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Abstract 

Background The global incidence of nonalcoholic fatty liver disease (NAFLD) is rapidly escalating, positioning it 
as a principal public health challenge with significant implications for population well-being. Given its status as a cor-
nerstone of China’s economic structure, the steel industry employs a substantial workforce, consequently bringing 
associated health issues under increasing scrutiny. Establishing a risk assessment model for NAFLD within steelwork-
ers aids in disease risk stratification among this demographic, thereby facilitating early intervention measures to pro-
tect the health of this significant populace.

Methods Use of cross-sectional studies. A total of 3328 steelworkers who underwent occupational health evalua-
tions between January and September 2017 were included in this study. Hepatic steatosis was uniformly diagnosed 
via abdominal ultrasound. Influential factors were pinpointed using chi-square (χ2) tests and unconditional logistic 
regression analysis, with model inclusion variables identified by pertinent literature. Assessment models encompass-
ing logistic regression, random forest, and XGBoost were constructed, and their effectiveness was juxtaposed in terms 
of accuracy, area under the curve (AUC), and F1 score. Subsequently, a scoring system for NAFLD risk was established, 
premised on the optimal model.

Results The findings indicated that sex, overweight, obesity, hyperuricemia, dyslipidemia, occupational dust expo-
sure, and ALT serve as risk factors for NAFLD in steelworkers, with corresponding odds ratios (OR, 95% confidence 
interval (CI)) of 0.672 (0.487–0.928), 4.971 (3.981–6.207), 16.887 (12.99–21.953), 2.124 (1.77–2.548), 2.315 (1.63–3.288), 
1.254 (1.014–1.551), and 3.629 (2.705–4.869), respectively. The sensitivity of the three models was reported as 0.607, 
0.680 and 0.564, respectively, while the precision was 0.708, 0.643, and 0.701, respectively. The AUC measurements 
were 0.839, 0.839, and 0.832, and the Brier scores were 0.150, 0.153, and 0.155, respectively. The F1 score results 
were 0.654, 0.661, and 0.625, with log loss measures at 0.460, 0.661, and 0.564, respectively. R2 values were reported 
as 0.789, 0.771, and 0.778, respectively. Performance was comparable across all three models, with no significant dif-
ferences observed. The NAFLD risk score system exhibited exceptional risk detection capabilities with an established 
cutoff value of 86.
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Conclusions The study identified sex, BMI, dyslipidemia, hyperuricemia, occupational dust exposure, and ALT as sig-
nificant risk factors for NAFLD among steelworkers. The traditional logistic regression model proved equally effec-
tive as the random forest and XGBoost models in assessing NAFLD risk. The optimal cutoff value for risk assessment 
was determined to be 86. This study provides clinicians with a visually accessible risk stratification approach to gauge 
the propensity for NAFLD in steelworkers, thereby aiding early identification and intervention among those at risk.

Keywords Steel workers, NAFLD, Influencing factors, Risk assessment, Risk scoring system

Background
NAFLD represents a form of liver injury attributable to 
metabolic stress, characterized by excess fat accumula-
tion in hepatocytes, in the absence of excessive alco-
hol consumption or other evident hepatotoxic factors. 
NAFLD encompasses a spectrum of conditions, includ-
ing hepatocellular carcinoma, liver cirrhosis, nonalco-
holic steatohepatitis, and nonalcoholic hepatic steatosis, 
all of which exert a significant health impact on the pop-
ulation [1].

Recent research indicates that the global prevalence of 
NAFLD is considerably higher than previously estimated 
and is increasing at a worrisome rate. Prior to 2005, the 
prevalence of NAFLD stood at a significant 37.8%, but 
from 2016 onward, the figure increased even further, 
bringing the overall global prevalence to an alarming 
32.4% [2]. In the United States alone, NAFLD affects over 
80 million individuals, whereas in Asia, the total preva-
lence is estimated to be as high as 27.4% [3]. Furthermore, 
the incidence of NAFLD is not confined to the middle-
aged population but extends to children and adolescents 
as well [4, 5]. The prevalence of NAFLD/NASH (nonalco-
holic steatohepatitis) has been rising at an annual rate of 
1.35%, causing a surge from 19.34 million cases in 1990 
to 29.49 million in 2017 in children and adolescents [5]. 
NAFLD has indeed emerged as a significant public health 
issue of global concern.

The pathogenesis of NAFLD is multifaceted, and a 
variety of theories have been proposed to explain it. The 
traditional ’two-hit’ theory posits that insulin resist-
ance (IR) initiates a ’first hit’ to the liver by triggering fat 
accumulation in hepatocytes, followed by a ’second hit’ 
due to oxidative stress incited by reactive oxygen spe-
cies (ROS), thereby promoting liver disease [6]. However, 
it soon became evident that the progression of NAFLD 
was not solely dictated by this ’second hit,’ but instead by 
multiple parallel factors in genetically predisposed indi-
viduals operating synergistically. As a result, the ’multi-
ple-hit’ hypothesis was formulated [7]. According to this 
hypothesis, an array of factors, including dietary habits, 
environmental influences, obesity, and genetic predispo-
sitions, all contribute to the onset of NAFLD, thus pro-
viding a more comprehensive foundation for NAFLD 
management.

As a cornerstone of the Chinese economy, the steel 
industry employs a significant number of workers, ren-
dering occupational health studies crucial. Steelwork-
ers are routinely exposed to occupational hazards such 
as shift work, elevated temperatures, noise, and dust. 
Consequently, compared to the general population, they 
exhibit higher rates of obesity and hypertension [8]. 
Research has established a direct correlation between 
metabolic disorders such as obesity, dyslipidemia, and 
NAFLD [9]. It was also discerned that night shift work 
further exacerbated NAFLD in steelworkers [10]. These 
findings imply that steelworkers may face an elevated risk 
of NAFLD. Therefore, executing a risk assessment for 
NAFLD in steelworkers bears significant practical impli-
cations. This would not only enhance the health status of 
those working in the steel industry but also facilitate the 
enactment of comprehensive prevention and treatment 
programs within steel mills.

In the era of big data, machine learning techniques 
have seen rapid advancements, offering innovative tech-
nical tools for disease risk assessment, including NAFLD. 
This study aims to develop a methodology for evaluating 
the risk of NAFLD in steelworkers by employing logistic 
regression, random forest, and XGBoost algorithms. The 
best-performing model will be selected to guide further 
exploration and investigation into factors associated with 
NAFLD in steelworkers.

Methods
Study Subject
The current investigation is a cross-sectional study that 
analyzed baseline data collected between January and 
September 2017. These data were sourced from the 
National Key Research and Development Program under 
the project entitled "The Beijing-Tianjin-Hebei Regional 
Occupational Population Health Effects Cohort Study". 
In total, 3328 individuals were included in the study. 
The inclusion criteria were as follows: age ≤ 60, regular 
employees with a service length of at least one year, and 
voluntary participation with a signed informed consent 
form. The exclusion criteria were as follows: excessive 
alcohol intake (> 210 g/week for men and 140 g/week for 
women), severe liver disease (including acute and chronic 
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hepatitis, viral hepatitis, cirrhosis, etc.), incomplete infor-
mation, and loss to follow-up.

Collection of information
Data were gathered via questionnaire surveys admin-
istered through one-on-one interviews conducted by 
expertly trained master’s and doctoral students from the 
School of Public Health of North China University of 
Technology. The survey encompassed a broad range of 
topics, including demographic information (age, sex, eth-
nicity, marital status, education level, economic income), 
lifestyle behaviors (smoking, alcohol consumption, die-
tary habits, physical activity), personal and family disease 
history (hypertension, diabetes, and other family medical 
history), and occupational information (length of service, 
shift work, exposure to harmful occupational factors).

Laboratory tests
Each day, before 9:00 a.m., fasting blood samples and 
morning urine specimens were collected by a medical 
examination hospital and dispatched to the laboratory 
for analysis. Assessed parameters included fasting plasma 
glucose (FPG), uric acid (UA), total cholesterol (TC), 
triglyceride (TG), high-density lipoprotein cholesterol 
(HDL-C), low-density lipoprotein cholesterol (LDL-C), 
alanine aminotransferase (ALT), aspartate aminotrans-
ferase (AST), glutamyl transpeptidase (GGT) and total 
bilirubin (TBil). All biochemical analyses of blood sam-
ples were conducted utilizing the Mindray automatic bio-
chemical analyzer (BS-800).

NAFLD diagnostic criteria
The diagnosis of hepatic steatosis was consistently deter-
mined by abdominal ultrasound from ultrasonographers 
at the examining hospital who were unaware of the pur-
pose of this study or the subjects’ exposure. A high-reso-
lution B-mode topographic ultrasound system (PHILIPS, 
HD7, China) was used for diagnosis.

The presence of fatty liver was confirmed when any two 
of the following three ultrasound findings were observed 
[11]: (1) Diffusely enhanced near-field echogenicity of 
the liver (termed ’bright liver’), demonstrating greater 
echogenicity than the kidneys. (2) Poorly visualized 
intrahepatic ductal structures. (3) Gradual attenuation 
of the liver’s far-field echogenicity. The final diagno-
sis of NAFLD excluded excessive alcohol consumption, 
the influence of relevant medications (such as acetami-
nophen, methotrexate, tamoxifen or glucocorticoids), 
and specific liver diseases known to induce hepatic stea-
tosis (for instance, hepatitis C virus infection, cirrhotic 
degeneration, or autoimmune hepatitis) [1].

Variable definition
Diabetes [12]
Defined as fasting blood glucose (FPG) ≥ 7.0 mmol/L or 
a previously diagnosed condition with ongoing diabetes 
treatment.

Hypertension [13]
Characterized by a systolic blood pressure 
(SBP) ≥ 140  mmHg and/or diastolic blood pressure 
(DBP) ≥ 90 mmHg or a previously diagnosed condition 
with current hypertension management.

Dyslipidemia [14]
Marked by a TC ≥ 6.2  mmol/L (240  mg/dL), 
TG ≥ 2.3  mmol/L (200  mg/dL), LDL-C ≥ 4.1  mmol/L 
(160 mg/dL), HDL-C < 1.0 mmol/L (40 mg/dL), or pre-
viously diagnosed hyperlipidemia with ongoing lipid-
lowering medication.

Physical activity [15]
Categorized as mild, moderate or severe physical activ-
ity as per the International Physical Activity Question-
naire (IPAQ).

Body mass index
BMI = weight (kg)/height2  (m2). The Chinese Adult 
Weight Determination Standard (WS/T 428–2013) 
defines 24.0  kg/m2 ≤ BMI < 28.0  kg/m2 as overweight 
and BMI ≥ 28.0 kg/m2 as obese.

Diet [16]
Assessed based on the consumption of whole grains, 
vegetables, fruits, low-fat milk, nuts and legumes, sug-
ary drinks, red meat and processed meat products, and 
sodium intake. Dietary scores were computed as per the 
Dietary Approaches to Stop Hypertension (DASH). In 
this study, the median NASH score was 25, with dietary 
profiles segmented into DASH < 25 and DASH ≥ 25, 
where a higher score indicates a healthier diet.

Hyperuricemia [17]
Classified as blood uric acid ≥ 420  μmol/L in men and 
360 μmol/L in women or a history of treated gout.

Smoking
Defined as per the WHO’s 1997 classification of smok-
ing as the consumption of at least one cigarette per 
day for a duration exceeding six months. In this study, 
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smoking status was categorized as never smoked, quit 
smoking, or currently smoking.

Shift work
Described as a working hour system where hours are 
variable, involving one or several groups working in shifts 
for continuous 24-h operation. Categories include never-
shift work, once-shift work, and now-shift work.

Occupation dust [18]
Determined based on specific on-site sanitary survey 
results and the total dust concentration at the site, as 
tested by the relevant testing company.

Occupation high temperature [19]
Defined by the presence of a productive heat source and 
a WBGT ≥ 25℃.

Occupation noise [20]
Identified by the presence of harmful noise in the work-
place, with workers exposed to an equivalent sound 
level ≥ 80 Bb(A) for 40 h per week or 8 h per day.

Sample size calculation
In this investigation, the sample size calculation approach 
suggested by Richard [21] for clinical prediction models 
was applied.

(1) To ensure that the model could correctly forecast 
the average of the outcome occurrences, ɵ was set 
at 29%, the total prevalence of NAFLD in China 
[22]. The error range δ is set to 0.05. At least 317 
study cases were needed.

(2) The mean absolute error MAPE was set at 0.05, and 
the predictor variable P was approximately 10 to 
adjust for the smallest mean error in the predicted 
values for all participants. At least 453 study cases 
were needed.

(3) Based on a 29% prevalence outcome share, the esti-
mated  maxRCS

2 was set at 0.45. The  RCS
2 value was 

set as 0.07 to ensure that the model could elucidate 
15% of the variation. To prevent overfitting of the 
model and ensure an expected contraction rate of 
10%, S was set to 0.9. The study variable P is approx-
imately 10. At least 1250 study cases were needed.

(1)n =
1.96

δ

2

θ(1− θ)

(2)

n = exp

(

−0.508+ 0.259ln(∅)+ 0.504ln(P)− ln(MAPE)

0.544

)

(4) According to the above settings, S was calculated 
to be 0.756. To ensure minimal differences between 
the developed model and  RCS

2 optimally adjusted 
values, at least 435 study cases were needed.

A minimum sample of 1250 cases was calculated to 
build the model. The study covered 3328 patients in all.

Construction of the model
The modeling data were randomly partitioned into a 
training set and a test set in a 7:3 ratio. The model under-
went training and parameter optimization based on the 
training set. The proficiency of the model was evalu-
ated using sensitivity, precision, accuracy, Brier score, F1 
score, log loss, ROC curve, and calibration curve, as dem-
onstrated in Additional files 1 and 2.

The logistic regression model was built 
employing’sklearn.linear_mode’, and parameter C 
was calibrated using a fivefold cross-validated logis-
tic regression. The random forest model was developed 
using’sklearn. ensemble’, and a grid search (cv = 5) was 
utilized to adjust the parameters, including criterion, 
max_depth, max_features, min_samples_leaf, min_sam-
ples_split, and n_estimators. The XGBoost model was 
constructed utilizing ’xgboost’, and parameters such as 
learning_rate, max_depth, and n_estimators were fine-
tuned using a grid search (cv = 5), as elucidated in Addi-
tional files 3, 4, 5 and 6.

Statistical analysis
An Excel database was assembled according to the out-
comes of the physical examination and questionnaire, 
aiming to identify risk factors and develop an assess-
ment model. Count data were denoted using ratios 
or rates. The χ2 test was employed for comparisons 
between the two groups. Unconditional logistic regres-
sion facilitated the execution of multifactorial analysis. 
A two-sided test was applied with a significance level 
of 0.05. The correlation analyses pertinent to this study 

(3)
n =

P

(S − 1)ln

(

1−
R
2
CS

S

)

(4)s =
R
2
CS

R
2
CS

+ δmaxR2
CS

(5)
n =

P

(S − 1)ln

(

1−
R
2
CS

S
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were carried out using the statistical software SPSS 25.0 
and Python 3.8.

Quality control
All researchers participating in the study underwent 
comprehensive training. The inclusion of study partici-
pants in the study was conducted strictly by the inclusion 
and exclusion criteria. Data entry was double-checked. 
The accuracy of the data was confirmed through manual, 
computerized, and logical error checks on the inputted 
information. For data analysis, the datasets were ran-
domly partitioned into training and test sets.

Research findings
Single‑factor analysis
The study ultimately encompassed 3328 steel work-
ers, comprising 2908 males and 420 females, primarily 
within the age range of 40–49 years. The prevalence of 
NAFLD in this population was 35.64%, and over half of 
the workers were classified as overweight or obese.

Univariate analysis was performed on basic demo-
graphic attributes, behavioral lifestyles, occupational 
factor exposure, and liver function biochemical indica-
tors of steelworkers. The results suggested that factors 
such as age, sex, BMI, hypertension, coronary heart 
disease, diabetes, hyperuricemia, dyslipidemia, smok-
ing habits, DASH diet score, shift work, exposure to 
high temperature and dust, and ALT, AST and GGT 
levels were significantly correlated with the prevalence 
of NAFLD (P < 0.05) (Tables 1, 2, 3 and 4).

Multifactor analysis
To further delineate the factors influencing the preva-
lence of NAFLD among steelworkers, variables found to 
be statistically significant in the univariate analysis were 
subjected to a multifactorial logistic regression analysis. 
Detailed information regarding these variables, along 
with their assigned values, can be found in Table 5.

Prior to executing the multifactor logistic regression 
analysis, the incorporated factors underwent diagnosis 
for multicollinearity, as delineated in Table 6. The absence 
of collinearity between variables is indicated when tol-
erance > 0.1 and VIF < 10. According to the analysis out-
comes, there was no observed correlation between the 
variables, thereby justifying the feasibility of linear analysis.

The results of the multifactorial analysis revealed that 
sex, BMI, hyperuricemia, dyslipidemia, occupational 
dust exposure, and ALT were associated risk factors for 
NAFLD in steelworkers (P < 0.05). Notably, female sex 
emerged as a protective factor against NAFLD, as illus-
trated in Table 7.

Risk assessment model for steelworkers
The multifactorial analysis results, when combined 
with a review of pertinent literature, culminated in the 
selection of nine factors to serve as variables within the 
assessment model. These included sex, BMI, hyper-
uricemia, dyslipidemia, occupational dust exposure, 
ALT, GGT, hypertension, and diabetes mellitus.

A total of 2329 individuals, equating to 70% of the 
participants, comprised the training set, while the test 
set included 999 individuals or 30% of the total partici-
pants. The projected and actual results for each model 
were juxtaposed to construct the corresponding confu-
sion matrices. The efficacy of the three models used for 
assessing NAFLD in steel workers is depicted in Fig. 1.

The comparative sensitivity for logistic regression, 
random forest, and XGBoost models was established 
at 0.607, 0.680, and 0.564, respectively. In terms of 
precision, the models scored 0.708, 0.643, and 0.701, 
respectively. The recorded accuracy was 0.789 for logis-
tic regression, 0.771 for random forest, and 0.778 for 
XGBoost, with AUC results of 0.839, 0.839, and 0.832, 
respectively. The Brier score results stood at 0.150, 
0.153, and 0.155 for each model in the same order, 
and the F1 score was measured at 0.654, 0.661, and 
0.625. The log loss data came in at 0.460, 0.471, and 
0.481, respectively. The  R2 results for the models were 
0.789, 0.771, and 0.778. All three models demonstrated 
good calibration, with their calibration curves oscil-
lating around the diagonal. In terms of discrimination 
and calibration, the logistic regression model exhib-
ited no significant deviation from the random forest 
and XGBoost models. Details are available in Table  8, 
Figs. 2, and 3.

A risk assessment model for NAFLD in steelworkers 
was constructed based on logistic regression, and the 
details of the model are shown in Table 9. The equation 
of the logistic regression model for NAFLD risk assess-
ment is shown as follows:

In this study, a nomogram for assessing the risk of 
NAFLD in steelworkers was derived from the logis-
tic regression model, as depicted in Fig.  4. Using this 
nomogram, a random selection of 2329 study partici-
pants was scored, and an ROC curve was subsequently 
plotted using the individual scores in correlation with 
the prevalence of NAFLD, as illustrated in Fig.  5. At 
the optimal Jordan Index value of 0.481, sensitiv-
ity and specificity were measured at 0.705 and 0.776, 

Logit(P) = −2.57+ 1.598XBMI1 + 2.824XBMI2 + 0.2XHTN

+ 0.345XDM + 0.183XDust + 0.763XHUA + 1.276XALT

+ 0.3XGGT + 0.883XDyslipidemia − 0.398XSex
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Table 1 Comparison of basic conditions aof steelworkers with and without NAFLD

Basic conditions Non‑NAFLD NAFLD χ2 P

Age (Year) 15.928 0.001

 < 30 121 50

30 ~ 39 537 368

40 ~ 49 916 487

50 ~ 60 568 281

Sex 66.246  < 0.001

Male 1797 1111

Female 345 75

Education 1.343 0.511

Elementary and below 18 14

Middle or high school 1584 862

College or above 540 310

Marital status 1.951 0.377

Unmarried 95 42

Married or remarried 1999 1113

Divorced or widowed 48 31

Nation 1.166 0.280

Han 2100 1156

Other 42 30

Monthly income per capita 
of the household (Yuan)

0.985 0.611

 < 1500 656 375

1500 ~ 2500 923 490

 > 2500 563 321

BMI (kg/m)2 787.667  < 0.001

 < 24 1122 128

24 ~ 27.9 835 552

 ≥ 28 185 506

Family history of hypertension 2.143 0.134

No 1515 810

Yes 627 376

Family history of dyslipidemia 0.058 0.810

No 2043 1129

Yes 99 57

Hypertension 59.306  < 0.001

No 1928 955

Yes 214 231

Coronary heart disease 4.578 0.032

No 2121 1164

Yes 21 22

Diabetes 8.621 0.003

No 2067 1119

Yes 75 67

Hyperuricemia 233.107  < 0.001

No 1664 617

Yes 478 569

Dyslipidemia 81.931  < 0.001

No 2061 1044

Yes 81 142
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respectively, resulting in an optimal cutoff score of 86. 
Therefore, it was determined that workers with scores 
below 86 fell into the low-risk category, while those 
with scores of 86 or above were categorized as high-risk 
individuals.

The resulting classifications revealed a significant dis-
parity in the prevalence of NAFLD between the high-risk 
and low-risk groups. Among the low-risk individuals, 
18.15% were identified with NAFLD, compared to 64.71% 
within the high-risk category. The risk scoring system 
demonstrated effective risk stratification capabilities, 
with an accuracy of 74.97% and an area under the curve 
(AUC) of 0.740, as detailed in Table 10 and Fig. 6.

Discussion
In this study, the prevalence of NAFLD among steelwork-
ers was found to be 35.64%, surpassing the general popu-
lation prevalence rate of 32.9% [22]. Male workers, with a 
prevalence rate of 38.2%, appeared to be more susceptible 

Table 2 Comparison of the behavioral lifestyle of steelworkers with and without NAFLD

Behavioral lifestyle Non‑NAFLD NAFLD χ2 P

Smoking status 27.369  < 0.001

Never smoking 1196 551

Quit smoking 99 60

Smoking 867 575

DASH score 4.812 0.028

 < 25 795 486

 ≥ 25 1347 700

Physical activity 0.057 0.972

Mild 72 41

Moderate 166 94

Severe 1904 1051

Table 3 Comparison of occupational exposure factors of steelworkers with and without NAFLD

Factors Non‑NAFLD NAFLD χ2 P

Shift work 12.026 0.002

Never shift 397 180

Once shift 395 188

Now shift 1350 818

Occupation high temperature 7.923 0.005

No 933 457

Yes 1209 729

Occupation noise 0.909 0.340

No 1061 567

Yes 1081 619

Occupational dust 7.606 0.006

No 1693 888

Yes 449 298

Table 4 Comparison of liver function index of steelworkers with 
and without NAFLD

Liver function 
index

Non‑NAFLD NAFLD χ2 P

ALT (U/L)  ≤ 40 2035 897 273.269  < 0.001

 > 40 107 289

AST (U/L)  ≤ 40 2120 1137 35.236  < 0.001

 > 40 22 49

GGT(U/L)  ≤ 50 1991 980 84.891  < 0.001

 > 50 151 206

TBIL (μmol/L) 3.4 ~ 17.1 1734 954 2.548 0.280

 < 3.4 21 6

 > 17.1 387 226
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to NAFLD than their female counterparts, whose preva-
lence rate was 17.86%. This pattern was observed even 
among children and adolescents, where males dem-
onstrated a higher NAFLD prevalence than females 
(17.86%) [23, 24]. These findings suggest that female 
sex acts as a protective factor against NAFLD. This can 
be attributed to the role of estrogen, which is known to 
encourage subcutaneous fat deposition and inhibit lipol-
ysis, thereby reducing the influx of free fatty acids (FFAs) 
to the liver. Moreover, estrogen impedes diet-induced de 

novo lipogenesis, thereby promoting higher hepatic met-
abolic activity in females [25]. Studies conducted on diet-
induced NAFLD in mice have revealed more pronounced 
liver steatosis in males than in females. Furthermore, 
the upregulation of fibroblast growth factor 21 (FGF21) 
expression in female liver tissues led to gender-specific 
browning of gonadal white adipose tissue to some extent, 
reinforcing the notion that NAFLD is a sexually dimor-
phic disease [26].

In the current study, being overweight or obese was 
identified as a significant contributing factor to NAFLD, 
corroborating previous research [27]. The liver, an essen-
tial organ in lipid and glucose metabolism, is particularly 
vulnerable to the effects of obesity [28]. Investigations 
have revealed upregulated expression of FTO (fat mass 
and obesity-associated gene), a known metabolic disease 
predictor, in both NAFLD patients and animal models 
and that abnormal hepatic signaling activity of FTO was 
associated with impaired metabolism in NAFLD [29]. 
This substantiates the notion that overweight or obe-
sity amplifies the risk of NAFLD at the molecular level. 
Moreover, individuals with dyslipidemia demonstrated 
a higher propensity toward NAFLD development in this 
study. Research by Tsuneto et  al. established a signifi-
cant link between the development of NAFLD, hyper-
triglyceridemia, and obesity [30]. Even in the nonobese 
population, elevated LDL-C levels independently influ-
enced the development of NAFLD [31]. Dyslipidemia 
in NAFLD patients is characterized by heightened TG 
and LDL-C levels and reduced HDL-C concentrations, a 
condition known as atherogenic dyslipidemia, leading to 

Table 5 Assignment table for variables

Variable Variable Meaning Assignment Method

Y NAFLD 0 = No, 1 = Yes

X1 Age 1 =  < 30, 2 = 30 ~ , 3 = 40 ~ , 4 = 50 ~ (year)

X2 Sex 1 = Male, 2 = Female

X3 BMI 1 =  < 24, 2 = 24 ~ , 3 = 28 ~ (kg/m)2

X4 Smoking status 1 = Never smoking, 2 = Quit smoking, 3 = Smoking

X5 DASH score 1 =  < 25, 2 =  ≥ 25

X6 Hypertension 0 = No, 1 = Yes

X7 Coronary heart disease 0 = No, 1 = Yes

X8 Diabetes 0 = No, 1 = Yes

X9 Dyslipidemia 0 = No, 1 = Yes

X10 Hyperuricemia 0 = No, 1 = Yes

X11 Shift work 1 = Never shift, 2 = Once shift, 3 = Now shift

X12 Occupation high temperature 0 = No, 1 = Yes

X13 Occupational dust 0 = No, 1 = Yes

X14 ALT 0 = Normal, 1 = Abnormal

X15 AST 0 = Normal, 1 = Abnormal

X16 GGT 1 = Normal, 2 = Low, 3 = High

Table 6 Multicollinearity diagnosis of the study variables

Variable Tolerance VIF

Age 0.914 1.094

Sex 0.840 1.190

BMI 0.874 1.144

Smoking status 0.878 1.139

DASH score 0.975 1.026

Hypertension 0.901 1.110

Coronary heart disease 0.978 1.023

Diabetes 0.942 1.062

Dyslipidemia 0.930 1.075

Shift work 0.961 1.041

Occupation high temperature 0.861 1.162

Occupational dust 0.912 1.096

Hyperuricemia 0.897 1.115

ALT 0.775 1.290

AST 0.857 1.167

GGT 0.872 1.147
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Table 7 Multivariate logistics regression analysis of risk factors for NAFLD in steel workers

Variable B S.E Wald df Sig Exp(B) 95% C.I. for Exp (B)

Lower Upper

Age (Year)

  < 30 3.420 3 0.331

 30 ~ 0.342 0.224 2.329 1 0.127 1.408 0.907 2.185

 40 ~ 0.234 0.221 1.122 1 0.289 1.263 0.820 1.946

 50 ~ 0.166 0.228 0.533 1 0.465 1.181 0.755 1.847

Sex -0.397 0.165 5.814 1 0.016 0.672 0.487 0.928

BMI (kg/m2)

  < 24 447.232 2  < 0.001

 24 ~ 1.604 0.113 200.331 1  < 0.001 4.971 3.981 6.207

 28 ~ 2.827 0.134 445.832 1  < 0.001 16.887 12.99 21.953

Hypertension 0.210 0.127 2.732 1 0.098 1.233 0.962 1.581

Coronary heart disease 0.332 0.368 0.813 1 0.367 1.393 0.677 2.867

Diabetes 0.368 0.212 3.026 1 0.082 1.445 0.954 2.187

Hyperuricemia 0.753 0.093 65.489 1  < 0.001 2.124 1.770 2.548

Dyslipidemia 0.839 0.179 21.985 1  < 0.001 2.315 1.630 3.288

Smoking status

 Never smoking 1.821 2 0.402

 Quit smoking -0.130 0.207 0.394 1 0.530 0.878 0.585 1.318

 Smoking 0.095 0.094 1.024 1 0.312 1.100 0.915 1.323

DASH score -0.058 0.090 0.415 1 0.520 0.943 0.790 1.126

Shift work

 Never shift 3.151 2 0.207

 Once shift 0.021 0.153 0.018 1 0.892 1.021 0.757 1.377

 Now shift 0.177 0.123 2.062 1 0.151 1.194 0.937 1.520

Occupation high temperature -0.140 0.096 2.140 1 0.144 0.869 0.720 1.049

Occupational dust 0.226 0.108 4.355 1 0.037 1.254 1.014 1.551

ALT 1.289 0.150 73.914 1  < 0.001 3.629 2.705 4.869

AST -0.198 0.343 0.333 1 0.564 0.820 0.419 1.607

GGT 0.272 0.145 3.527 1 0.060 1.312 0.988 1.743

Fig. 1 Confusion matrix of three models (True-0: actual non-NAFLD, True-1: actual NAFLD, Predictive-0: predicted non-NAFLD, Predictive-1: 
predictive NAFLD)
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an increased risk of CVD morbidity and mortality [32]. 
Therefore, proactive and effective lipid-lowering strat-
egies such as maintaining a healthy diet and adequate 
physical activity can not only aid in managing the popu-
lation’s prevalence of NAFLD but also prevent the onset 
of CVD, offering substantial health benefits.

Hyperuricemia (HUA) has been associated with mito-
chondrial dysfunction and reactive oxygen species pro-
duction, and it can activate AP-1 via the c-Jun N-terminal 
kinase (JNK) pathway. This upregulates the expression of 
adipogenic genes, thereby influencing the progression 

of NAFLD [33]. NAFLD is observed more frequently in 
individuals with HUA than in those with normal blood 
uric acid levels [34]. Notably, within the obese popula-
tion, for every unit increase in blood uric acid, the con-
trolled attenuation parameter (CAP) for liver fat escalates 
by 14 dB/m, implying that uric acid levels serve as a vital 
metabolic screening tool for NAFLD [35]. In this inves-
tigation, a significant correlation was observed between 
the prevalence of NAFLD and HUA among steelwork-
ers. Given that over half (52.44%) of the workers were 
overweight or obese, it is essential to place an increased 
emphasis on monitoring their blood uric acid levels.

This study identified an elevated risk of NAFLD among 
workers exposed to occupational dust. Dust, as a preva-
lent factor impacting the health of occupational groups, 
poses a significant risk for cardiovascular diseases such 
as hypertension and atherosclerosis [36]. Additionally, 
hypertension can independently affect fatty liver, suggest-
ing that dust may be associated with NAFLD [37]. A study 
conducted on the World Trade Centre General Responder 
Cohort (WTC GRC) in the USA found dust exposure to 
be a potent independent predictor of hepatic steatosis 
[38]. However, no additive or synergistic effect of dust 
was discovered in the investigation of noise and fatty liver 
[39]. Given the limited research on the impact of dust on 
NAFLD, further investigation in this area is warranted. 

Table 8 Comparison of the predictive performance of the three 
models

Evaluation index Logistic Random Forest XGBoost

Sensitivity 0.607 0.680 0.564

Precision 0.708 0.643 0.701

Accuracy 0.789 0.771 0.778

AUC 0.839 0.839 0.832

Brier 0.150 0.153 0.155

F1 0.654 0.661 0.625

Log loss 0.460 0.471 0.481

R2 0.789 0.771 0.778

Fig. 2 Calibration curves of the three models
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Furthermore, this study found abnormal ALT levels to 
be a significant risk factor for NAFLD, corroborating the 
findings of Shao et  al. [40]. After adjusting for sex, ALT 
was found to be a reliable predictor for the prevalence 
of NAFLD in both males and females, underscoring the 
importance of ALT in the diagnosis of NAFLD [24].

Previous research indicates that individuals with diabe-
tes exhibit an increased risk of progressing to advanced 
fibrosis [41]. NAFLD further contributes to the devel-
opment of diabetes by exacerbating both hepatic and 
peripheral insulin resistance and prompting the systemic 
release of proinflammatory cytokines and hepatic factors 

Fig. 3 ROC curves of the three models

Table 9 Logistic regression model of NAFLD for steelworkers

Variable B S.E Wald df Sig Exp(B) 95% C.I. for Exp (B)

Lower Upper

Sex (X Sex) -0.398 0.153 6.718 1 0.010 0.672 0.497 0.908

BMI (kg/m2)

  < 24 451.122 2  < 0.001

 24 ~ (X BMI1) 1.598 0.113 200.929 1  < 0.001 4.944 3.964 6.166

 28 ~ (X BMI2) 2.824 0.133 449.833 1  < 0.001 16.841 12.973 21.862

Hypertension (X HTN) 0.200 0.124 2.592 1 0.107 1.221 0.958 1.557

Diabetes (X DM) 0.345 0.209 2.733 1 0.098 1.412 0.938 2.126

Occupational dust (X Dust) 0.183 0.103 3.152 1 0.076 1.201 0.981 1.469

Hyperuricemia (X HUA) 0.763 0.092 69.233 1  < 0.001 2.145 1.792 2.567

ALT (X ALT) 1.276 0.142 81.131 1  < 0.001 3.581 2.713 4.727

GGT (X GGT ) 0.300 0.143 4.399 1 0.036 1.350 1.020 1.786

Dyslipidemia (X Dyslipidemia) 0.833 0.177 22.025 1  < 0.001 2.299 1.624 3.256

constant -2.570 0.110 549.931 1 0 0.077
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[42]. These findings underscore a robust association 
between diabetes and NAFLD. In the current study, how-
ever, the influence of diabetes mellitus on the prevalence 
of NAFLD was not statistically significant, which could 
potentially be attributed to the unique characteristics 
of the steelworker population. Compared to the general 
population, steelworkers undergoing an induction medi-
cal examination generally exhibit a superior physical 
condition, which could consequently reduce their sus-
ceptibility to certain diseases.

As science and technology advance, accompanied 
by the increasing digitization of information, machine 
learning has become progressively influential in the 
medical field. In pain medicine, support vector classifi-
cation (SVC) and convolutional neural network (CNN) 
algorithms have been extensively employed in research 
on pain assessment and diagnosis [43]. Models such as 
random forest and XGBoost have played pivotal roles in 
predicting the prognosis of gynecological diseases, spe-
cifically cervical cancer, and in the diagnosis of ovarian 
cancer [44]. The random forest algorithm, proposed in 
2001, stands as a representative of ensemble algorithms. 
It enhances prediction accuracy without necessitating 
a substantial increase in computing power and exhib-
its robust performance amidst random disturbances, 
regardless of outliers [45]. In contrast, the XGBoost algo-
rithm, introduced in 2016, embodies an efficient imple-
mentation of the gradient boosting concept, ensuring 
high computational efficiency while maintaining effec-
tive overfitting prevention attributes [46]. Despite being a 
classical prediction method, the logistic regression model 

has demonstrated commendable prediction outcomes in 
forecasting short-term asthma exacerbations when com-
pared to other machine learning models [47]. The pro-
cess of screening and modeling for disease-specific risk 
assessment facilitates earlier detection and treatment of 
diseases, thereby aiding in efficient disease diagnosis and 
management.

Upon reviewing the literature and the outcomes of the 
factor analyses, nine variables were incorporated into the 
assessment model analysis. The results indicated that the 
area under the curve (AUC) values for logistic regres-
sion, random forest, and XGBoost were 0.839, 0.839, 
and 0.832, respectively, with no substantial differences 
across other indicators. This suggests that all three mod-
els demonstrate commendable assessment performance. 
However, in practical implementations, it is imperative 
to consider both the interpretability and performance 
of the risk assessment model [48]. The logistic regres-
sion model, as a conventional modeling procedure, not 
only allows for the screening of potential influential fac-
tors of a disease but also provides a quantitative inter-
pretation of the impact of each variable. Evaluating the 
significance of each factor in differential diagnosis using 
odds ratio (OR) values enhances the model’s versatility 
in application [49, 50]. Compared to the random forest 
and XGBoost models, the logistic regression model can 
depict the prediction process in the form of exceptionally 
straightforward equations, resulting in greater transpar-
ency and interpretability, making it more apt for use in 
the medical domain. Hence, the logistic regression model 
was ultimately selected for this study to perform a risk 

Fig. 4 Nomogram for risk assessment of NAFLD in steelworkers (Sex-0: Male, Sex-1: Female, ALT-0: Normal, ALT-1: Abnormal, GGT-0: Normal, GGT-1: 
Abnormal, Other Indicators-0: No, Other Indicators-1: Yes)
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assessment of nonalcoholic fatty liver disease (NAFLD) 
in steelworkers. The evaluation of the NAFLD risk scor-
ing system revealed an accuracy rate of 74.97% and an 
AUC of 0.740, demonstrating effective risk identification 
and facilitating the advancement of early prevention and 
treatment of high-risk workers.

Study strengths and limitations
This study was grounded on the Beijing-Tianjin-Hebei 
Occupational Cohort, which ensured a high level of 

integrity and reliability in the results. To guarantee supe-
rior performance metrics, the model parameters were 
refined using fivefold cross-validation and a grid search. 
Moreover, we proposed a cutoff value for the nonal-
coholic fatty liver disease (NAFLD) risk score among 
steelworkers, thereby facilitating targeted NAFLD risk 
stratification among this workforce.

Nonetheless, several limitations were inherent to this 
research. First, the study’s outcomes were predicated upon 
a comparison between logistic regression, random forest, 

Fig. 5 ROC curve for screening NAFLD risk scores

Table 10 Classification results of the NAFLD disease risk scoring system

Risk stratification Score Total NAFLD(n%) χ2 P

No Yes

Low risk  < 86 1394 1141(81.85) 253(18.15) 521.324  < 0.001

High risk  ≥ 86 935 330(35.29) 605(64.71)
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and XGBoost assessment models without investigating 
the impact of other potential models. Second, the research 
was conducted specifically within a steelworker popula-
tion; thus, its findings cannot be generalized to the broader 
population. Third, the unique nature of the study cohort 
necessitated an internal validation approach, restricting 
our ability to evaluate the model’s predictive power for 
NAFLD prevalence among other steelworker groups.

Conclusion
Sex, BMI, dyslipidemia, hyperuricemia, occupational dust 
exposure, and ALT were influential NAFLD risk factors 
among steelworkers. For risk assessment studies of NAFLD 
in this demographic, the traditional logistic regression 
model exhibited comparable excellence to the random for-
est and XGBoost models. The optimal cutoff value for risk 
assessment was established at 86. This study offers clini-
cians a straightforward visual risk rating approach to evalu-
ate the likelihood of NAFLD in steelworkers, helping to 
identify and intervene early in those at risk.

Abbreviations
NAFLD  Nonalcoholic fatty liver disease
TC  Total cholesterol
TG  Triglyceride
HDL-C  High-density lipoprotein cholesterol

LDL-C  Low-density lipoprotein cholesterol
ALT  Alanine aminotransferase
AST  Aspartate aminotransferase
GGT   Glutamyl transpeptidase
T-bill  Total bilirubin
SBP  Systolic blood pressure
DBP  Diastolic blood pressure
FFAs  Free fatty acids
FGF21  Fibroblast growth factor 21
CVD  Cardiovascular disease
HUA  Hyperuricemia

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12944- 023- 01886-0.

Additional file 1.  

Additional file 2.  

Additional file 3.  

Additional file 4.  

Additional file 5.  

Additional file 6.  

Acknowledgements
The authors are grateful to the participants in this study and all members 
involved in collecting the baseline data.

Authors’ contributions
Design research, R.M. and J.W.; Methodology, H.W. and Z.S.; Project administra-
tion, X.W., Z.Z., H.L. and Y.Z.; Software, J.C., H.W.(Huan Wang) and J.H.; Validation, 

Fig. 6 ROC curve for establishing the NAFLD risk scoring system

https://doi.org/10.1186/s12944-023-01886-0
https://doi.org/10.1186/s12944-023-01886-0


Page 15 of 16Meng et al. Lipids in Health and Disease          (2023) 22:123  

L.X. and X.L.; Writing an original draft, R.M.; Writing review, J.S. and J.W.All 
authors responded to the modification of the study protocol and approved 
the final manuscript.

Funding
Supported by the project of high level group for research and innovation of 
School of Public Health, North China University of Science and Technology 
(KYTD202306) and the Youth Talent Promotion Program of School of Public 
Health, North China University of Science and Technology (QNRC202319).

Availability of data and materials
The datasets used and analyzed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
The research was approved by the Ethics Committee of the North China 
University of Science and Technology (No. 16040). Informed consent was 
obtained from all subjects involved in the study.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 School of Public Health, North China University of Science and Technology, 
Caofeidian New Town, No. 21 Bohai Avenue, Tangshan 063210, China. 

Received: 30 May 2023   Accepted: 28 July 2023

References
 1. National Workshop on Fatty L, Alcoholic Liver Disease CSoHCMA, Fatty 

Liver Expert Committee CMDA. Guidelines of prevention and treatment 
for nonalcoholic fatty liver disease: a 2018 update. Zhonghua Gan Zang 
Bing Za Zhi. 2018;26:195–203.

 2. Riazi K, Azhari H, Charette JH, Underwood FE, King JA, Afshar EE, Swain 
MG, Congly SE, Kaplan GG, Shaheen AA. The prevalence and incidence 
of NAFLD worldwide: a systematic review and meta-analysis. Lancet 
Gastroenterol Hepatol. 2022;7:851–61.

 3. Cotter TG, Rinella M. Nonalcoholic Fatty Liver Disease 2020: The State of 
the Disease. Gastroenterology. 2020;158:1851–64.

 4. Harrison SA, Gawrieh S, Roberts K, Lisanti CJ, Schwope RB, Cebe KM, 
Paradis V, Bedossa P, Aldridge Whitehead JM, Labordette A, et al. 
Prospective evaluation of the prevalence of nonalcoholic fatty liver dis-
ease and steatohepatitis in a large middle-aged US cohort. J Hepatol. 
2021;75:284–91.

 5. Zhang X, Wu M, Liu Z, Yuan H, Wu X, Shi T, Chen X, Zhang T. Increasing 
prevalence of NAFLD/NASH among children, adolescents and young 
adults from 1990 to 2017: a population-based observational study. BMJ 
Open. 2021;11:e042843.

 6. Gutierrez-Grobe Y, Ponciano-Rodriguez G, Ramos MH, Uribe M, Mendez-
Sanchez N. Prevalence of non alcoholic fatty liver disease in premeno-
pausal, posmenopausal and polycystic ovary syndrome women The role 
of estrogens. Ann Hepatol. 2010;9:402–9.

 7. Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of 
nonalcoholic fatty liver disease (NAFLD). Metabolism. 2016;65:1038–48.

 8. Ding Y, Li B, Yan S, Zhang W, Guan S, Xing L, Lu C. Survey on the current 
prevalence of key chronic diseases among iron and steel workers in 
Anshan Steel in 2020. Occup Health Damage. 2022;37:133–7.

 9. Diehl AM, Day C. Cause, Pathogenesis, and Treatment of Nonalcoholic 
Steatohepatitis. N Engl J Med. 2017;377:2063–72.

 10. Zhang S, Wang Y, Wang Z, Wang H, Xue C, Li Q, Guan W, Yuan J. Rotating 
night shift work and nonalcoholic fatty liver disease among steelworkers 
in China: a cross-sectional survey. Occup Environ Med. 2020;77:333–9.

 11. Fatty Liver and Alcoholic Liver Disease Study Group of the Chinese Soci-
ety of Hepatology. Guidelines for diagnosis and treatment of alcoholic 
liver disease (revised in 2010). Chin J Hepatol. 2010;18:167–70.

 12. Chinese Diabetes Society. Chinese Guidelines for the Prevention and 
Treatment of Type 2 diabetes (2017 Edition). Chin J Pract Intern Med. 
2018;38:292-344.

 13. Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D, 
Ramirez A, Schlaich M, Stergiou GS, Tomaszewski M, et al. 2020 Interna-
tional Society of Hypertension Global Hypertension Practice Guidelines. 
Hypertension. 2020;75:1334–57.

 14. Zhu J, Gao R, Zhao S, Lu G, Zhao D, Li J. Guidelines for the prevention and 
treatment of dyslipidemia in Chinese adults (revised in 2016). Chin Circ J. 
2016;31:937–53.

 15. Lou X, He Q. Validity and Reliability of the International Physical Activity 
Questionnaire in Chinese Hemodialysis Patients: A Multicenter Study in 
China. Med Sci Monit. 2019;25:9402–8.

 16. Fung TT, Chiuve SE, McCullough ML, Rexrode KM, Logroscino G, Hu FB. 
Adherence to a DASH-style diet and risk of coronary heart disease and 
stroke in women. Arch Intern Med. 2008;168:713–20.

 17. Branch of Liver Physicians of Chinese Medical Doctor Association. Prac-
tice guide for diagnosis and treatment of hyperuricemia in kidney disease 
in China (2017 version). Nat Med J China. 2017;97:1927–36.

 18. Ministry of Health of the People’s Republic of China. GBZ/T 
192.1–2007-Determination of dust in the air of workplace Part 1: Total 
dust concentration. Beijing: Standards Press of China; 2007.

 19. Ministry of Health of the People’s Republic of China. GBZT189.7–
2007-Measurement of Physical Agents in Workplace Part 7: Heart Stress. 
Beijing: Standards Press of China; 2007.

 20. Ministry of Health of the People’s Republic of China. GBZ/T229.4–
2012-Classification of Occupational Hazards at Workplaces Part 4: Occu-
pational Exposure to Noise. Beijing: Standards Press of China; 2012.

 21. Riley RD, Ensor J, Snell KIE, Harrell FE Jr, Martin GP, Reitsma JB, Moons 
KGM, Collins G, van Smeden M. Calculating the sample size required for 
developing a clinical prediction model. BMJ. 2020;368:m441.

 22. Zhou J, Zhou F, Wang W, Zhang XJ, Ji YX, Zhang P, She ZG, Zhu L, Cai J, 
Li H. Epidemiological Features of NAFLD From 1999 to 2018 in China. 
Hepatology. 2020;71:1851–64.

 23. Anderson EL, Howe LD, Jones HE, Higgins JP, Lawlor DA, Fraser A. 
The Prevalence of Non-Alcoholic Fatty Liver Disease in Children and 
Adolescents: A Systematic Review and Meta-Analysis. PLoS ONE. 
2015;10:e0140908.

 24. Villanueva-Ortega E, Garces-Hernandez MJ, Herrera-Rosas A, Lopez-
Alvarenga JC, Laresgoiti-Servitje E, Escobedo G, Queipo G, Cuevas-
Covarrubias S, Garibay-Nieto GN. Gender-specific differences in clinical 
and metabolic variables associated with NAFLD in a Mexican pediatric 
population. Ann Hepatol. 2019;18:693–700.

 25. Della Torre S. Nonalcoholic Fatty Liver Disease as a Canonical Example 
of Metabolic Inflammatory-Based Liver Disease Showing a Sex-Specific 
Prevalence: Relevance of Estrogen Signaling. Front Endocrinol (Lausanne). 
2020;11:572490.

 26. Lee YH, Kim SH, Kim SN, Kwon HJ, Kim JD, Oh JY, Jung YS. Sex-specific 
metabolic interactions between liver and adipose tissue in MCD diet-
induced nonalcoholic fatty liver disease. Oncotarget. 2016;7:46959–71.

 27. Milic S, Lulic D, Stimac D. Nonalcoholic fatty liver disease and obesity: 
biochemical, metabolic and clinical presentations. World J Gastroenterol. 
2014;20:9330–7.

 28. Gutierrez-Cuevas J, Santos A, Armendariz-Borunda J: Pathophysiological 
Molecular Mechanisms of Obesity: A Link between MAFLD and NASH 
with Cardiovascular Diseases. Int J Mol Sci. 2021;22:11629.

 29. Ma L, Hao J, Hu X, Zhao Z, Zhou L, Xin Y. The relationship between fat 
content, obesity related gene polymorphism and susceptibility to nonal-
coholic fatty liver disease. J Clin Hepatol. 2022;38:2723–6.

 30. Tsuneto A, Hida A, Sera N, Imaizumi M, Ichimaru S, Nakashima E, Seto S, 
Maemura K, Akahoshi M. Fatty liver incidence and predictive variables. 
Hypertens Res. 2010;33:638–43.

 31. Sun DQ, Wu SJ, Liu WY, Wang LR, Chen YR, Zhang DC, Braddock M, Shi KQ, 
Song D, Zheng MH. Association of low-density lipoprotein cholesterol 
within the normal range and NAFLD in the nonobese Chinese popula-
tion: a cross-sectional and longitudinal study. BMJ Open. 2016;6:e013781.

 32. Katsiki N, Mikhailidis DP, Mantzoros CS. Nonalcoholic fatty liver disease 
and dyslipidemia: An update. Metabolism. 2016;65:1109–23.



Page 16 of 16Meng et al. Lipids in Health and Disease          (2023) 22:123 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 33. Xie D, Zhao H, Lu J, He F, Liu W, Yu W, Wang Q, Hisatome I, Yamamoto 
T, Koyama H, Cheng J. High uric acid induces liver fat accumula-
tion via ROS/JNK/AP-1 signaling. Am J Physiol Endocrinol Metab. 
2021;320:E1032–43.

 34. Abbasi S, Haleem N, Jadoon S, Farooq A. Association Of Non-Alcoholic 
Fatty Liver Disease With Serum Uric Acid. J Ayub Med Coll Abbottabad. 
2019;31:64–6.

 35. De Nucci S, Castellana F, Zupo R, Lampignano L, Di Chito M, Rinaldi R, 
Giannuzzi V, Cozzolongo R, Piazzolla G, Giannelli G, et al. Associations 
between serum biomarkers and nonalcoholic liver disease: Results 
of a clinical study of Mediterranean patients with obesity. Front Nutr. 
2022;9:1002669.

 36. Cue S, Yuan J. Analysis of the association between cumulative dust 
exposure and hypertension in workers of a large steel mill based on a 
restricted cubic spline model. Chin J Publ Heal. 2020;36:1286–91.

 37. Oikonomou D, Georgiopoulos G, Katsi V, Kourek C, Tsioufis C, Alexo-
poulou A, Koutli E, Tousoulis D. Nonalcoholic fatty liver disease and 
hypertension: coprevalent or correlated? Eur J Gastroenterol Hepatol. 
2018;30:979–85.

 38. Jirapatnakul A, Yip R, Branch AD, Lewis S, Crane M, Yankelevitz DF, Hen-
schke CI. Dose-response relationship between World Trade Center dust 
exposure and hepatic steatosis. Am J Ind Med. 2021;64:837–44.

 39. Liang J, Zhou H, Cen Z, Liao Y, Liu Y. Health survey and analysis of workers 
exposed to noise and dust in a candy manufacturing enterprise. Chin J 
Ind Hyg Occup Dis. 2021;39:511–5.

 40. Shao C, Cheng Q, Zhang S, Xiang X, Xu Y. Serum level of free thyroxine is 
an independent risk factor for nonalcoholic fatty liver disease in euthy-
roid people. Ann Palliat Med. 2022;11:655–62.

 41. Ciardullo S, Perseghin G. Prevalence of elevated liver stiffness in patients 
with type 1 and type 2 diabetes: A systematic review and meta-analysis. 
Diabetes Res Clin Pract. 2022;190:109981.

 42. Targher G, Corey KE, Byrne CD, Roden M. The complex link between 
NAFLD and type 2 diabetes mellitus - mechanisms and treatments. Nat 
Rev Gastroenterol Hepatol. 2021;18:599–612.

 43. Matsangidou M, Liampas A, Pittara M, Pattichi CS, Zis P. Machine Learn-
ing in Pain Medicine: An Up-To-Date Systematic Review. Pain Ther. 
2021;10:1067–84.

 44. Akazawa M, Hashimoto K. Artificial intelligence in gynecologic cancers: 
Current status and future challenges - A systematic review. Artif Intell 
Med. 2021;120:102164.

 45. Li X. Application of stochastic forest model in classification and regression 
analysis. Chinese Bull Entomol. 2013;50:1190–7.

 46. Li Z, Liu Z. Feature selection algorithm based on XG Boost. J Commun. 
2019;40:101–8.

 47. de Hond AAH, Kant IMJ, Honkoop PJ, Smith AD, Steyerberg EW, Sont JK. 
Machine learning did not beat logistic regression in time series predic-
tion for severe asthma exacerbations. Sci Rep. 2022;12:20363.

 48. Zhang Y, Razbek J, Li D, Yang L, Bao L, Xia W, Mao H, Daken M, Zhang X, 
Cao M. Construction of Xinjiang metabolic syndrome risk prediction 
model based on interpretable models. BMC Public Health. 2022;22:251.

 49. Xie D, Lai R, Fu X, Wang H, Nie S. Prediction of nosocomial infection in ICU 
patients by logistic regression model. Chin J Nosocomiol. 2011;21:2424–6.

 50. Chang Y, Yang J, Leng P. Application of Logistic Regression Model to 
Evaluate the Value of Ultrasound Elastography in the Differential Diagno-
sis of Breast Nodules. J Med. 2017;46:109–12.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Analysis of factors affecting nonalcoholic fatty liver disease in Chinese steel workers and risk assessment studies
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Study Subject
	Collection of information
	Laboratory tests
	NAFLD diagnostic criteria
	Variable definition
	Diabetes [12]
	Hypertension [13]
	Dyslipidemia [14]
	Physical activity [15]
	Body mass index
	Diet [16]
	Hyperuricemia [17]
	Smoking
	Shift work
	Occupation dust [18]
	Occupation high temperature [19]
	Occupation noise [20]

	Sample size calculation
	Construction of the model
	Statistical analysis
	Quality control

	Research findings
	Single-factor analysis
	Multifactor analysis
	Risk assessment model for steelworkers

	Discussion
	Study strengths and limitations

	Conclusion
	Anchor 37
	Acknowledgements
	References


