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Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is now the major contributor to chronic liver disease. Disorders 
of lipid metabolism are a major element in the emergence of NAFLD. This research intended to explore lipid 
metabolism-related clusters in NAFLD and establish a prediction biomarker.

Methods The expression mode of lipid metabolism-related genes (LMRGs) and immune characteristics in NAFLD 
were examined. The “ConsensusClusterPlus” package was utilized to investigate the lipid metabolism-related 
subgroup. The WGCNA was utilized to determine hub genes and perform functional enrichment analysis. After that, 
a model was constructed by machine learning techniques. To validate the predictive effectiveness, receiver operating 
characteristic curves, nomograms, decision curve analysis (DCA), and test sets were used. Lastly, gene set variation 
analysis (GSVA) was utilized to investigate the biological role of biomarkers in NAFLD.

Results Dysregulated LMRGs and immunological responses were identified between NAFLD and normal samples. 
Two LMRG-related clusters were identified in NAFLD. Immune infiltration analysis revealed that C2 had much more 
immune infiltration. GSVA also showed that these two subtypes have distinctly different biological features. Thirty 
cluster-specific genes were identified by two WGCNAs. Functional enrichment analysis indicated that cluster-specific 
genes are primarily engaged in adipogenesis, signalling by interleukins, and the JAK-STAT signalling pathway. 
Comparing several models, the random forest model exhibited good discrimination performance. Importantly, the 
final five-gene random forest model showed excellent predictive power in two test sets. In addition, the nomogram 
and DCA confirmed the precision of the model for NAFLD prediction. GSVA revealed that model genes were down-
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Introduction
Nonalcoholic fatty liver disease (NAFLD) is now the 
major contributor to chronic liver disease, and the cur-
rent global prevalence is 24% at present [1]. The liver 
pathology in NAFLD ranges from simple steatosis to 
nonalcoholic steatohepatitis (NASH) and can develop 
into fibrosis, cirrhosis, and hepatocellular carcinoma 
(HCC) [2]. NAFLD is becoming the fastest-expanding 
etiology of HCC [3]. Additionally, NAFLD individuals 
may also be at elevated risk of extrahepatic cancers, espe-
cially bladder cancer [4]. With the increasing prevalence 
of NAFLD, there has been a corresponding increase in 
clinical focus on its categorization. A liver biopsy is the 
most precise way to diagnose and subtype NAFLD, but 
technical problems or an unclear evaluation can reduce 
its effectiveness. Molecular subtype is a good addition 
to conventional histologic classification [5], and a com-
plete molecular subtype assessment might be utilized in 
clinical evaluations. Thus, further accurate assessment 
of the NAFLD molecular subtype and the development 
of a predictive biomarker would be of significant clinical 
value.

Lipids play important roles in biological processes 
through their involvement in energy storage and metabo-
lism and as signalling molecules for many cellular activi-
ties [6]. Lipids are involved in the course of numerous 
diseases, including but not limited to cardiovascular 
disease, obesity, diabetes, and cancer [7]. Various lipid 
changes caused by lipid metabolism disorders can lead 
to organelle dysfunction, such as lysosomal dysfunction, 
JNK activation, mitochondrial dysfunction, and ER stress, 
and eventually lead to cell death [8]. The systemic metab-
olism of lipids highly involves the liver. Lipid metabolism 
is closely related to nonalcoholic liver disease, and lipid 
metabolism disorder has a critical function in the pro-
gression of metabolic liver disease into nonalcoholic liver 
disease. Disruptions in hepatocyte lipid homeostasis lead 
to the production of toxic lipids, leading to dysfunctional 
organelles and promoting inflammation, hepatocyte 
damage, fibrosis and cell death [9]. Research has found 
that a few lipid moieties can mediate liver toxicity while 
facilitating hepatic inflammation, including leukotrienes, 
ceramides, fatty acids, and prostaglandins [10]. Excessive 
lipid uptake mediated by the lipid uptake-related factors 

FATP and CD36 promotes hepatic steatosis in NAFLD 
patients. Increased palmitate production during lipid 
production can lead to steatohepatitis through increased 
inflammation and apoptosis. However, the oxidation of 
fatty acids occurs mainly in mitochondria, and during 
this progress, a large amount of ROS is produced. ROS 
promote inflammation and nonalcoholic steatohepatitis 
progression. Elevated fatty acid levels promote ER stress, 
which inhibits the secretion of apolipoprotein B100, hin-
ders the lipid transport process and promotes steato-
sis [11]. Moreover, studies have found that affecting the 
expression of lipid metabolism-related genes (LMRGs) 
can promote the progression of NAFLD [12]. Conse-
quently, it is necessary to explore the LMRG function in 
NAFLD.

In recent years, RNA sequencing data analysis has 
become a functional tool for analysing gene expression. 
There have been several NAFLD-related bioinformat-
ics studies [13, 14]. However, these studies usually only 
probe for differentially expressed genes (DEGs) and 
enrichment analyses. In contrast, this study performed 
a novel and thorough bioinformatics analysis, innova-
tively introduced LMRGs, further screened model can-
didate genes through two WGCNAs, and constructed a 
well-performing model by comparing multiple machine 
learning approaches. Specifically, the differentially 
expressed LMRGs (DE-LMRGs) between normal and 
NAFLD samples were first explored. Then, 71 NAFLD 
samples were divided into two LMRG-associated sub-
groups with significant biological functional differences. 
Next, the WGCNA algorithm was used to determine 
NAFLD-specific genes and cluster-specific genes and to 
investigate the biological roles and routes enriched by the 
intersecting genes. In addition, several machine learning 
algorithms were compared to construct a risk model. To 
verify the efficacy of the risk model, receiver operating 
characteristic (ROC) curves, nomograms, decision curve 
analysis (DCA), and test datasets were applied. Lastly, the 
potential mechanisms of biomarkers were analysed by 
gene set variation analysis (GSVA), and their relationship 
with immune cells was explored, thereby shedding new 
light on the prediction of NAFLD clusters and risk.

regulated in several immune and inflammatory-related routes. This suggests that these genes may inhibit the 
progression of NAFLD by inhibiting these pathways.

Conclusions This research thoroughly emphasized the complex relationship between LMRGs and NAFLD and 
established a five-gene biomarker to evaluate the risk of the lipid metabolism phenotype and the pathologic results 
of NAFLD.

Keywords Nonalcoholic fatty liver disease, Lipid metabolism, Immune infiltration, Machine learning, Biomarkers, 
Molecular clusters
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Methods
Data preparation
As of December 2022, the Gene Expression Omni-
bus (GEO) was searched for the keywords “NAFLD” 
and “nonalcoholic fatty liver disease”. After taking 
into account the sample size of the dataset and previ-
ous publications, four datasets (GSE48452, GSE89632, 
GSE126848, and GSE63067) were selected for this study 
[15–18]. Then, the GSE48452 and GSE89632 datasets, 
including 65 normal individuals and 71 NAFLD individu-
als, were selected as the training set for further analysis. 
Supplementary Table  1 concludes the clinical features 
of the 71 NAFLD individuals. The batch effects were 
addressed by employing the ComBat technique from 
the “SVA” package [19]. Moreover, the GSE126848 set 
(including 26 normal and 31 NAFLD individuals) and 
GSE63067 dataset (including 7 normal individuals and 11 
NAFLD individuals) were selected as the test1 and test2 
cohorts. In addition, 992 LMRGs (relevance score > 10) 
were obtained from the Gene Card Database. The 
LMRGs were further filtered by the DEGs. With adjusted 
P < 0.05 and FC > 1.5 as the criterion, DEGs were found by 
the “limma” program [20].

Assessing immune cell infiltration
To compare the difference in immunity status between 
groups, ssGSEA from the “GSVA” package was applied 
to assess the proportions of several immune cell types 
[21]. The enrichment fraction of 28 immune cells was 
estimated for each individual according to the gene 
expression profile [22]. Then, the association between 
DE-LMRGs and immune cells was visualized. P < 0.05 
indicated a significant link. Visualize using the “corrplot” 
R tool.

Unsupervised clustering of NAFLD samples
Unsupervised clustering analysis of NAFLD patients was 
conducted using the “ConsensusClusterPlus” package 
based on the DE-LMRGs [23]. The k-means method with 
1000 iterations was used to categorize 71 NAFLD indi-
viduals, and k was set to 9 to evaluate the suitable num-
ber of clusters.

Gene module screening and coexpression network 
development
Utilizing the R package “WGCNA,“ WGCNA was carried 
out to find coexpression modules [24]. Using the best soft 
power, the weighted neighbor matrices were established 
and converted to a topological overlap matrix (TOM) 
[25]. The TOM dissimilarity metric was employed to 
construct modules when the minimum module size was 
adjusted to 100. In addition, genes with gene significance 
(GS) > 0.4 and module membership (MM) > 0.6 were con-
sidered specific genes.

Analysis of functional enrichment
Functional enrichment studies were performed by 
Metascape, which was designed to provide an extensive 
resource for annotating and analyzing gene lists to inves-
tigate the biological roles and routes implicated in certain 
genes [26].

Construction of machine learning models
Several models were built by the “caret” program, 
including the random forest model (RF), support vec-
tor machine model (SVM), eXtreme Gradient Boosting 
(XGB), and generalized linear model (GLM) [27–30]. By 
random selection, the 71 NAFLD samples were divided 
into a training set (70%) and a test set (30%). The char-
acteristic significance and residual distributions of four 
models were identified by the “DALEX” package. The 
ROC curve was established using the “pROC” pack-
age [31]. After determining the best model, the 5 most 
important genes were considered the main predic-
tive genes related to NAFLD. In addition, GSE126848 
and GSE63067 were utilized to test the reliability of the 
biomarker.

Establishment of a nomogram
The model genes were utilized for building a nomogram 
prediction model by “rms” R package [32]. All of the fac-
tors have a score associated with them, and the overall 
score is the aggregate of all predicted values. To calculate 
the prediction ability of the nomogram, the DCA was 
performed.

Analysis of the model genes
GSVA was performed for model genes by the “GSVA” 
package [33]. It was recognized significantly altered if 
the |t| value was more than 2. The association between 
model genes and immunochemicals was evaluated on the 
basis of ssGSEA results.

Single-cell data analysis
Two NAFLD samples (GSM4041162 and GSM4041163) 
were downloaded from the GSE136103 dataset [34]. 
The cells with more than 5% of mitochondrial genes or 
less than 50 genes expressed were removed, and genes 
expressed in at least three cells were selected [35]. After 
data preprocessing, the “NormalizeData” function in R 
was used to normalize the data. The “SingleR” program 
was used to note cell types [36].

Results
Dysregulation of LMRGs and immune responses in NAFLD
Figure 1 illustrates the flow chart for the work. To eluci-
date the biological roles of lipid metabolism in NAFLD, 
the expression of 992 LMRGs was thoroughly com-
pared between NAFLD and normal samples. Fourteen 
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LMRGs in total were shown to have differential expres-
sion (Fig. 2A). Figure 2B displays the location of LMRGs 
in chromosomes. Then, a correlation analysis was per-
formed between 14 DE-LMRGs. The gene relationship 
network diagram showed that there were associations 
between different LMRGs (Fig. 2C-D).

In addition, NAFLD patients presented higher infil-
tration levels of effector memory CD4 T cells, CD56 
bright NK cells, gamma delta T cells, immature B cells, 
monocytes, and activated CD8 T cells. The number of 
eosinophils, immature dendritic cells, neutrophils, plas-
macytoid dendritic cells, T helper cells, and central 
memory CD8 T cells were higher in normal individuals 
(Fig.  2E, F). Meanwhile, many immune cells, mainly T 
helper cells, NK T cells, and activated CD4 T cells, were 
found to be closely related to LMRGs (Fig. 2G).

LMRG-related subgroups in NAFLD
71 NAFLD samples were categorized into two sub-
groups on the basis of 14 DE-LMRG expression profiles 
(Fig.  3A). Principal component analysis (PCA) showed 
significant differences between C1 and C2 (Fig.  3B). C1 
revealed high expression levels of SEC14L3 and PNPLA3, 
while PTGS2, MYC, MIR21, CCL2, IL6, NAMPT, and 
IGFBP1 were more highly expressed in C2 (Fig. 3C, D). 

It was also found that C2 had noticeably more immune 
cell infiltration than C1 (Fig. 3E). In addition, the GSVA 
showed that C2 was mainly enriched in SAGA type com-
plex, peroxisome organization, deneddylase activity, per-
oxisome, base excision repair, and nucleotide excision 
repair (Fig. 3F, G).

Gene module screening and coexpression network 
development
WGCNA was utilized to discover the important mod-
ules related to NAFLD. The scale-free R2 parameter was 
set to 0.9, and the soft power parameter was set to 9 to 
identify coexpressed gene modules (Fig. 4A). The method 
of dynamic cutting was utilized to acquire nine different 
coexpression modules (Fig.  4B). The turquoise module 
displayed the highest relevance (Fig. 4C). The hub genes 
in the turquoise module were chosen for subsequent 
analysis (Fig. 4D).

Furthermore, WGCNA was also utilized to evaluate 
the essential modules that were highly connected with 
LMRG-related clusters (Fig. 5A). The method of dynamic 
cutting was utilized to acquire nine different coexpres-
sion modules (Fig.  5B). The red module had the high-
est connection with LMRG-related clusters (Fig.  5C). 

Fig. 1 The analytical workflow of the research in detail
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Similarly, the red module’s pivotal genes were chosen for 
subsequent analysis (Fig. 5D).

Functional enrichment analysis
Intersection of the module-associated genes of LMRG-
related clusters with the module-associated genes of 
NAFLD and normal samples was performed, and a total 
of 30 cluster-specific genes were found (Fig.  6A). PPI 
analysis showed that except for CCDC71L and ZBTB21, 
the other 28 genes were closely intertwined (Fig. 6B). In 
addition, the Metascape results showed marked enrich-
ment in adipogenesis, signalling by interleukins, and the 
nuclear receptor meta-pathway (Fig. 6C).

Development of machine learning models
According to the 30 cluster-specific genes, four validated 
machine learning models were created. The “DALEX” 
program was used to describe the four models and depict 
the residual distribution of each model. The RF machine 

learning model had comparatively less residual variance 
(Fig.  7A, B). The 10 most crucial genes for each model 
were then rated (Fig. 7C). Additionally, ROC curves were 
calculated to determine the prediction ability of the four 
models, and the RF model demonstrated the best per-
formance (Fig. 7D). In conclusion, these findings suggest 
that the RF machine learning model was most effective 
in differentiating NAFLD with distinct clusters. Finally, 
the top five most significant variables of the RF model 
(NAMPT, HIVEP1, SOCS2, GADD45G, and NFIL3) 
were selected as predictor model genes for subsequent 
analysis.

Construction of the nomogram
For further evaluating the risk of NAFLD individuals, a 
nomogram prediction model was developed utilizing 
model genes (Fig.  7E). Then, the prediction capacity of 
the nomogram was evaluated by DCA. DCA suggested 
that the nomogram had excellent accuracy, which may 

Fig. 2 Fourteen DE-LMRGs in NAFLD. (A) Intersection plot of the LMRGs and the DEGs. (B) Location of the LMRGs in chromosomes. (C-D) Network 
diagram of the 14 LMRGs. (E) Heatmap of the immune infiltration of NAFLD and normal individuals analysed using ssGSEA. (F) Comparison of immune 
infiltration between NAFLD and normal individuals. (G) Relationship between LMRGs and immune cells
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aid clinical decision-making (Fig. 7F). Then, GSE126848 
and GSE63067 were used to verify the prediction model. 
The five-gene biomarker exhibited promising perfor-
mance with an AUC value of 0.952 in GSE126848 and 
1.000 in GSE63067 (Fig. 7G, H).

Analysis of five model genes
GSVA was applied to study the biological function of 
five model genes in NAFLD. GADD45G was mainly 
upregulated in maturity-onset diabetes of the young and 
metabolism and downregulated in the B-cell receptor 
(BCR), NOD-like receptor (NLR), and Toll-like recep-
tor (TLR) signalling routes (Supplementary Fig.  1A). 
HIVEP1 was mainly upregulated in mismatch repair and 
DNA replication and downregulated in the cytokine‒
cytokine receptor interaction (CCRI), TLR, and NLR 
signalling pathways (Supplementary Fig.  1B). NAMPT 
was mainly upregulated in sulfur metabolism and base 
excision repair and downregulated in the CCRI, TLR, 
and BCR signalling pathways (Supplementary Fig.  1C). 
NFIL3 was mainly upregulated in mismatch repair and 

sulfur metabolism and downregulated in the CCRI, hae-
matopoietic cell lineage, and BCR signalling pathways 
(Supplementary Fig. 1D). SOCS2 was mainly upregulated 
in mismatch repair, sulfur metabolism and DNA replica-
tion and downregulated in primary immunodeficiency, 
NLR, and BCR signalling pathways (Supplementary 
Fig.  1E). Furthermore, given that cluster-specific genes 
were negatively associated with NAFLD, these five model 
genes may inhibit the progression of NAFLD primarily by 
suppressing multiple inflammatory and immune-related 
pathways.

Then, the relationship between five model genes and 
immunochemicals was explored. The results revealed 
that they were mainly positively related to eosinophils, 
neutrophils, and T helper cells and negatively correlated 
with CD56-bright NK cells, effector CD4 T cells, and acti-
vated CD8 T cells (Fig. 8A-E). To investigate the expres-
sion of model genes in specific cell populations, publicly 
available scRNA-seq data from two NAFLD individuals 
were utilized for analysis. They were clustered and anno-
tated into eight different cell types (Fig. 8F). GADD45G 

Fig. 3 LMRG-related subgroups in NAFLD. (A) Consensus clustering matrix with k = 2. (B) PCA showing the subtype distribution. (C) The expression of 
fourteen LMRGs in C1 and C2. (D) The expression of fourteen LMRGs in C1 and C2. (E) Comparison of immune cell infiltration between C1 and C2. (F-G) 
GSVA of two LMRG clusters
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Fig. 5 Coexpression network of LMRG-related clusters. (A) Soft-threshold power selection. (B) Correlation heatmap for nine modules. (C) Correlation 
analysis of clinical state and module eigengenes. (D) Scatter plot of red module genes

 

Fig. 4 Coexpressed network in NAFLD-normal samples. (A) Soft-threshold power selection. (B) Correlation heatmap for nine modules. (C) Eigengene 
correlation with clinical status. (D) Scatter plot of turquoise module genes
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was mainly expressed in tissue stem cells, NAMPT was 
mainly expressed in monocytes, and SOCS2 was mainly 
expressed in endothelial cells (Fig. 8G).

Discussion
NAFLD is the major contributor to chronic liver dis-
ease around the world. A model of epidemiology pre-
dicted that the prevalence of NAFLD would keep rising 
and the death rate from linked diseases would double by 
2030 [37]. The pathogenesis of NAFLD is complex and is 
thought to rely on multiple parallel hits in the context of 
genetic susceptibility [38]. Lipids are a class of structur-
ally diverse hydrophobic molecules with multiple func-
tions. For example, lipids are essential energy storage 
molecules that contribute to the formation of cell mem-
branes, participate in many signal transduction cascade 
reactions and have a caloric output of 9 kcal/g compared 
to the 4 kcal/g for proteins and carbohydrates [10]. Lipid 
metabolism has a critical effect on NAFLD, especially 
in metabolic liver disease [9]. Lipid metabolism-related 
factors can participate in regulating lipid metabolism 
in a variety of ways [11]. Additionally, lipid metabolism 
disorders can lead to dysfunctional organelles and pro-
mote inflammation, liver cell damage and cell death 
and a series of consequences. An essential component 
of NAFLD is lipotoxicity. Lipotoxicity of hepatocytes is 
also proportional to the severity of NAFLD. In NAFLD, 
hepatocytes accumulate triglycerides and different lipid 
byproducts, like free cholesterol, ceramides, and free 

fatty acids (FFAs). FFAs are considered the main media-
tor of hepatocyte lipotoxicity [10]. Moreover, it has been 
reported that changes in LMRG expression can regulate 
lipid metabolism and participate in the progression of 
NAFLD [13]. Therefore, the work intended to explore the 
precise effect of LMRG on the NAFLD phenotype and 
immune microenvironment. Additionally, LMRGs were 
used to predict NAFLD subtypes and construct reliable 
disease prediction models.

To illustrate the essential function of LMRGs in 
NAFLD, a thorough analysis of the expression profiles 
of LMRGs was first performed between normal and 
NAFLD individuals. Fourteen LMRGs were discovered to 
differentially express, indicating that these LMRGs have 
an essential role in NAFLD. To further comprehend the 
correlation between LMRGs and NAFLD, the correla-
tions among LMRGs were calculated. The results showed 
that most LMRGs have synergistic or antagonistic effects. 
It is widely known that immune cells have diverse but 
essential roles in the inflammatory processes of NAFLD 
[39]. Therefore, NAFLD and normal tissue immune cell 
infiltration levels were contrasted. NAFLD patients had 
greater levels of CD8 T cell, monocyte, NK cell, B cell, 
and CD4 T-cell infiltration. According to reports, these 
immune cells are strongly related to the development of 
NAFLD. For example, infiltration of B cells is involved in 
chronic liver diseases [40]. Moreover, CD8 T cells may 
participate in the progression and regression of liver 
fibrosis [41].

Fig. 6 Functional enrichment analysis. (A) Intersection of hub genes. (B) PPI network of the 30 cluster-specific genes. (C) Functional enrichment analysis 
of cluster-specific genes
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Next, two independent subgroups with significant bio-
logical functional differences were discovered to accentu-
ate the diverse patterns of lipid metabolism in NAFLD 
individuals. C2 had noticeably more immune cell infiltra-
tion than C1, suggesting that C2 may have more activated 
immune cells to prevent the development of NAFLD 
and thus have a better prognosis. A promising approach 
for assessing prognosis and managing individuals with 
NAFLD involves risk stratification based on LMRG.

While molecular typing is essential for functional min-
ing of LMRGs, it has some shortcomings in type clus-
tering that make it difficult to accurately predict clinical 
outcomes and risk scores for individual patients. To 
address this issue, WGCNA and machine learning were 

used to create a prediction model comprising five genes 
that had excellent performance in predicting NAFLD. 
More importantly, the five-gene RF model was able to 
accurately predict NAFLD in two test sets, providing new 
insights for the early diagnosis of NAFLD. Additionally, 
a nomogram was created for the diagnosis of NAFLD 
using SOCS2, NAMPT, GADD45G, HIVEP1, and NFIL3. 
The model demonstrated strong predictive value, as evi-
denced by the ROC and DCA curves.

Other researchers have also studied the 5 genes and 
discovered that they have a crucial role in NAFLD and 
other diseases. SOCS2 is an inflammatory modulator. 
It can control obesity by regulating adipose tissue [42]. 
Moreover, SOCS2 in macrophages inhibits inflammation 

Fig. 7 Four different machine learning models. (A) Boxplots display the residuals of each model. The red dot represents the root mean square of the 
residuals. (B) Distribution of cumulative residuals for different models. (C) The crucial components of each model. (D) ROC curve of the 4 models in the 
training cohort. (E) Nomogram for forecasting NAFLD. (F) DCA plot to measure the prediction capability of the model. (G, H) ROC curve in the GSE126848 
(G) and GSE63067 (H) datasets
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Fig. 8 Correlations between infiltrating immune cells and GADD45G (A), HIVEP1 (B), NAMPT (C), NFIL3 (D), and SOCS2 (E). (F) Annotation of different cell 
types. (G) Expression levels of five genes in different cell types
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and apoptosis by suppressing the NF-κB signalling 
route and plays a negative regulatory role in inflamma-
tion and apoptosis during NAFLD. Therefore, it can be 
used as a potential preventive and therapeutic target for 
NAFLD [43]. NAMPT is able to regulate the pathogen-
esis of obesity and related diseases, especially NAFLD, 
by affecting lipid and glucose metabolism, inflammation 
and apoptosis [44]. GADD45G is shown to be a novel 
tumour suppressor in acute myeloid leukaemia as a cor-
responding gene for DNA damage [45]. However, its role 
in NAFLD has not been clearly reported. HIVEP1 is a 
negative regulator of NF-κB, inhibiting the pro-inflam-
matory responses to bacterial agonists [46]. Therefore, 
it may have an ameliorating effect on inflammation in 
NAFLD. NFIL3 is an important transcriptional regula-
tor of immune cell growth and differentiation as well as a 
key regulator of hepatic glucose homeostasis. Enhancing 
hepatic NFIL3 activity in insulin-resistant conditions is 
advantageous for reducing glycaemic symptoms in meta-
bolic disorders [47]. In addition, NFIL3 is an important 
molecular link between the microbiota, biological clock 
and host metabolism. It was shown that the microbiota 
regulates lipid uptake and storage through NFIL3 [48]. 
Therefore, NFIL3 might be used as a treatment target for 
metabolic illnesses, including NAFLD.

In addition, GSVA was performed to explore the bio-
logical function of biomarkers in NAFLD. It was discov-
ered that five model genes are mainly downregulated in 
some inflammatory and immune-related pathways, sug-
gesting that they may inhibit NAFLD disease progression 
through these routes. Further immune cell correlation 
analysis identified that the model genes were strongly 
related to eosinophils and neutrophils. Collectively, lipid 
metabolism might promote NAFLD flare-ups and pro-
gression by influencing the inflammatory response and 
immune microenvironment.

Study strengths and limitations
This is the first bioinformatics study to extensively exam-
ine the role of LMRGs in NAFLD. However, there have 
been several previous bioinformatics studies related to 
NAFLD [49, 50]. In this study, the LMRGs were innova-
tively used as the grouping basis, and the hub genes were 
further determined through two WGCNA analyses. In 
addition, four machine learning models were compared 
to obtain the key predicted genes, which further reduced 
the model error. However, this research has a few limita-
tions that should be acknowledged. First, this study was 
retrospective and was performed using mainly data from 
public databases. Therefore, the prediction capability 
of the model should be validated in prospective clinical 
research with large samples. Second, further investiga-
tion of molecular mechanisms is required to explore the 

function of model genes and lipid metabolism in the 
occurrence and development of NAFLD.

Conclusion
This study demonstrated the relationship between 
LMRGs and immune cell infiltration and significant 
immunological heterogeneity between NAFLD indi-
viduals with different lipid metabolism subgroups. In 
addition, a diagnostic model on the basis of LMRG was 
created, which will contribute to the early clinical diag-
nosis and management of NAFLD.
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