiffness and dys-
function as it leads to low ventricular filling or reduced 
pumping of blood [1, 2]. The prevalence of HF has 
increased by 44% in the past 15 years and it is estimated 
that 1.3% (13.7 million) of adults in China are affected by 
it [3]. Myocardial infarction (MI), one of the early mani-
festations of HF, causes myocardial cell necrosis, which 
exacerbate HF. The incidence of post-MI-heart failure 
(pMIHF) among patients hospitalized for MI ranges from 
14 to 36% according to various studies [4]. Moreover, 
comorbidities including coronary artery disease (CAD), 
diabetes, and hypertension may be crucial in the devel-
opment and management of pMIHF. Despite advances in 
medical therapy, patients with HF generally have a poor 
prognosis and high mortality rates [5].

Evaluation of myocardial infarction, atrial or ventricu-
lar arrhythmias, and deteriorating renal function should 
be the focus of the initial heart failure examination. The 
workups should at a minimum include an electrocardio-
gram, assessment of type b-natriuretic Peptide (BNP) 
levels, chest x-rays, troponin level assessment, and a 
transthoracic echocardiogram [6]. HF is often associated 
with a decrease in the fraction of left ventricular volume 
ejected per beat (LVEF) [7], and thus, early detection is 
crucial for HF treatment. BNP levels have been found to 
be proportional to the severity of HF and are an estab-
lished HF predictor [8]. Therefore, screening similar 
early biomarkers could be helpful for the clinical diag-
nosis and prognosis of pMIHF patients [9]. However, the 
clinical application of biomarkers is limited by detection 
methods, unknown responses to drugs, and susceptibil-
ity to noncardiogenic factors [10]. Current biomarkers 
are mainly focused on diagnosis and evaluation of the 
prognosis of HF, and biomarkers capable of provide early 
warning are limited. Thus, it is crucial to identify novel 
biomarkers that could provide an early warning of 
pMIHF development.

Cardiac lipid overload leads to increased destructive 
levels of reactive oxygen species (ROS). These disrupt 
normal mitochondrial structures by changing the activity 
of several important proteins that help control mitochon-
drial size and shape, which may impair energy produc-
tion and compromise cardiac function.

Plasma lipidomic signatures reflect altered character-
istics of cardiac lipid metabolism, which can lead to a 
predisposition to HF in vivo. Moreover, metabolic disor-
ders of lipids are related to HF accompanying CAD and 
diabetes [11]. Lipid biomarkers, with great potential for 
pMIHF diagnosis have been identified. Metabolomics is 
a novel tool that can be used to systematically explore 
the metabolic program of organisms. Due to its high-
throughput nature, it is ideal for screening HF-related 
biomarkers [12]. Lipidomics, an important branch of 
metabolomics, is a powerful tool to detect early lipid 
markers. Lipidomics can facilitate biomarker screening, 
thereby helping to elucidate the pathophysiology of HF 
[13, 14]. The biomarkers ceramide (Cer) (16:0), phospha-
tidylcholine (PC) (32_0), oxidized cholesterol (7-keto-
cholesterol), lysophosphatidylcholine (LPC) (18:2), and 
cholesteryl ester (18:1) were found significantly associ-
ated with BNP, left ventricular ejection fractions, and HF 
risk [11, 15, 16]. However, early detection lipid biomark-
ers for pMIHF diagnosis are still unexplored. Therefore, 
lipidomics could be utilized to elucidate HF pathogenesis 
and identify new biomarkers for HF complicated by MI.

In this study, a ultra-high performance liquid chroma-
tography (UHPLC)-Q-Exactive MS lipidomic approach 
was adopted to screen for early warning biomarkers in 
patients with pMIHF. First, the endogenous serum differ-
ential metabolites of patients with pMIHF were screened, 
and a metabolic network map of the HF development 
process was constructed. Univariate and multiple factor 
statistical evaluation methods were used to evaluate lipid 
biomarkers in patients with pMIHF.

Materials and methods
Patient population
This study was approved by the Ethical Evaluation Com-
mittee of the Affiliated Hospital of Zunyi Medical Uni-
versity (ZMU [2022] 1-177) and was designed using a 
case-control method. The patients provided informed 
consent for lipid analysis. The study included 42 patients 
who were diagnosed with either MI (18) or pMIHF (24). 
MI was defined according to a previous description, and 
pMIHF was defined as newly diagnosed HF after admis-
sion [17]. Plasma was collected on the first day after 
admission. Informed consent was obtained from all sub-
jects prior to receiving percutaneous coronary interven-
tion (PCI) and blood sample collection.

Conclusions Several lipid biomarkers were identified that could potentially be used to predict and diagnose patients 
with pMIHF. PE (12:1e_22:0) and PC (22:4_14:1) could sufficiently differentiate between patients with MI and pMIHF.
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Lipidomics analysis of serum samples
Lipids in the serum samples were detected by Shanghai 
Applied Protein Technology Inc.

Total lipid extraction
Human serum samples were vortexed after adding 200 
µL of water and 800 µL of MTBE. Subsequently, 240 µL 
of precooled methanol was added to the mixture and 
vortexed for 30  s. The mixture was subjected to ultra-
sound for 20 min at 4 ℃ and left undisturbed for 30 min 
at room temperature. The solution was then centrifuged 
for 15 min at 14,000 g (10 °C), and the upper organic sol-
vent layer was collected and dried under nitrogen. Subse-
quently, 200 µL of 90% isopropanol/acetonitrile solution 
was added for re-solubilization, followed by vortexing. 
Thereafter, 90 µL of the re-solution solution was col-
lected and centrifuged for 15 min at 14,000 g (10 °C), and 
the supernatant was collected for LC-MS analysis.

Metabolomics analysis
The samples were analyzed using an LC-MS/MS sys-
tem (UHPLC, Nexera LC-30 A; MS, Q Exactive, Thermo 
Scientific™). The analytical conditions were as follows: 
UHPLC: column, Waters ACQUITY UPLC CSH C18 
(1.7 μm, 2.1 mm × 100 mm); column temperature, 45 °C; 
flow rate, 300 µL/min; solvent system, (acetonitrile/
water = 6:4, V1/V2, A): (acetonitrile/isopropanol = 1:9, 
V1/V3, B); and gradient program: 0–2  min, 30% B, fol-
lowed by 2–25  min, 30% B increasing linearly to 100%, 
and finally 25–35 min, 30% B. The autosampler tempera-
ture was 10 ℃.

UHPLC was used to separate the samples, and MS/
MS was used to analyze the results. Electrospray 
ionization(ESI) source conditions: heater temperature, 
300 °C; sheath gas flow rate, 45 arb; aux gas flow rate, 15 
arb; sweep gas flow rate, 1 arb; spray voltage, 3.0 kV; cap-
illary temperature, 350 °C; S-lens RF level, 50%; and MS1 
scan ranges, 200–1800. The mass-to-charge ratios of the 
lipid molecules and lipid fragments were determined 
according to the following conditions: ten fragment pro-
files were acquired after each full scan (MS2 scan, HCD). 
MS1 and MS2 had a resolution of 70,000 at M/Z 200 and 
17,500 at M/Z 200, respectively.

Raw data preprocessing
Raw data were processed using the LipidSearch software 
(Thermo Scientific™) for peak identification, peak extrac-
tion, and lipid identification (secondary identification) of 
lipid molecules and internal standards. The main param-
eters were: precursor tolerance, 5 ppm; product toler-
ance, 5 ppm; and product ion threshold, 5%. Data were 
then extracted for quality evaluation and analysis. Quan-
titative statistics, composition analysis, and differential 
analysis were performed for lipid data analysis.

Multivariate statistical analysis
The SIMCA 14.1 software (Umea, Sweden) was used 
to analyze the final datasets, which contains informa-
tion about the peak number, sample name and normal-
ized peak area of multivariate analysis. Logarithmically 
transforming and scaling the data minimized the effect 
of noise and high variance. Principal component analy-
sis (PCA) was performed to visualize the sample dis-
tribution. Partial least-squares discriminant analysis 
(PLS−DA) was used to observe the distribution of groups.

Potential biomarker screening
Supervised orthogonal projections to latent structures-
discriminate analysis (OPLS−DA) was performed to 
visualize group separation and identify significantly dif-
ferential metabolites. To check the robustness and pre-
dictive ability of the OPLS−DA model, 200 permutations 
were performed. Potential biomarkers screening: variable 
importance in the projection (VIP) > 1, P < 0.05. Volcano 
plots, hierarchical clustering, and heat maps were used to 
directly observe the profile of potential biomarkers and 
evaluate the rationality of the differential lipids. Metabo-
Analyst [18] (http://www.metaboanalyst.ca/) was used 
for metabolic pathway enrichment analysis associated 
with potential biomarkers.

Integration analysis of biomarkers
To explore the potential biomarkers, analyses of uni-
variate receiver operating characteristic (ROC) and cor-
relation of key biomarkers post-HF-MI were performed 
using GraphPad Prism 9.0. The top five potential bio-
markers with highest fold change values in up- and 
down-regulation groups were identified. Potential bio-
markers involved in key metabolic processes were also 
screened. The Pearson correlation coefficient was used to 
analyze the correlation between two variables. Further-
more, correlation analysis was performed to elucidate the 
five potential biomarkers with higher AUC for TC, BNP, 
and BUN levels.

Statistical analyses
The baseline patient characteristics were summarized as 
mean ± standard deviation (SD) for continuous variables 
and frequency for categorical variables. All statistical 
analyses were performed with GraphPad Prism software 
(version 9.0). Data are presented as the mean ± SD or 
± SEM. Student’s t-test and one way analysis of variance 
(ANOVA) were used for comparisons. A p value of less 
than 0.05 was considered statistically significant.

Results
Baseline characteristics
Initially, 42 subjects, 18 with MI and 24 with pMIHF, 
were enrolled in the study. The baseline characteristics 

http://www.metaboanalyst.ca/
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and laboratory data are presented in Table  1. Notable 
differences were observed between the characteristics 
of the patients with MI and pMIHF. The mean age of 
patients with pMIHF (64.38 ± 10.89) was higher (P < 0.05) 
than that of patients with MI (57.83 ± 9.28). The BNP 
(3535.96 ± 3025.35 pg/mL) and BUN (7.20 ± 3.49 mmol/L) 
levels were increased in patients with pMIHF compared 
to those in patients with MI (BNP = 328.5 ± 299.842 pg/
mL, BUN = 5.24 ± 2.15 mmol/L) (P < 0.05). However, the 
TC levels in patients with pMIHF (4.69 ± 1.13 mmol/L) 
were lower than that in patients with MI (5.59 ± 1.51 
mmol/L) (P < 0.05).

Metabolomics analysis
Lipid composition analysis
The study detected 2,692 lipid species in all participants 
(Fig. 1a). The lipid subclass composition in patients with 
MI and pMIHF was dominated by PC and triglycerides 
(TG) (Fig. 1b). The detailed lipid subclass content (Fig. 2) 
showed that 12 lipid subclasses, including PE, DG, Cer, 
phSM, Hex1Cer, G3GNAc1, Co, OAHFA, PA, PS, SPH, 
and ST were significantly decreased (p < 0.01 or < 0.05) 
compared to those in the MI patients, whereas LSM was 
significantly increased (P < 0.05). These results indicate 
that these decreased and increased lipids can be potential 

biomarkers for pMIHF. Therefore these lipid subclasses 
should be focused on and further verified.

Multivariate statistical analysis
Metabolic profile changes were analyzed to observe the 
overall metabolic impact on the serum of patients with 
MI and pMIHF. First, the PCA score plot (Fig. 3a) showed 
that the metabolic profile of the serum of patients with 
pMIHF was disturbed when compared to that of patients 
with MI. Additionally, the internal group was likely to be 
aggregated, exhibiting a robust prediction performance; 
and there was no overfitting, suggesting that HF can 
induce metabolic disorders. Next, the OPLS-DA score 
plot (Fig. 3b) revealed a separation of the pMIHF group 
from the MI group. The samples from pMIHF patients 
appeared to be more gathered, suggesting that there were 
serious lipid metabolic disorders patients with pMIHF.

Screening of potential biomarkers
The OPLS−DA score plot (Fig. 3c) showed that the serum 
samples of the pMIHF group were more clustered and 
could be clearly distinguished from the MI group. In 
the permutation tests (Fig.  3d), on the left, the R2 and 
Q2 values were lower than those on the right. The R2 
was 0.0483 while the Q2 was − 0.4652, indicating that 
the models were available for further identification. The 

Table 1 Baseline characteristics of the heart failure patients
Terms MI (n = 18) HF(n = 24) P-value
Age, years 57.83 ± 9.28 64.38 ± 10.89 *, 0.047

Male/female 15(83.33%) 17(70.83%)

STEMI/NSTEMI 12(66.67%) 16(66.67%)

Thrombolytic therapy 3(16.67%) 1(4.17%)

BNP, pg/ml 328.5 ± 299.842 3535.96 ± 3025.35 ****,<0.0001

CK 755.56 ± 916.38 884.71 ± 1006.39 0.6714

CK-MB 78.17 ± 87.90 98.79 ± 129.06 0.563

Glucose, mmol/L 6.62 ± 2.63 7.36 ± 3.36 0.4461

TC, mmol/L 5.59 ± 1.51 4.69 ± 1.13 *, 0.0312

TG 2.04 ± 1.45 1.47 ± 0.82 0.1153

LDL-c, mmol/L 3.51 ± 1.03 3.02 ± 0.65 0.0681

WBC 10.49 ± 3.49 11.09 ± 2.30 0.5094

AST 87.61 ± 78.98 110.83 ± 112.36 0.45888

ALT 35.56 ± 19.73 33.625 ± 16.55 0.7323

SCr 73.22 ± 17.99 84.83 ± 30.69 0.1608

BUN 5.24 ± 2.15 7.20 ± 3.49 *, 0.0428

Heart rate, beats/min 76.28 ± 10.48 79.88 ± 14.10 0.3685

Smoke 16(88.89%) 14(58.33%)

Blood pressure, mm Hg

Systolic 128.11 ± 16.18 133.54 ± 32.03 0.5145

Diastolic 82.22 ± 12.53 78 ± 17.11 0.3824

Comorbidity

Diabetes mellitus (yes/no) 4(22.22%) 4(16.67%)

Hypertension (yes/no) 10(55.56%) 12(50%)

Hypercholesterolemia(yes/no) 11(61.11%) 12(50%)
Data presented as mean (standard deviation), median (interquartile range), or n (%)
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No. Metabolite VIP P-value Fold Change Type
1 CL(78:6) 1.117 2.65E-04 1.443 up

2 PC(22:4_14:1) 3.007 1.54E-04 1.292 up

3 WE(17:0) 2.978 2.32E-03 1.255 up

4 WE(19:0) 1.772 1.01E-02 1.217 up

5 SPH(d19:0) 1.759 1.08E-02 1.211 up

6 phSM(t38:6) 1.656 3.26E-02 1.174 up

7 SM(d38:4) 1.126 6.42E-03 1.169 up

8 PC(36:5) 1.271 3.11E-02 1.162 up

9 TG(18:3e_17:1_20:5) 1.481 5.31E-03 1.158 up

10 TG(18:1_18:2_18:3) 2.949 1.28E-02 1.150 up

11 TG(12:1e_22:6_22:6) 1.072 1.96E-02 1.130 up

12 TG(15:0_18:2_20:5) 1.975 3.39E-02 1.097 up

13 PC(16:1_18:1) 1.619 4.81E-02 0.883 down

14 PC(16:0_20:3) 2.314 1.22E-02 0.844 down

15 PC(16:0_20:3) 1.225 7.03E-03 0.841 down

16 Hex1Cer(t38:2 + O) 1.576 3.89E-04 0.836 down

17 TG(16:0_18:1_18:3) 4.139 2.62E-02 0.831 down

18 PI(18:0_20:4) 1.512 4.84E-03 0.825 down

19 TG(18:1_18:1_20:4) 2.157 4.42E-02 0.820 down

20 PC(36:2) 8.414 8.54E-05 0.812 down

21 TG(18:1_18:1_18:2) 3.369 1.04E-02 0.806 down

22 TG(18:1_18:1_18:1) 3.868 1.27E-02 0.803 down

23 PE(14:1e_23:1) 1.622 2.78E-02 0.801 down

24 PC(18:1_18:1) 2.212 6.62E-04 0.798 down

25 PC(18:0_16:0) 6.634 7.31E-05 0.796 down

26 LPC(18:0) 1.110 1.00E-02 0.789 down

27 PE(14:1e_23:0) 2.294 2.50E-02 0.789 down

28 SM(d20:0_24:4) 1.109 6.98E-03 0.786 down

29 phSM(t38:2) 1.615 1.10E-04 0.779 down

30 PC(18:0_18:1) 2.226 5.86E-03 0.769 down

31 Hex1Cer(t41:6) 2.366 1.04E-03 0.768 down

32 LPC(18:2) 1.013 4.93E-02 0.766 down

33 PC(18:0_20:3) 3.418 5.25E-03 0.761 down

34 TG(18:1_17:1_18:2 1.333 8.10E-03 0.756 down

35 TG(16:0_18:2_22:5) 2.626 1.13E-02 0.749 down

36 TG(20:1_18:1_18:2) 1.705 6.79E-03 0.747 down

37 PC(36:1e) 2.128 1.90E-02 0.746 down

38 LPC(20:3) 1.431 7.69E-03 0.735 down

39 TG(16:0_16:1_18:2) 4.056 3.24E-02 0.734 down

40 SM(d42:1) 2.105 2.99E-03 0.734 down

41 PC(8:1e_10:1) 2.630 4.17E-02 0.733 down

42 TG(18:1_18:1_18:3) 5.550 4.14E-03 0.732 down

43 LPC(20:5) 1.084 1.57E-02 0.729 down

44 PC(8:1e_12:4) 1.133 1.42E-02 0.721 down

45 Cer(m18:1_24:0 + O) 1.146 4.63E-03 0.718 down

46 Cer(d18:1_24:0) 1.114 5.95E-03 0.712 down

47 PC(34:3) 1.447 2.41E-02 0.712 down

48 phSM(t40:3) 2.239 1.14E-04 0.708 down

49 TG(18:2_17:1_18:2) 1.038 5.90E-03 0.703 down

50 PE(39:2e) 1.699 1.85E-03 0.703 down

51 PC(20:4e_24:0) 1.174 2.42E-03 0.698 down

52 DG(18:1_18:2) 1.421 1.86E-02 0.696 down

53 PC(20:2_18:2) 2.960 3.97E-03 0.696 down

Table 2 Potential biomarkers in serum of heart failure patients
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study further validated 88 potential biomarkers using 
the Shanghai Applied Protein Technology Inc. databases 
with VIP > 1 and P < 0.05 (Table  2). Among these, since 
the overall potential biomarkers were downregulated in 
pMIHF patients, other further validated potential bio-
markers indicated that 19 PCs (90.48%), 23 TGs (85.19%), 
and 12 PEs (100%) were downregulated in patients with 
pMIHF, suggesting that PC, TG, and PE may be novel 
biomarkers in pMIHF diagnosis.

Figure  4a shows a volcano plot displaying 12 upregu-
lated and 76 downregulated potential biomarkers. 
Among them, the content differences for each lipid sub-
class are represented in the bubble plot (Fig. 4b). Larger 
differences are indicated by large bubbles, PE and PC 
appeared to be more gathered. Next, the correlation 

analysis revealed that PC was most closely associated 
with other lipid subclasses, followed by PE (Fig.  4c). To 
better visualize the overall trend of potential biomark-
ers in the samples between pMIHF and MI groups, 
clustering analysis was performed to illustrate the chang-
ing trends in potential biomarker contents (Fig.  5). The 
results obtained suggested that most potential biomark-
ers decreased in patients with pMIHF, especially in PE, 
PC, and TG.

Metabolic pathway analysis
Pathway enrichment showed that eight metabolic path-
ways were disturbed in patients with pMIHF, and poten-
tial biomarkers were identified, including PE, PC, and Cer 
(Table  2). Among these pathways, glycerophospholipid 

No. Metabolite VIP P-value Fold Change Type
54 Co(Q10) 1.496 2.06E-03 0.692 down

55 PC(36:0) 8.042 1.90E-03 0.683 down

56 phSM(t40:3) 1.427 1.55E-03 0.662 down

57 TG(16:0_16:0_19:0) 3.522 2.77E-03 0.657 down

58 TG(18:3_18:2_20:4) 1.005 4.29E-02 0.646 down

59 TG(16:1_18:1_18:3) 6.524 3.70E-03 0.635 down

60 PE(18:2e_20:4) 1.097 7.22E-04 0.633 down

61 PE(18:1p_18:1) 1.210 5.73E-04 0.626 down

62 PE(18:1e_20:4) 1.529 3.06E-03 0.623 down

63 PE(16:0p_20:4) 1.149 9.76E-03 0.621 down

64 TG(18:1_14:0_18:3) 3.837 8.90E-03 0.619 down

65 TG(18:1_18:2_18:3) 5.848 8.69E-03 0.618 down

66 PE(16:1e_20:4) 1.063 2.22E-03 0.614 down

67 PE(18:1p_20:4) 1.553 7.77E-04 0.607 down

68 phSM(t38:3) 1.486 6.28E-03 0.590 down

69 TG(16:1_18:2_18:3) 3.005 5.31E-03 0.584 down

70 PE(18:1p_18:2) 1.173 3.35E-06 0.569 down

71 PC(16:0_18:1) 1.129 1.87E-02 0.567 down

72 PE(18:0p_20:4) 2.031 2.09E-03 0.567 down

73 TG(18:1_12:0_18:2) 2.089 3.64E-02 0.547 down

74 TG(18:3_18:2_18:3) 1.311 1.82E-02 0.544 down

75 TG(12:0_18:2_18:2) 1.182 2.14E-02 0.536 down

76 TG(18:2_14:1_18:2) 2.116 1.02E-02 0.528 down

77 PE(12:1e_22:0) 1.366 9.80E-07 0.498 down

78 TG(10:0_18:1_18:1) 1.231 4.57E-02 0.495 down

79 TG(6:0_11:1_18:2) 1.192 4.47E-03 0.471 down

80 PC(38:7) 1.062 6.84E-03 0.446 down

81 PC(38:5e) 1.979 8.44E-04 0.437 down

82 TG(18:3_18:2_20:5) 1.931 9.17E-03 0.435 down

83 SPH(d16:0) 1.804 9.68E-04 0.403 down

84 SiE(16:0) 1.779 3.52E-06 0.396 down

85 PC(34:3) 3.710 1.11E-02 0.299 down

86 DG(32:0e) 1.489 2.07E-02 0.240 down

87 SPH(t16:0) 1.812 1.53E-03 0.142 down

88 PA(44:5) 2.468 2.49E-02 0.117 down
Abbreviations: Phosphatidylcholine (PC), Phosphatidylethanolamine (PE), Lysophosphatidylcholine (LPC), Phosphatidate (PA), Sphingomyelin (SM), Ceramide (Cer), 
Cyclosin (CL), diglyceride (DG), Sphingosine (SPH), Triglyceride (TG), Co(Coenzyme Q10), Hexaoxacyclooctadecane (Hex1Cer), phosphatidylinositol (PI).

Table 2 (continued) 
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and sphingolipid metabolism (P < 0.05) were identified 
as core pathways in pMIHF with higher impact values 
(> 0.1). Seven decreased lipid subclasses were involved 
in the above metabolic pathways (Fig. 6). In sphingolipid 
metabolism, Sphingosine (SPH), Ceramide (Cer), and 
Sphingomyelin(SM) were decreased, further implying 
that Cer and SM could inhibit sphingomyelin synthase 
metabolism. In glycerophospholipid metabolism, PE, PC, 
phosphatidate (PA), and 1-Acly-sn-glycero-3-phospho-
chline (LPC) were decreased, PC could inhibit sphingo-
myelin synthase metabolism. The results revealed that 
the inhibition of lipid metabolism may play a key role 
in pMIHF disease progression, suggesting that down-
regulated lipids metabolites may be a novel biomarker in 
pMIHF diagnosis.

Integrative analysis of biomarkers
Due to the inhibition of lipid metabolism, a total of 14 
potential biomarkers involved in glycerophospholipid and 
sphingolipid metabolism were analyzed for further verifi-
cation. Relatively high AUC (A) values showed excellent 
predictive power for potential biomarkers in patients 
with pMIHF. ROC curves (Fig. 7) indicated that phospha-
tidate (PA; 44:5; A = 0.9630), PE (12:1e_22:0; A = 0.9306), 
SiE (16:0; A = 0.8727), PC (22:4_14:1; A = 0.8380), cyclo-
sin (CL(78:6); A = 0.8102), Cer (d18:1_24:0; A = 0.7477), 
PC(34:3; A = 0.7431), SPH(t16:0; A = 0.7431), SM(d42:1; 
A = 0.7292), and LPC(20:3; A = 0.7222) were the top ten 
potential biomarkers with the highest A values.

Then top five potential biomarkers were used for cor-
relation analysis (Fig.  8). The results demonstrated that 
most of these components were negatively correlated. Of 

Fig. 1 Lipid subclass (a) molecular numbers and lipid subclass composition of patients with (b) post-myocardial infarction heart failure (pMIHF) and (c) 
myocardial infarction (MI).
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these, PC (22:4_14:1) and CL (78:6) were positively cor-
related with BNP (r = 0.4957 and r = 0.3247, respectively) 
and BUN (r = 0.4521 and r = 0.3614, respectively), but 
negatively correlated with TC (r = − 0.3620, r = − 0.5700). 
In contrast, PE (12:1e_22:0), PA (44:5), and Sie (16:0) 
were positively correlated with TC (r = 0.5020) and 
negatively correlated with BNP (r = − 0.4258) and BUN 
(r = − 0.3006). However, PA (44:5) and Sie (16:0) had no 
statistical significance. Notably, PE and PC are involved 
in glycerophospholipid metabolism, which may play a 
key role in pMIHF disease progression. In summary, the 
biomarker panels for PE (12:1e_22:0) and PC (22:4_14:1) 
could sufficiently differentiate between patients with MI 
and pMIHF when analyzed using ROC and correlation 
analysis.

Discussion
The mechanisms that lead to pMIHF are currently being 
elucidated. Considering the unique role of lipid disorders 
in the pathogenesis of pMIHF, there is substantial inter-
est in understanding the changes in lipid metabolism 
pathways as this may aid in biomarker screening. Accord-
ingly, lipidomics assays were used to delineate the meta-
bolic profiles of numerous lipids and elucidate the lipid 
characteristics associated with pMIHF, thus, providing 
reference data for the identification of early diagnos-
tic biomarkers. pMIHF disease lacks early biomarkers 
for diagnosis, and lipidomics analysis of pMIHF serum 
samples has not confirmed any novel biomarkers. There 
is an urgent need to discover new lipid markers that can 
enable the early diagnosis of pMIHF and provide a pow-
erful aid in the clinical management and prognosis of 

Fig. 2 Differences of lipid subclass levels in serum between patients with post-myocardial infarction heart failure (pMIHF) and myocardial 
infarction (MI). (Compared to MI, P*<0.05, P**<0.01, MI = 18, pMIHF = 24)

 



Page 9 of 17Rong et al. Lipids in Health and Disease           (2023) 22:66 

patients with pMIHF. In this study, 18 MI patients and 
24 pMIHF patients were subject to metabolic profile 
analysis to determine potential biomarkers and metabolic 
pathway disorders. ROC and correlation analysis were 
utilized to analyze the metabolic profile results and indi-
cate potential biomarkers for pMIHF diagnosis.

Baseline characteristics analysis
In this study, 42 subjects were included in the serum 
lipidomic analysis. The baseline characteristics demon-
strated that patient age and BNP, BUN, and TC levels 
were significantly different between the MI and pMIHF 
groups, indicating that elderly patients with MI and renal 
function impairment may be more susceptible to HF.

Aging is a major risk factor for HF, and a sizeable per-
centage of elderly patients with HF have cardiac amy-
loidosis, which is an HF precipitator [19, 20]. BNP is 
an endogenous cardiac peptide and an established HF 
predictor, whose levels are proportional to the sever-
ity of HF [21]. In addition, patients with HF should be 
monitored for changes in BNP levels over the first month 
after discharge since they are a useful prognostic indi-
cator of rehospitalization [22] [23]. Relatively high BNP 
levels in chronic kidney disease is a major player in the 
heart-renal connection [24]. Our results demonstrated 
that BNP and BUN levels are elevated in patients with 
pMIHF. Conversely, TC has been suggested to increase 
the risk of CAD [25], and our results showed that TC lev-
els were low in patients with pMIHF. Furthermore, low 

Fig. 3 Multivariate statistical analysis between post-myocardial infarction heart failure (pMIHF) and myocardial infarction (MI). (a) Principal component 
analysis (PCA) Plot, (b) partial least-squares discriminant analysis (PLS-DA) Plot, (c) orthogonal projections to latent structures-discriminate analysis (OPLS-
DA) score Plot, and (d) permutation test (200 cycles) of the MI group and HF group (MI = 18, pMIHF = 24).
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serum TC levels can be a predictor of adverse outcomes 
that disproportionately affect advanced HF patients [26–
28]. Increased BNP and BUN levels are commonly used 
as indicators to predict HF. Therefore, a reduction in TC 
can also serve as a prognostic indicator of the dynamic 
changes occurring during pMIHF development.

Lipid disorders
A total of 88 lipids, including 76 (86.36%) downregulated 
lipids, were detected between 18 patients with MI and 
24 patients with pMIHF. Lipids are inhibited in patients 
with pMIHF, leading to disorders in glycerophospholipid 

Fig. 4 Potential biomarkers visualization analysis in post-myocardial infarction heart failure (pMIHF). (a) volcano plot (potential biomarkers fold 
change(FC)>1.5 or FC<0.67, and P<0.05 were presented in red), (b) differences of lipid subclass bubble plot (bubble size represents the significance of 
the difference), and (c) chord plot of lipid subclass
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Fig. 5 Dysregulated lipids revealed by lipidomics in post-myocardial infarction heart failure (pMIHF). (Rows: potential biomarker; columns: sam-
ples; red color represents high metabolite content, while blue refers to low metabolite content)
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Fig. 6 Brief lipid metabolism pathways with post-myocardial infarction heart failure (pMIHF) patients
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Fig. 7 ROC analysis revealed candidate biomarkers for post-myocardial infarction heart failure (pMIHF) diagnosis. (AUC, 95% confidence inter-
vals, grouped scatter plots, and cutoff values are also shown)
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Fig. 8 Correlation analysis of biochemical indicators and dysregulated lipids in post-myocardial infarction heart failure (pMIHF) patients. a–e 
Scatter plots presenting the relationship between the BNP/BUN/TC and the intensity of PA, PE, SiE, PC, and CL. (Pearson r and P value were shown. Groups 
were presented in different colors)
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and sphingolipid metabolism. The total levels of PE, PC, 
and TG were decreased in patients with pMIHF.

Lipids are a critical component of the membrane and 
play an essential role in energy storage and metabolism 
[29]. TG-rich lipoprotein are known to cause lipotoxic 
cardiomyopathy and cardiac steatosis [30]. Progres-
sively higher TG concentrations are associated with a 
progressively higher risk of HF and MI [31, 32]. PC is a 
key source of bioactive eicosanoids, including leukotri-
enes, prostaglandins, and lipoxins, which increase free 
fatty acid accumulation and inflammation. Mammalian 
cells mainly contain Pes in their plasma and mitochon-
drial membranes [33]. Molecular PC/PE ratios influence 
mitochondrial energy metabolism and contribute to dis-
ease progression in cells [34]. In the present study, 19 
PCs (90.48%), 23 TGs (85.19%), and 12 PEs (100%) were 
downregulated, which may contribute to lipotoxic car-
diomyopathy, disruptions to mitochondrial function, and 
inflammation in patients with HF and subsequent MI-
associated lipotoxic cardiomyopathy.

Potential lipid biomarkers
To better screen for early warning biomarkers of pMIHF, 
several lipid biomarkers were identified for ROC analysis. 
Based on the ROC results, significant biomarkers were 
further subjected to correlation analyses with TC, BUN, 
and BNP levels. PA (44:5), PE (12:1e_22:0), SiE (16:0), PC 
(22:4_14:1), and CL (78:6) showed higher AUC values. 
PAs are bioactive lipids that are activated by a variety of 
inflammatory mediators, including bradykinin, ATP, and 
glutamate; PAs also contribute to the modulation of car-
diac contractility [35]. Our results showed that PA lipid 
content was the lowest in patients with pMIHF.

Correlation analysis showed that PC (22:4_14:1), PE 
(12:1e_22:0), and CL (78:6) were strongly correlated with 
TC, BUN, and BNP. Notably, PC and PE are involved in 
key glycerophospholipid and sphingolipid metabolism 
pathways. PC disorders can disturb myocardial metab-
olism and cellular signaling [36]. Thus, PCs, particu-
larly, the metabolism of PCs in the failing heart may be 
associated with alterations in myocardial lipid homeo-
stasis [37]. PC (20:0/18:4), PC (20:4/20:0), PC (40:4), 
PC (20:4/18:0),and PC (34:4) were increased, whereas 
PC(32_0), PC(C34:4), and PC (36:5) were decreased 
in HF, thus giving PC a diagnostic value for HF similar 
to that of BNP [11, 38, 39]. PE levels are significantly 
increased in serum and cardiac samples during HF [16, 
40], and PE (O-18:1(1Z)/20:4(5Z,8Z,11Z,14Z)) levels can 
be improved by higenamine in doxorubicin-induced HF 
rats [41]. This study observed the upregulation of PC 
(22:4_14:1) and downregulation of PE (12:1e_22:0), which 
exhibited a close correlation with the indicators of HF, 
including BNP. Therefore, PC and PE may be key poten-
tial biomarkers in patients with HF with subsequent MI. 

The study also showed a positive correlation between 
pMIHF and mortality among patients with MI.

It is important to keep in mind that optimal manage-
ment of patients with pMIHF depends on the time since 
their infarction began. Patients with pMIHF show poor 
prognosis. An observational study of 4,825 in-hospital 
deaths among patients who suffered non-ST-segment 
elevation MIs in Canada from 1999 to 2003 found that 
the presence of HF on admission significantly increased 
in-hospital mortality [42]. HF complicated by MI 
requires early intervention owing to its high mortality 
rate. However, early detection is hindered due to the lack 
of accurate biomarkers for the disease. This makes the 
treatment challenging. There are two emerging biomark-
ers for ischemic cardiomyopathy: angiopoietin-2 and 
thrombospondin-2, that are now used in addition to BNP 
and cardiac troponin [43]. Additionally, miRNAs contrib-
ute significantly to the exploration of novel pMIHF bio-
markers for future applications [44]. Higher circulating 
LIPCAR levels have been found in patients with pMIHF 
[45]. Our study has revealed several specific lipid disor-
ders in patients that were highly related to clinical diag-
nosis indicators. The emergence of lipidomics tools have 
rapidly improved the process of discovery of biomarkers. 
Thus, the upregulation of PC (22:4_14:1) and downregu-
lation of PE (12:1e_22:0) provides a novel perspective 
from which to explore potential serum lipid biomarkers 
in patients.

Strengths and limitations
This study has several strengths. First, the study success-
fully obtained potential serum lipid profiles using the 
UHPLC-Q-Exactive MS lipidomics approach, to screen 
the metabolic differences between patients with MI and 
pMIHF, and combine this analysis with ROC analysis. 
Second, correlation analysis revealed that PC (22:4_14:1) 
and PE (12:1e_22:0) were highly correlated with BNP, and 
could, thus, be used as novel biomarkers for early heart 
failure diagnosis.

This study also had several limitations. First, targeted 
lipidomic analysis was not performed. Second, the sam-
ple size of clinical samples was not sufficiently large and 
wasn’t externally validated. Finally, middle-aged to older 
people were obtained individually for detection in this 
study. Future studies should use integrative untargeted 
and targeted metabolomics and lipidomics to study 
potential differences between disease groups. Multi-
center studies involving other races, ethnicities, and cul-
tures within Asia are also needed with a larger sample 
size to corroborate our results. These findings should 
also be externally validated to identify their generaliz-
ability by combining proteomics, metabolomics, lipido-
mics, and urine analysis to specifically identify potential 
biomarkers.
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Conclusions
This study revealed distinct lipid metabolites and lipido-
mic patterns in an independent cohort that were signifi-
cantly associated with future risk of developing pMIHF. 
The results of this study suggest that PC (22:4_14:1) and 
PE (12:1e_22:0) are potential predictors for the devel-
opment of HF after MI. Thus, the study provided a new 
strategy for the prevention of HF by identifying biomark-
ers for the development of HF after MI. The search for 
and identification of metabolic pathways and biomark-
ers reflecting early changes after MI will not only help to 
enhance the understanding of the developmental mecha-
nisms of HF after MI, but also provide a theoretical basis 
for the early diagnosis, risk prediction, and prevention 
strategies for cardiogenic shock.
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