
R E S E A R C H Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Pan et al. Lipids in Health and Disease           (2023) 22:96 
https://doi.org/10.1186/s12944-023-01864-6

Lipids in Health and Disease

†Xue Pan, Jifeng Liu and Lei Zhong contributed equally to this work 
and share first authorship.

*Correspondence:
Chaosheng Liu
lcs19981217@163.com
Jing Gao
875906558@qq.com
Min Pang
ywkpangmin@163.com

Full list of author information is available at the end of the article

Abstract
Background Atherosclerosis is now the main cause of cardiac-cerebral vascular diseases around the world. 
Disturbances in lipid metabolism have an essential role in the development and progression of atherosclerosis. 
Thus, we aimed to investigate lipid metabolism-related molecular clusters and develop a diagnostic model for 
atherosclerosis.

Methods First, we used the GSE100927 and GSE43292 datasets to screen differentially expressed lipid metabolism-
related genes (LMRGs). Subsequent enrichment analysis of these key genes was performed using the Metascape 
database. Using 101 atherosclerosis samples, we investigated the LMRG-based molecular clusters and the 
corresponding immune cell infiltration. After that, a diagnostic model for atherosclerosis was constructed using 
the least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression. Finally, a series of 
bioinformatics techniques, including CIBERSORT, gene set variation analysis, and single-cell data analysis, were used to 
analyze the potential mechanisms of the model genes in atherosclerosis.

Results A total of 29 LMRGs were found to be differentially expressed between atherosclerosis and normal samples. 
Functional and DisGeNET enrichment analyses indicated that 29 LMRGs are primarily engaged in cholesterol and lipid 
metabolism, the PPAR signaling pathway, and regulation of the inflammatory response and are also closely associated 
with atherosclerotic lesions. Two LMRG-related molecular clusters with significant biological functional differences 
are defined in atherosclerosis. A three-gene diagnostic model containing ADCY7, SCD, and CD36 was subsequently 
constructed. Receiver operating characteristic curves, decision curves, and an external validation dataset showed that 
our model exhibits good predictive performance. In addition, three model genes were found to be closely associated 
with immune cell infiltration, especially macrophage infiltration.
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Introduction
Cardiac-cerebral vascular disorders (CCVDs) pose a 
severe hazard to human health, especially for the popu-
lation over the age of 50 [1]. One of the world’s big-
gest causes of death, CCVDs, which are predominantly 
caused by atherosclerosis (AS), claim 15  million lives 
annually [2]. Endothelial dysfunction is the beginning of 
the complex inflammatory disease AS, which progresses 
to plaque production, instability, and rupture after aber-
rant immune and tissue repair responses [3]. Due to the 
progressive nature of atherosclerotic plaque formation 
and the fact that many risk factors are modifiable, there 
is a window of opportunity for presymptomatic recog-
nition. However, intervention is usually not performed 
until symptoms occur, even at the onset of CCVD. There-
fore, there is an urgent need to develop advanced molec-
ular biomarkers for early diagnosis of AS.

The function of lipids has drawn more attention over 
the lengthy history of research on AS. The findings of 
multiple investigations demonstrate the various roles 
played by lipids in atherogenesis. Lipids are essential 
components of biological membranes and other cell 
structures, including phospholipids, fatty acids, triglyc-
erides, sphingolipids, cholesterol, and cholesteryl esters 
[4]. Modern theories view AS as a condition marked by 
an excessive buildup of lipids in the artery wall and a 
disturbed balance between the systems involved in the 
onset and resolution of inflammation. It has also been 
suggested that AS begins with the accumulation of Apo 
B-containing lipoproteins in the arterial intima, accom-
panied by the activation of endothelial cells and the 
recruitment of leukocytes, especially monocytes, and 
leads to the accumulation of cells, extracellular matrix 
and lipids in the arterial intima [5]. Meanwhile, targeting 
lipid metabolism is a major approach to managing and 
preventing AS [6]. Thus, it is promising to explore the 
molecular subtypes of AS patients based on lipid metab-
olism-related genes (LMRGs) and to construct new diag-
nostic biomarkers.

In this study, we conducted the first systematic exami-
nation of the differentially expressed LMRGs and immu-
nological features between normal and AS patients. Next, 
101 AS patients were separated into two lipid metabo-
lism-related clusters based on the 29 DE-LMRG expres-
sion landscapes, and immune cell infiltration and crucial 
pathway differences between the two groups were exam-
ined further. Three LMRGs (ADCY7, CD36, and SCD) 
were discovered as diagnostic models by applying the 
least absolute shrinkage and selection operator (LASSO) 

and multivariable logistic regression. To validate the 
diagnostic model’s efficacy, receiver operating char-
acteristic (ROC) curve decision curve analysis (DCA) 
and external sets were utilized. Finally, we analyzed the 
biological characteristics of the three model genes and 
explored their correlation with immune cells. These 
results enhance our understanding of the mechanism of 
lipid metabolism and provide new strategies for the early 
diagnosis of AS.

Methods
Data preparation
Three datasets (GSE100927 [7], GSE43292 [8], and 
GSE28829 [9]) related to AS were obtained from the 
GEO database. Then, the GSE100927 and GSE43292 
datasets were combined as a training set for further 
analysis. The combat technique from the “SVA” package 
was utilized to rectify batch effects [10]. Meanwhile, the 
GSE28829 dataset was selected as the test cohort. The 
LMRGs were obtained from the Molecular Signature 
Database (MSigDB) [11]. The LMRG was further filtered 
by intersecting the differentially expressed genes (DEGs) 
of GSE100927 and GSE43292. DEGs between AS and 
normal samples were identified using the “limma” pack-
age with adjusted P < 0.05 and FC > 1.5 as criteria [12].

Analysis of functional enrichment
A comprehensive source for functional genomics is 
the Gene Ontology (GO) project [13]. The KEGG data-
base, which integrates genomic, chemical, and systemic 
functional information, is also commonly utilized when 
studying biological pathway data [14]. Using Metascape, 
a web-based portal created to offer an extensive gene list 
annotation and analysis resource for experimental biolo-
gists, functional and DisGeNET enrichment studies were 
carried out to examine the biological functions and path-
ways implicated in DE-LMRGs [15].

Unsupervised clustering of AS patients
We used the “ConsensusClusterPlus” R package to per-
form an unsupervised clustering analysis based on the 
expression profiles of DE-LMRGs [16], and we used the 
k-means technique with 1000 iterations to divide the AS 
samples into several groups. We set k to 9 and evaluated 
the appropriate cluster number based on the CDF curve, 
consensus matrix, and consistent cluster score.

Conclusions Our study comprehensively highlighted the intricate association between lipid metabolism and 
atherosclerosis and created a three-gene model for future clinical diagnosis.

Keywords Atherosclerosis, Lipid metabolism, Immune infiltration, Machine learning, Biomarkers, Molecular clusters
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Construction of the prognostic model based on DE-LMRGs
To avoid overfitting, we used a LASSO regression analy-
sis with the “glmnet” package, simplifying our model’s 
parameter [17]. We selected the relative parameters 
whose p values were less than 0.05 as the final parame-
ters of the prediction model after a multivariable logistic 
regression analysis of the LASSO regression-produced 
influencing factors using the “glm” function. The risk 
score was determined by multiplying each LMRG expres-
sion level (α) by a linear combination of the correspond-
ing coefficients (β). The area under the curve (AUC) of 
each receiver operating characteristic (ROC) curve was 
determined by applying the pROC package to R software 
to assess the model’s prediction accuracy [18]. Decision 
curve analysis (DCA), a novel tool, can be used to exam-
ine the applicability of this model on clinical net ben-
efit under various positive thresholds [19]. A nomogram 
assessing the prevalence of AS was developed using the 
“rms” R package [20]. Each predictor has a correspond-
ing score, and the “total score” is the result of adding all 
of the aforementioned predictors’ values together. To cal-
culate the nomogram model’s predictive power, a calibra-
tion curve was used.

Independent validation analysis
In addition, the GSE28829 dataset was used to validate 
the performance of the risk model to predict AS. The dif-
ferential expression of three model genes in AS and nor-
mal tissues was compared using the “limma” package. In 
addition, ROC, DCA, and calibration curves were con-
structed to verify the performance of the model in the 
validation set.

Immune Infiltration Analysis
The CIBERSORT algorithm and LM22 signature matrix 
were used to estimate the relative abundances of 22 dif-
ferent types of immune cells in each sample based on 
the prior gene expression data. An inverse fold product 
P value for each sample was calculated by CIBERSORT 
using Monte Carlo sampling. The definition of the accu-
rate immune cell fraction was limited to samples with P 
values < 0.05. The sum of the 22 immune cell proportions 
in each sample was 1[21]. The Wilcoxon test was used to 
analyze the differences in immune cells between different 
groups.

Gene set variation analysis (GSVA) and immune correlation 
analysis
GSVA enrichment analysis of each model gene was per-
formed using the “GSVA” R package [22]. Considered 
considerably altered if the |t| value of the GSVA score 
was greater than 2. The relationship between each model 
gene and immunochemical was assessed and plotted 
based on CIBERSORT results. When the P value was less 

than 0.05, the Spearman correlation coefficient found 
that there was a significant link. Finally, the findings were 
shown with the “corrplot” R tool.

Single-cell data analysis
We downloaded the GSE159677 dataset [23] for further 
analysis of model genes. The scRNA-seq data were pro-
cessed with the R package “Seurat” [24], including filtered 
cells and genes, t-distributed stochastic neighbor embed-
ding (t-SNE) and principal component analysis (PCA). 
Detection of marker genes for each cell cluster was per-
formed by the “FindAllMarkers” function of the R pack-
age “Seurat”. The R package “SingleR” [25] was applied 
to annotate the cell types in different cell clusters. The R 
package “CellChat“[26] was used for cell‒cell interaction 
analysis.

Results
Identification of AS DEGs
The whole study process is depicted in Fig. 1. First, dif-
ferential expression analysis was performed separately 
for the two AS datasets with adjusted P values less than 
0.05 and |(log2 FC)| greater than 0.585 (Fig. 2A and B). 
The DEGs of the two datasets and the collected LMRGs 
were subsequently intersected to obtain a total of 29 DE-
LMRGs (Fig.  2C). Among them, the expression levels 
of NPY1R, GNAI1, OXCT1, PTGER3, PRKAA2, NPR1, 
ALDH1B1, SORBS1, ACADL, and PRKG1 were lower, 
whereas HPGDS, PLTP, FABP5, CD36, LPL, PPARG, 
GLA, NCEH1, PLA2G7, LIPA, PTGS1, ADCY7, ALOX5, 
SCD, APOE, APOC1, SCARB1, CYP27A1, and PLD3 
gene expression levels were higher in AS than in normal 
samples (Fig.  2D). Figure  2E shows the position of DE-
LMRGs in the chromosome.

Functional enrichment analysis
To discover the potential functional relationship of 
these DE-LMRGs, we conducted a functional analysis 
of DE-LMRGs. PPI results showed that 29 genes were 
closely intertwined (Supplementary Fig.  1). The enrich-
ment analysis of the Metascape results revealed marked 
enrichment in cholesterol and lipid metabolism, the 
PPAR signaling pathway, and regulation of the inflamma-
tory response (Fig. 3A). Then, we found that these genes 
were strongly related to hyperlipidemia, hypercholester-
olemia, and atherosclerotic lesions (Fig.  3B). All of the 
above results supported these 29 DE-LMRGs for AS dis-
crimination. In addition, we utilized GSEA to investigate 
potential biological and functional differences between 
AS and normal samples (Fig. 3C and D).

Identification of LMRG-related clusters in AS
Using a consensus clustering technique, we categorized 
the AS samples according to 29 DE-LMRG expression 
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profiles to clarify the LMRG-related expression patterns 
in AS. The results were most stable when divided into 
two clusters (Fig.  4A and Supplementary Fig.  2). PCA 
revealed a significant distinction between the two groups 
(Fig. 4B).

To analyze the molecular distinctions between clusters, 
we examined the expression differences of 29 LMRGs 
between C1 and C2. PPARG, HPGDS, CD36, LPL, LIPA, 
PLA2G7, NCEH1, FABP5, GLA, PLTP, ADCY7, ALOX5, 
PTGS1, SCD, APOE, APOC1, SCARB1, CYP27A1, and 
PLD3 were highly expressed in the C1 cluster, while 

ALDH1B1, SORBS1, ACADL, GNAI1, NPY1R, OXCT1, 
NPR1, PTGER3, PRKAA2, and PRKG1 were highly 
expressed in the C2 cluster (Fig.  4C and D). We then 
compared the differences in immune cell infiltration 
between the two clusters. We found that C1 had a signifi-
cantly higher abundance of memory B cells, gamma delta 
T cells, M0 macrophages, and activated mast cells, and 
C2 had a significantly higher abundance of plasma cells, 
CD8 T cells, resting memory CD4 T cells, activated NK 
cells, monocytes, M2 macrophages, and resting mast 
cells (Fig.  4E F). Then, we utilized GSVA to investigate 

Fig. 2 Differentially expressed LMRGs. (A-B) Volcano plot for differentially expressed genes in (A) GSE100927 and (B) GSE43292. (C) Venn diagram show-
ing the 29 DE-LMRGs. (D) Heatmap showing 29 DE-LMRGs. (E) Location of LMRGs in chromosomes

 

Fig. 1 Flow chart of this study
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potential biological and functional differences between 
the two clusters. The results revealed that C2 was mainly 
enriched in some immune function-related pathways, 
while C1 was mainly involved in metabolism-related 
functions and pathways (Fig.  4G H). These results sug-
gest that AS patients can be classified into two subgroups 
with significantly different biological functions, especially 
immune responses, based on the expression of LMRGs.

Development and evaluation of the prognostic model
We then constructed AS prognostic models based on 
29 DE-LMRGs. Given that formulas including too many 
variables could result in overfitting and that genes could 
exhibit colinearity, we reduced the candidate genes to 
minimize bias in this diagnostic model. These genes were 
screened by LASSO regression, and when log(λ) is -4.38 

(based on lambda.min), the minimum deviation can be 
reached by relying on our model (Fig.  5A and B). Next, 
we analyzed these eight genes with logistic regression and 
found that only three key DE-LMRGs with a P value less 
than 0.05 were obtained: CD36, SCD, and ADCY7. As a 
result, the following formula was used to determine each 
patient’s risk score: Risk score = ADCY7 × (4.087018) + CD
36 × (1.813650) + SCD × (− 2.193757). The heatmap shows 
the expression levels of the three model genes (Fig. 5C). 
The expression of the three model genes was significantly 
higher in AS samples than in normal tissues (Fig. 5D-F). 
Interestingly, we discovered that SCD protects against 
AS but is elevated, which seems to be in conflict. This 
may be because SCD is not a driver of AS and cannot 
directly cause pathogenesis, and its expression may be 
influenced by other genes. Meanwhile, we investigated 

Fig. 3 Functional enrichment analysis (A) Functional enrichment analysis. (B) DisGeNET enrichment analyses. (C-D) GSEA for (C) normal and (D) AS 
samples
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the expression of gene mRNA. However, they ultimately 
function through the proteins they encode. Posttransla-
tional modifications, epigenetics, negative feedback, and 
other factors can change the amounts of mRNA and pro-
teins that are expressed.

In addition, we created an ROC curve to assess the 
diagnostic efficacy of the AS diagnostic model. The AUCs 
of the ROC curves of the risk score, ADCY7, CD36, and 
SCD were 0.935, 0.879, 0.880, and 0.732, respectively, 

demonstrating the model’s good predictive ability 
(Fig.  5G). The DCA curve showed that the clinical net 
benefit was higher when compared with the situation 
of either none or all for diagnosis (Fig. 5H). In addition, 
we developed a nomogram for estimating the risk of AS 
patients to further evaluate the prediction efficacy of the 
model (Fig. 5I). Next, the nomogram model’s prediction 
effectiveness was evaluated using the calibration curve. 
The calibration curve showed that the difference between 

Fig. 4 Identification of LMRG-related molecular clusters in AS. (A) Consensus clustering matrix with k = 2. (B) PCA shows subtype distribution. (C) The 
expression patterns of 29 DE-LMRGs in two clusters. (D) The expression of 29 DE-LMRGs was compared between two LMRG-related clusters using box-
plots. (E) Heatmap of the immune infiltration profiles of the two clusters. (F) Comparison of immune cell infiltration between the two clusters. (G-H) GSVA 
analysis for (G) C1 and (H) C2 clusters. *P < 0.05; **P < 0.001; ***P < 0.0001
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the predicted risk of AS and the actual risk was minimal 
(Fig. 5J).

Validation of the prognostic model in the test set
Then, using GSE28829, we verified our prediction model. 
The heatmap shows the expression levels of the three 
model genes in the test set (Fig. 6A). According to ROC 
curves, the three-LMRG risk model performed satisfacto-
rily with an AUC value of 0.808 (Fig. 6B), demonstrating 
that our prediction model is effective in differentiating 

AS from normal people. The DCA and calibration curves 
also illustrated the good performance of our model 
(Fig. 6C and D). In addition, the three LMRGs were sig-
nificantly highly expressed in the AS samples, consistent 
with the training set (Fig. 6E-G).

GSVA and immune correlation analysis of three model 
LMRGs
We first analyzed the differences in the abundance of 
immune infiltrates between AS and normal samples. 

Fig. 5 Establishment of the model using LASSO and logistic regression. (A-B) LASSO regression analysis with coefficient path diagram and cross-vali-
dation curve. (C) The heatmap depicts the levels of expression of the three LMRGs. (D-F) Box plots show the difference in (D) ADCY7, (E) CD36, and (F) 
SCD expression between AS and normal samples. (G) ROC analysis of the LMRG-related model. (H) Decision curve analysis of the predictive model. (I) 
Nomogram for forecasting AS risk. (J) Calibration curve to measure the model’s prediction ability. *P < 0.05; **P < 0.001; ***P < 0.0001
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The immune infiltration analysis showed a difference in 
immune cell types between AS and normal samples based 
on the CIBERSORT method. We found that plasma cells, 
CD8 T cells, resting memory CD4 T cells, monocytes, 
M2 macrophages, and resting mast cells were higher in 
normal samples. However, AS patients presented higher 
infiltration levels of memory B cells, gamma delta T cells, 
M0 macrophages, and activated mast cells, especially M0 
macrophages, which were significantly higher than those 
in normal samples (Fig. 7A and B). Moreover, correlation 
analysis results indicated that a variety of immune cells, 
especially M0 macrophages, were significantly correlated 
with the three model LMRGs (Fig. 7C).

To further explore the potential mechanisms of the 
three model genes in AS, we used GSVA to analyze each 
model gene pathway enrichment difference. ADCY7 was 
mainly downregulated in some immune- and metabo-
lism-related pathways (Fig.  7D). CD36 and SCD were 

mainly upregulated in some cardiomyopathy- and metab-
olism-related pathways and downregulated in some 
immune- and metabolism-related pathways (Fig.  7E 
F). The above findings revealed that the model LMRGs 
may be the key variables controlling the molecular and 
immune cell infiltration of AS.

Single-cell data analysis and cell communication
The previous analysis showed that three model genes 
were significantly associated with macrophages. Taking 
into account the important role of macrophages in the 
initiation and progression of AS. We next used scRNA-
seq data for further analysis. Figure 8 A shows the anno-
tation results of the scRNA-seq data. We subsequently 
found that the three model genes were mainly expressed 
in macrophages and monocytes. Figure 8 C and 8D dem-
onstrate the interactions between different cell types. 
Macrophage migration inhibitory factor (MIF) is a 

Fig. 6 Validation of the LMRG-related model. (A) The heatmap depicts the levels of expression of the three LMRGs. (B) ROC analysis of the model in the 
test set. (C-D) Decision curve and calibration curve of the predictive model in the validation cohort. (E-G) Box plots show the difference in (E) ADCY7, (F) 
CD36, and (G) SCD expression between AS and normal samples in the test set. *P < 0.05; **P < 0.001; ***P < 0.0001
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pivotal mediator of atherosclerotic lesion formation[27]. 
The TNF signaling pathway is also closely associated 
with inflammation and AS[28]. Therefore, we further 
investigated MIF and TNF signaling between different 
cell types. For the MIF signaling pathway, macrophages 
were the main signal source cells, and monocytes were 
the main target cells (Fig.  8E-F). For the TNF signaling 
pathway, T cells and NK cells were the main signal source 
cells, and monocytes and macrophages were the main 
target cells (Fig. 8G-H).

Discussion
AS is a major cause of morbidity and mortality world-
wide, and the study of diagnostic signatures is impor-
tant for the early diagnosis and high-quality treatment 
of AS[29]. The development and progression of AS, a 
chronic multifactorial disease, are correlated with an 
imbalance of pro- and anti-inflammatory factors against 
the backdrop of problems of lipid metabolism [30]. Lipid 

peroxidative stress and inflammatory responses caused 
by a variety of dangerous factors lead to structural dam-
age to endothelial cells, which causes an inflamma-
tory fibroproliferative response that impairs endothelial 
cell function [31]. It has also been suggested that AS is 
a process of lipid accumulation and lipid peroxidative 
stress, which involves a large number of lipid peroxida-
tive stress factors [32]. Therefore, deciphering the mecha-
nisms by which lipid metabolism triggers AS is essential 
for developing new therapeutic strategies to reduce the 
burden of AS due to the perturbation of lipid metabo-
lism. Transcriptomes are useful and practical tools for 
studying metabolism-related issues, although it is dif-
ficult to measure and study them in a direct manner. In 
the present research, we identified novel LMRG-related 
molecular subtypes and diagnostic signatures in AS and 
explored their function in disease diagnosis and associa-
tion with immune characteristics. These results reflect 
that the reprogramming of lipid metabolism in AS not 

Fig. 7 Immune cell correlation analysis and GSVA of model genes. (A) Immune infiltration profiles of AS and normal samples analyzed by CIBERSORT. (B) 
Comparison of immune cell infiltration between AS and normal samples. (C) Correlation between model genes and immune cells. (D-F) GSVA analysis of 
(D) ADCY7, (E) CD36, and (F) SCD. *P < 0.05; **P < 0.001; ***P < 0.0001
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only affects disease progression but is also involved in the 
remodeling of the immune population.

In this study, we first identified 29 AS-specific LMRGs 
by differential expression analysis. We found by enrich-
ment analysis that AS-specific LMRGs are involved 
in cholesterol and lipid metabolism, the PPAR signal-
ing pathway, and inflammatory response regulation and 
are also closely associated with atherosclerotic lesions, 
indicating the prominent biological significance of 
these genes in the pathogenesis of AS. Furthermore, 
two separate LMRG-related clusters were found using 
unsupervised cluster analysis to highlight the vari-
ous LMRG-related patterns in AS patients according 
to the expression landscapes of LMRGs. AS represents 
a systemic chronic inflammatory disease involving an 
activated innate immune response [33]. AS lesions are 
filled with immune cells that may coordinate and trigger 
the inflammatory response [34]. There is growing evi-
dence of immune diversity inherent in AS plaques [35]. 
In addition, immune cell dysfunction, such as abnormal 
distribution of abundance and type, contributes to AS 
progression [36]. An in-depth exploration of the immune 
infiltration of different clusters may help to better under-
stand the progression of AS. We found that the two 
clusters showed significantly different biological func-
tions, especially in the immune response, and C2 had a 

significantly higher abundance of immune cell infiltration 
than C1.

Subsequently, by LASSO and logistic regression, we 
developed a diagnostic model based on three LMRGs 
(ADCY7, CD36, and SCD). The AUC values of the ROC 
and DCA curves showed good predictive power. Addi-
tionally, in the external validation set, the three model 
genes showed expression trends consistent with those 
in the training set. Importantly, the AUC values of the 
validation set also showed good predictive ability of the 
model. Adenylate cyclase 7 (ADCY7) encodes a mem-
brane protein that is capable of participating in extra-
cellular signaling in intracellular responses [37]. Studies 
have found that macrophages derived from ADCY7-defi-
cient mice produce more of the proinflammatory cyto-
kine TNF-α [38]. However, to the best of our knowledge, 
the role of ADCY7 in the pathogenesis of AS has not 
been summarized. CD36 is a type 2 cell surface scavenger 
receptor that is widely expressed in many immune and 
nonimmune cells [39]. CD36 receptors can enter mac-
rophages and cause them to form foam cells, and block-
ing foam cell formation can be achieved by decreasing 
CD36 expression[40, 41]. Additionally, some studies have 
reported that CD36 deficiency prevents the development 
of AS [42]. Stearoyl-CoA desaturase (SCD) is a central 
enzyme in lipid metabolism for the synthesis of mono-
unsaturated fatty acids and a key control gene associated 

Fig. 8 Single-cell analysis. (A) Cell types after annotation of all cells. (B) Expression of model genes in different cell types. (C-D) Cell communication 
analysis of the landscape. (E-F) Cellular communication analysis of MIF signaling. (G-H) Cellular communication analysis of TNF signaling
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with AS. SCD was found to protect human arterial endo-
thelial cells from lipotoxicity [43].

To further understand the potential mechanisms of 
model genes in AS, we explored the association of model 
genes with immune cells. We found that three model 
genes were closely associated with a variety of immune 
cells, especially M0 macrophages. Subsequent GSVA 
analysis also revealed a close association between model 
genes and immune-related pathways. In addition, we fur-
ther identified three LMRGs that were predominantly 
expressed in macrophages in the single-cell data dimen-
sion. In summary, LMRGs may contribute to disease 
onset and progression by affecting the immune microen-
vironment in AS, especially macrophages.

Study strengths and limitations
To the best of our knowledge, our study is the first to use 
bioinformatics to determine the involvement of LMRG in 
AS. However, we retrospectively analyzed data obtained 
using publicly available databases. Given the rigor of our 
study and the novelty of the prognostic model, our results 
should be validated in prospective multicenter studies. 
Moreover, additional experimental studies are needed 
to uncover the underlying mechanism of the correlation 
between lipid metabolism and AS development.

Conclusion
In conclusion, our study revealed the link between 
LMRGs and infiltrated immune cells as well as the 
great heterogeneity of immunological cells between AS 
patients with different clusters. Meanwhile, we developed 
the first LMRG-based diagnostic model, which will aid in 
the clinical diagnosis and treatment of AS in the future. 
Our study is helpful to better understand the pathogene-
sis and progression of AS and provides a theoretical basis 
for future studies on lipid metabolism in AS.
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