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Abstract 

Background The absence of distinct symptoms in the majority of individuals with metabolic dysfunction-associated 
fatty liver disease (MAFLD) poses challenges in identifying those at high risk, so we need simple, efficient and cost-
effective noninvasive scores to aid healthcare professionals in patient identification. While most noninvasive scores 
were developed for the diagnosis of nonalcoholic fatty liver disease (NAFLD), consequently, the objective of this study 
was to systematically assess the diagnostic ability of 12 noninvasive scores (METS-IR/TyG/TyG-WC/TyG-BMI/TyG-WtHR/
VAI/HSI/FLI/ZJU/FSI/K-NAFLD) for MAFLD.

Methods The study recruited eligible participants from two sources: the National Health and Nutrition Examination 
Survey (NHANES) 2017-2020.3 cycle and the database of the West China Hospital Health Management Center. The 
performance of the model was assessed using various metrics, including area under the receiver operating character-
istic curve (AUC), net reclassification index (NRI), integrated discrimination improvement (IDI), decision curve analysis 
(DCA), and subgroup analysis.

Results A total of 7398 participants from the NHANES cohort and 4880 patients from the Western China cohort were 
included. TyG-WC had the best predictive power for MAFLD risk in the NHANES cohort (AUC 0.863, 95% CI 0.855–
0.871), while TyG-BMI had the best predictive ability in the Western China cohort (AUC 0.903, 95% CI 0.895–0.911), out-
performing other models, and in terms of IDI, NRI, DCA, and subgroup analysis combined, TyG-WC remained superior 
in the NAHANES cohort and TyG-BMI in the Western China cohort.

Conclusions TyG-BMI demonstrated satisfactory diagnostic efficacy in identifying individuals at a heightened risk 
of MAFLD in Western China. Conversely, TyG-WC exhibited the best diagnostic performance for MAFLD risk recogni-
tion in the United States population. These findings suggest the necessity of selecting the most suitable predictive 
models based on regional and ethnic variations.
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analysis
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Introduction
Nonalcoholic fatty liver disease (NAFLD) has emerged 
as the predominant etiology of chronic liver disease on 
a global scale, affecting approximately one-third of the 
world’s population [1]. Additionally, NAFLD is intricately 
linked with comorbidities such as diabetes, hyperten-
sion, insulin resistance (IR), dyslipidemia, and height-
ened susceptibility to cardiovascular disease [2–4]. As 
research and comprehension of NAFLD have advanced, 
the initial “exclusionary” concept and diagnostic criteria 
are no longer deemed suitable for directing clinical prac-
tice and scientific investigation. Consequently, the inter-
national hepatology community has recommended the 
adoption of a new disease name, metabolic dysfunction-
associated fatty liver disease (MAFLD), and correspond-
ing diagnostic criteria to supersede the original NAFLD 
disease name and diagnostic criteria [5, 6]. Nevertheless, 
the majority of MAFLD patients remain asymptomatic, 
underscoring the necessity to explore an efficacious tool 
for predicting and diagnosing fatty liver at an early stage. 
Noninvasive diagnostic scoring has garnered significant 
clinical attention in recent years, owing to its noninvasive 
nature, ease of use, reproducibility, and minimal operator 
skill requirements, which is particularly useful for early 
screening and assessment of MAFLD [7].

IR has been identified as a crucial factor in the patho-
genesis of fatty liver disease [8, 9]. The triglyceride glu-
cose (TyG) index, which comprises fasting plasma 
glucose (FPG) and triglycerides (TG), has emerged as a 
dependable alternative marker of IR [10, 11]. Further-
more, numerous investigations have demonstrated that 
TyG-related indices derived from TyG (TyG-BMI/TyG-
WC/TyG-WtHR) exhibit superior predictive capability 
for IR, owing to the robust correlation between IR and 
obesity, waist circumference (WC), and waist-to-height 
ratio (WtHR) [12, 13]. Consequently, subsequent investi-
gations have evaluated the diagnostic potential of TyG-
related indices for NAFLD in light of these discoveries, 
but there were significant differences in diagnostic effi-
cacy between articles, and the metrics assessed by these 
studies stopped at comparing the area under the receiver 
operating characteristic curve (AUC) [14–19]. Similarly, 
the metabolic score for insulin resistance (METS-IR) 
[20], a recently proposed alternative index to IR, has also 
been shown to have good predictive value for NAFLD 
[21, 22]. The predictive value of TyG-related indices and 
METS-IR in MAFLD should be further validated in all 
aspects.

Additionally, there are previously constructed nonin-
vasive diagnostic models for NAFLD that should also be 
validated in MAFLD. The hepatic steatosis index (HSI) 
[23], developed by Lee et  al. in Korea in 2010, utilizes 
ultrasonography and incorporates the ALT/AST ratio, 

BMI, and presence of diabetes as its components. Simi-
larly, the visceral adiposity index (VAI) [24], developed 
in Italy in 2010 by Amato et  al., employs ultrasonogra-
phy as a diagnostic criterion for fatty liver and includes 
WC, BMI, TG, and HDL. The lipid accumulation prod-
uct (LAP) [25], introduced in 2005, is an index that uti-
lizes the National Health and Nutrition Examination 
Survey (NHANES) III data and comprises WC and TG 
as its components. The fatty liver index (FLI) is a widely 
utilized diagnostic model for fatty liver disease that was 
established in Italy in 2006 by Bedogni et  al. [26]. This 
model employs ultrasonography as a diagnostic crite-
rion and incorporates variables such as body mass index 
(BMI), waist circumference (WC), triglycerides (TG), and 
γ-glutamyl transferase (GGT). In 2015, the Zhejiang Uni-
versity index (ZJU) [27] was developed in China, which 
includes BMI, FPG, TG, and the ALT/AST ratio. Addi-
tionally, the Framingham steatosis index (FSI) [28] was 
constructed by Long et  al. in 2016 in the United States 
based on computed tomography (CT) and includes vari-
ables such as age, sex, BMI, ALT/AST ratio, presence of 
hypertension, and diabetes. Jeong et al. [29] employed a 
sample size of 3,634 individuals from the Korean National 
Health and Nutrition Examination Survey (KNHANES) 
conducted between 2008 and 2010. They developed the 
KNHANES NAFLD (K-NAFLD) score, incorporating 
variables such as sex, WC, systolic blood pressure (SBP), 
FPG, TG, and ALT.

However, the majority of the noninvasive indices and 
models mentioned above were developed for the diagno-
sis of NAFLD, and their applicability to MAFLD requires 
further validation. Consequently, this study aims to sys-
tematically validate the diagnostic accuracy of 12 nonin-
vasive scores for MAFLD, utilizing the NHANES dataset 
and the dataset from the Health Management Center of 
West China Hospital at Sichuan University. Upon review-
ing the pertinent literature, we discovered that this study 
represents the most extensive investigation of noninva-
sive models, providing a more comprehensive evaluation.

Materials and methods
Data sources
The present study sourced its data from NHANES 2017-
2020.3, a research initiative that employs a sophisticated, 
multistage, probability sampling technique to gather a 
representative sample for evaluating the health and nutri-
tional status of both adults and children in the United 
States. The NHANES study protocol was backed by the 
National Center for Health Statistics (NCHS). Moreover, 
an additional Western China cohort was sourced from 
the Health Management Center of West China Hospital 
at Sichuan University. The study protocol was approved 
by the Ethics Committee of West China Hospital at 
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Sichuan University and was conducted in accordance 
with the ethical principles delineated in the Declara-
tion of Helsinki. Furthermore, the present investigation 
adhered to the identical methodology as delineated in 
the Transparent Reporting of a Multivariable Predictive 
Model for Individual Prognosis or Diagnosis (TRIPOD) 
guidelines [30].

Laboratory measurement and clinical data
The NHANES dataset and the Health Management 
Center dataset of West China Hospital at Sichuan Univer-
sity were utilized as the primary sources for all variables, 
encompassing demographic parameters, anthropomet-
ric parameters, comorbidities, and laboratory factors, as 
expounded upon in the Supplementary information. The 
online supplement provides definitions of demographics, 
lifestyle, and comorbidities, including racial status, diabe-
tes [31], and hypertension [32]. Formulas for calculating 
METS-IR [20], TyG [11], TyG-BMI [13], TyG-WC [33], 
TyG-WtHR [12], HSI [23], VAI [24], FLI [26], LAP [25], 
ZJU [27], FSI [28], and K-NAFLD [29] are shown in the 
online supplement as well.

Definition of MAFLD
The utilization of the controlled attenuation param-
eter (CAP) via VCTE proves advantageous in identify-
ing individuals afflicted with hepatic steatosis [34, 35]. 
The current investigation incorporates a threshold of 
CAP ≥ 258 dB/m to indicate the presence of substantial 
hepatic steatosis, which is based on prior research [36]. 
The most recent expert consensus delineates the diagno-
sis of MAFLD as the presence of hepatic steatosis in con-
junction with one or more of the following: overweight/
obesity, diabetes, or metabolic dysfunction (details are 
available in the Supplementary Materials) [5, 6].

Statistical analyses
R (version 4.2.2) was used for statistical analyses. Statisti-
cal significance was defined as P < 0.05. Continuous varia-
bles are shown as the mean ± standard deviation (SD) and 
were compared by Student’s t test or the Mann‒Whitney 
U test. Categorical values are shown as % and were com-
pared using the χ2 test.

To evaluate the predictive value of noninvasive indices 
and models, the investigation generated receiver operat-
ing characteristic (ROC) curves and contrasted specific 
parameters, such as AUC, sensitivity (SEN), specificity 
(SPE), positive predictive value (PPV), and negative pre-
dictive value (NPV). The Delong approach was employed 
to ascertain whether there were statistically significant 
disparities in AUC between noninvasive scores [37]. Fur-
thermore, the present study determined optimal cutoff 
values utilizing the Youden index. Additionally, subgroup 
analysis was conducted based on demographic charac-
teristics such as age, sex, and race, as well as health indi-
cators including overweight status, hypertension, and 
diabetes. Moreover, given the nonintuitive nature of the 
significance of AUC increments, the study also employed 
integrated discrimination improvement (IDI), net weight 
classification index (NRI) [38, 39], and decision curve 
analysis (DCA) [40] to further evaluate the findings.

Results
Characteristics of the study population
 Excluding participants without significant variables, a 
total of 7398 subjects were included in the NHANES 
cohort from the 10,409 subjects in the 2017-2030.3 
NHANES cycle, as depicted in Fig. 1. Likewise, a Western 
China cohort comprising 4880 patients with valid VCTE 
and key variables was recruited between 2018 and 2022 
at the West China Hospital of Sichuan University. Both 

Fig. 1 Flow diagram of study design
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cohorts were grouped according to whether they met the 
diagnostic criteria for MAFLD [5, 6].

Table  1 presents the demographic and clinical fea-
tures of the two cohorts, namely, the NHANES cohort 
and the Western China cohort. The NHANES cohort 
exhibited a MAFLD prevalence of 50.68%, with a mean 
age of 48.96 ± 18.06 years (45.70 ± 18.99 in the non-
MAFLD group and 52.12 ± 16.49 in the MAFLD group). 
Notably, significant differences in baseline characteris-
tics were observed between participants with and with-
out MAFLD, except for creatinine (CRE). In contrast, 
the Western China cohort demonstrated a MAFLD 
prevalence of 31.80%, with a mean age of 44.15 ± 12.14 
years (43.64 ± 12.22 in the non-MAFLD group and 
45.23 ± 11.89 in the MAFLD group). Similarly, statisti-
cally significant differences in all baseline characteristics 
were observed between participants with and without 
MAFLD in this cohort.

In each of the studied cohorts, it was observed that 
individuals diagnosed with MAFLD exhibited a greater 
tendency toward advanced age, male sex, and a higher 
prevalence of hypertension and diabetes. Additionally, 
these subjects demonstrated elevated levels of a range 
of noninvasive indices and models, including METS-IR, 
TyG, TyG-BMI, TyG-WC, TyG-WtHR, HSI, VAI, FLI, 
LAP, ZJU, FSI, and K-NAFLD.

Performances of noninvasive indices and models 
in predicting MAFLD risk in the NHANES cohort
 The performance of noninvasive indices or models in 
predicting MAFLD risk in the NHANES cohort was 
evaluated using ROC curves (Fig. 2A), with AUCs rang-
ing from 0.741 to 0.863. As presented in Table  2, the 
TyG-WC exhibited the largest AUC (0.863, 95% CI: 
0.855–0.871), followed by FLI (0.859 (0.851–0.867)), 
FSI (0.858 (0.850–0.867)), TyG-WtHR (0.853 (0.845–
0.862)), TyG-BMI (0.850 (0.841–0.859)), METS-IR (0.846 
(0.837–0.854)), ZJU (0.845 (0.836–0.854)), K-NAFLD 
(0.838 (0.829–0.847)), HSI (0.835 (0.826–0.844)), LAP 
(0.834 (0.825–0.843)), TyG (0.746 (0.735–0.757)), and 
VAI (0.741 (0.730–0.752)). Moreover, an evaluation of 
12 noninvasive scores in the NHANES cohort through 
pairwise comparison demonstrated that TyG-WC exhib-
ited superior predictive performance, as evidenced by a 
statistically significant difference in AUC compared to 
the remaining 11 noninvasive scores (all P < 0.05) (Sup-
plementary Table  1). There was 70.2% specificity (SPE), 
85.9% sensitivity (SEN), 82.9% negative predictive value 
(NPV), and 74.8% positive predictive value (PPV) for 
TyG-WC, while the cutoff value was 822.332 Table 3.

To enhance the evaluation of the potential of nonin-
vasive scores in identifying MAFLD risk, NRI and IDI 
were computed due to the nonintuitive and intricate 

nature of AUC increments. The outcomes revealed that 
the NRI and IDI values between TyG-WC and METS-IR/
TyG/TyG-BMI/HSI/VAI/LAP/ZJU/FSI/K-NAFLD were 
greater than 0 and significantly different (all P < 0.05). 
Conversely, the NRI and IDI between TyG-WC and TyG-
WtHR/FLI were not statistically significant, as indicated 
in Supplementary Table 1.

 The study conducted subgroup analyses by stratify-
ing the participants into distinct subgroups according to 
variables such as sex, race, age, overweight status, and 
the presence of diabetes or hypertension. The results, as 
shown in Fig.  3 and Supplementary Tables  3–14, indi-
cate that the TyG-WC demonstrated the highest AUC 
among subgroups of male, female, non-Hispanic Black, 
non-Hispanic White, individuals aged < 60 years, those 
aged ≥ 60 years, individuals with overweight, individu-
als with hypertension, individuals without diabetes, and 
individuals with diabetes. However, in subgroups of 
Other Hispanic, non-Hispanic Asian, Mexican Ameri-
can, other races, individuals with nonoverweight, and 
nonhypertensive individuals, the AUC of TyG-WC was 
not the highest, although the difference was not statisti-
cally significant when compared to the noninvasive score 
with the highest AUC in each subgroup.

 Furthermore, this study employed DCA to evaluate 
the clinical usefulness of noninvasive scores by quantify-
ing the probability of net benefit across thresholds rang-
ing from 0.0 to 1.0. The results, as depicted in Fig.  4A, 
indicate that TyG-WC exhibited a superior net benefit 
compared to other models within a threshold range of 
approximately 0.02–0.92, with a maximum net benefit of 
0.50.

In summary, the aforementioned findings indicate that 
the combined predictive value of TyG-WC for MAFLD 
risk in the NHANES cohort is superior to other indices.

Performances of noninvasive indices and models 
in predicting MAFLD risk in the western China cohort
Figure  2B depicts the ROC curves of 12 noninvasive 
scores for predicting MAFLD risk in the Western China 
cohort, with AUCs ranging from 0.773 to 0.903. Notably, 
unlike the NHANES cohort, the TyG-BMI score exhib-
ited the largest AUC (0.903; 95% CI: 0.895–0.911), fol-
lowed by ZJU (0.900 (0.891–0.908)), METS-IR (0.896 
(0.888–0.905)), FLI (0.879 (0.869–0.888)), TyG-WC 
(0. 873 (0.864–0.883)), HSI (0.873 (0.863–0.883)), FSI 
(0.872 (0.863–0.882)), TyG-WtHR (0.866 (0.856–0.876)), 
LAP (0.854 (0.843–0.864)), K-NAFLD (0.836 (0.825–
0.847)), TyG (0.776 (0.762–0.789)), and VAI (0.773 
(0.759–0.786)). Upon conducting additional pairwise 
comparisons of AUC differences, it was determined that 
TyG-BMI exhibited statistically significant differences 
from the remaining 10 noninvasive scores (all P < 0.05), 
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Table 1 Baseline characteristics of participants with or without MAFLD assessed by VCTE in the NHANES cohort and the Western 
China cohort

Variables NHANES cohort Western China cohort

Non-MAFLD (n = 3649) MAFLD (n = 3749) P value Non-MAFLD (n = 3328) MAFLD (n = 1552) P value

Demographic parameters
 Age (years) 45.70 ± 18.99 52.12 ± 16.49 < 0.001 43.64 ± 12.22 45.23 ± 11.89 < 0.001

 Sex (%) < 0.001 < 0.001

  Female 1996 (54.70%) 1750 (46.68%) 1639 (49.25%) 303 (19.52%)

  Male 1653 (45.30%) 1999 (53.32%) 1689 (50.75%) 1249 (80.48%)

 Race (%) < 0.001 -

  Non-Hispanic Black 1028 (28.17%) 828 (22.09%) - -

  Non-Hispanic White 1235 (33.84%) 1359 (36.25%) - -

  Other Hispanic 362 (9.92%) 409 (10.91%) - -

  Non-Hispanic Asian 513 (14.06%) 378 (10.08%) - -

  Mexican American 331 (9.07%) 596 (15.90%) - -

  Other races 180 (4.93%) 179 (4.77%) - -

Anthropometric parameters
 WC (cm) 90.51 ± 13.43 109.80 ± 15.01 < 0.001 60.33 ± 9.85 75.30 ± 10.65 < 0.001

 WtHR 0.55 ± 0.08 0.66 ± 0.09 < 0.001 0.47 ± 0.05 0.54 ± 0.04 < 0.001

 BMI (kg/m2) 26.06 ± 5.44 33.35 ± 7.02 < 0.001 22.17 ± 2.55 26.60 ± 2.51 < 0.001

VCTE parameters
 CAP (dB/m) 213.26 ± 35.47 314.24 ± 39.31 < 0.001 221.48 ± 25.34 287.23 ± 23.95 < 0.001

 LSM (kPa) 5.15 ± 4.10 6.76 ± 5.84 < 0.001 4.93 ± 1.01 5.62 ± 1.11 < 0.001

Serum test
 ALT (U/L) 18.83 ± 19.02 25.73 ± 18.38 < 0.001 21.04 ± 15.46 35.72 ± 23.75 < 0.001

 AST (U/L) 21.19 ± 15.43 22.56 ± 13.28 < 0.001 21.58 ± 11.37 25.94 ± 12.13 < 0.001

 ALP (U/L) 74.46 ± 26.03 81.16 ± 25.37 < 0.001 72.56 ± 21.16 81.03 ± 22.04 < 0.001

 GGT (U/L) 26.22 ± 55.77 36.89 ± 46.53 < 0.001 26.56 ± 33.27 48.19 ± 50.57 < 0.001

 CRE (umol/L) 78.62 ± 39.12 79.77 ± 41.76 0.223 74.10 ± 15.93 81.50 ± 26.99 < 0.001

 eGFR (ml/min/m2) 98.05 ± 23.95 93.09 ± 23.18 < 0.001 98.82 ± 14.96 95.56 ± 14.50 < 0.001

 UA (umol/L) 298.94 ± 79.40 342.24 ± 87.21 < 0.001 321.70 ± 81.35 387.55 ± 88.18 < 0.001

 FPG (umol/L) 5.17 ± 1.27 6.07 ± 2.36 < 0.001 4.93 ± 0.96 5.46 ± 1.52 < 0.001

 TG (umol/L) 1.21 ± 0.78 1.86 ± 1.29 < 0.001 1.31 ± 1.25 2.20 ± 1.58 < 0.001

 TC (umol/L) 4.70 ± 1.02 4.87 ± 1.06 < 0.001 4.79 ± 0.90 4.96 ± 0.94 < 0.001

 HDL (umol/L) 1.50 ± 0.41 1.26 ± 0.36 < 0.001 1.49 ± 0.38 1.18 ± 0.27 < 0.001

Noninvasive indices and models
 TyG 8.37 ± 0.54 8.90 ± 0.64 < 0.001 8.36 ± 0.59 8.98 ± 0.62 < 0.001

 TyG-BMI 218.59 ± 50.10 296.81 ± 65.24 < 0.001 186.00 ± 29.41 239.05 ± 29.79 < 0.001

 TyG-WC 759.51 ± 135.51 977.98 ± 153.37 < 0.001 652.72 ± 102.74 815.28 ± 98.47 < 0.001

 TyG-WtHR 4.58 ± 0.84 5.85 ± 0.91 < 0.001 3.96 ± 0.58 4.86 ± 0.56 < 0.001

 METS-IR 36.99 ± 9.39 51.46 ± 12.33 < 0.001 31.40 ± 5.79 41.69 ± 6.19 < 0.001

 HSI 34.30 ± 6.45 43.78 ± 8.06 < 0.001 30.70 ± 4.13 37.71 ± 4.80 < 0.001

 VAI 1.52 ± 1.60 2.81 ± 2.58 < 0.001 1.53 ± 2.79 2.92 ± 2.89 < 0.001

 LAP 37.39 ± 33.12 88.53 ± 65.59 < 0.001 23.41 ± 29.28 60.81 ± 50.99 < 0.001

 FLI 34.73 ± 28.07 75.70 ± 22.75 < 0.001 18.15 ± 19.20 53.45 ± 24.11 < 0.001

 ZJU 36.15 ± 6.24 45.55 ± 7.91 < 0.001 32.21 ± 3.60 38.61 ± 4.03 < 0.001

 FSI -2.00 ± 1.38 0.23 ± 1.67 < 0.001 -2.71 ± 1.24 -0.86 ± 1.42 < 0.001

 K-NAFLD -2.24 ± 2.80 1.14 ± 3.08 < 0.001 -3.31 ± 2.33 0.01 ± 3.24 < 0.001

Metabolic diseases
 Hypertension < 0.001 < 0.001

  No 2701 (74.02%) 2015 (53.75%) 3036 (91.23%) 1226 (78.99%)
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Continuous variables are shown as mean ± SD and compared by Student’s t-test or Mann-Whitney U-test. Categorical values are shown as % and compared using the 
χ2 test

Abbreviations: MAFLD Metabolic-associated fatty liver disease, NHANES National Health and Nutrition Examination Survey, VCTE Vibration-controlled transient 
elastography, CAP Controlled attenuation parameter, LSM Liver stiffness measurements, BMI Body mass index, WC Waist circumference, WtHR Waist to height ratio, FPG 
Fasting plasma glucose, ALT Alanine aminotransferase, AST Aspartate aminotransferase, GGT γ-glutamyl transpeptidase, ALP Alkaline phosphatase, TC Total cholesterol, 
TG Triglyceride, HDL High-density lipoprotein cholesterol, UA Uric acid, CRE Creatinine, eGFR Estimated glomerular filtration rate

Table 1 (continued)

Variables NHANES cohort Western China cohort

Non-MAFLD (n = 3649) MAFLD (n = 3749) P value Non-MAFLD (n = 3328) MAFLD (n = 1552) P value

  Yes 948 (25.98%) 1734 (46.25%) 292 (8.77%) 326 (21.01%)

 Diabetes < 0.001 < 0.001

  No 3324 (91.09%) 2639 (70.39%) 3251 (97.69%) 1429 (92.07%)

  Yes 325 (8.91%) 1110 (29.61%) 77 (2.31%) 123 (7.93%)

Fig. 2 ROC curves for predicting MAFLD in the NHANES cohort (A) and Western China cohort (B). The x-axis is the specificity; the y-axis 
is the sensitivity

Table 2 Performance assessment of the noninvasive indices and models for the prediction of MAFLD in the NHANES cohort

Abbreviations: AUC Area under the receiver operating characteristic curve, SPE Specificity, SEN Sensitivity, NPV Negative predictive value, PPV Positive predictive value

Variables AUC (95% CI) SEN (95% CI) SPE (95% CI) PPV (95% CI) NPV (95% CI) Cutoff value

METS-IR 0.846 (0.837–0.854) 0.818 (0.805–0.830) 0.717 (0.703–0.732) 0.748 (0.735–0.761) 0.793 (0.779–0.807) 40.887

TyG 0.746 (0.735–0.757) 0.727 (0.713–0.741) 0.640 (0.625–0.656) 0.675 (0.661–0.689) 0.695 (0.680–0.711) 8.497

TyG-BMI 0.850 (0.841–0.859) 0.819 (0.807–0.831) 0.727 (0.712–0.741) 0.755 (0.741–0.768) 0.796 (0.782–0.810) 240.222

TyG-WC 0.863 (0.855–0.871) 0.859 (0.848–0.870) 0.702 (0.687–0.717) 0.748 (0.735–0.760) 0.829 (0.816–0.842) 822.332

TyG-WtHR 0.853 (0.845–0.862) 0.810 (0.798–0.823) 0.740 (0.726–0.754) 0.762 (0.749–0.775) 0.791 (0.778–0.805) 5.066

HSI 0.835 (0.826–0.844) 0.799 (0.787–0.812) 0.722 (0.708–0.737) 0.747 (0.734–0.761) 0.778 (0.764–0.792) 37.131

VAI 0.741 (0.730–0.752) 0.711 (0.697–0.726) 0.658 (0.643–0.673) 0.681 (0.667–0.696) 0.689 (0.674–0.705) 1.494

FLI 0.859 (0.851–0.867) 0.839 (0.828–0.851) 0.714 (0.700-0.729) 0.751 (0.738–0.764) 0.812 (0.799–0.826) 49.405

LAP 0.834 (0.825–0.843) 0.787 (0.773-0.800) 0.725 (0.711–0.740) 0.746 (0.733–0.760) 0.768 (0.754–0.782) 45.180

ZJU 0.845 (0.836–0.854) 0.826 (0.814–0.838) 0.711 (0.696–0.726) 0.746 (0.733–0.759) 0.799 (0.786–0.813) 38.522

FSI 0.858 (0.850–0.867) 0.768 (0.755–0.782) 0.775 (0.761–0.789) 0.778 (0.765–0.792) 0.765 (0.751–0.779) -1.068

 K-NAFLD 0.838 (0.829–0.847) 0.771 (0.757–0.784) 0.748 (0.734–0.762) 0.759 (0.745–0.772) 0.760 (0.746–0.774) -1.023



Page 7 of 14Zou et al. Lipids in Health and Disease          (2023) 22:145  

with the exception of ZJU (P = 0.145) (Supplementary 
Table  2). The SPE for TyG-BMI was 81.1%, SEN was 
83.6%, NPV was 91.4%, PPV was 67.4%, and the critical 
value was 211.515. Furthermore, the NRI and IDI val-
ues of TyG-BMI in comparison to the remaining nine 
noninvasive scores were observed to be greater than 0 
and exhibited a significant difference (P < 0.05), with the 
exception of METS-IR and ZJU, as evidenced in Supple-
mentary Table 2. Consistently, the results of DCA curves, 

as shown in Fig.  4B, indicated that TyG-BMI possessed 
greater net benefits compared to the other models within 
the threshold range of approximately 0.01 to 0.91, with a 
maximum net benefit of 0.31.

 In the subgroup analysis, as shown in Fig. 5 and Sup-
plementary Tables  15–26, TyG-BMI exhibited the high-
est AUC in the Western China cohort across various 
subgroups, including women, individuals under the 
age of 60, those aged 60 years or older, individuals with 

Table 3 Performance assessment of the noninvasive indices and models for the prediction of MAFLD in the Western China cohort

Abbreviations: AUC Area under the receiver operating characteristic curve, SPE specificity, SEN Sensitivity, NPV Negative predictive value, PPV Positive predictive value

Variables AUC (95% CI) SEN (95% CI) SPE (95% CI) PPV (95% CI) NPV (95% CI) Cutoff value

METS-IR 0.896 (0.888–0.905) 0.876 (0.859–0.892) 0.760 (0.745–0.774) 0.630 (0.609–0.650) 0.929 (0.919–0.939) 35.223

TyG 0.776 (0.762–0.789) 0.685 (0.662–0.708) 0.736 (0.721–0.751) 0.547 (0.525–0.570) 0.834 (0.820–0.847) 8.680

TyG-BMI 0.903 (0.895–0.911) 0.836 (0.817–0.854) 0.811 (0.798–0.825) 0.674 (0.653–0.695) 0.914 (0.904–0.924) 211.515

TyG-WC 0.873 (0.864–0.883) 0.865 (0.848–0.882) 0.724 (0.709–0.739) 0.594 (0.574–0.614) 0.920 (0.909–0.930) 714.871

TyG-WtHR 0.866 (0.856–0.876) 0.904 (0.889–0.919) 0.667 (0.651–0.683) 0.559 (0.539–0.578) 0.937 (0.927–0.947) 4.198

HSI 0.873 (0.863–0.883) 0.842 (0.824–0.860) 0.736 (0.721–0.751) 0.598 (0.578–0.619) 0.909 (0.898–0.920) 33.032

VAI 0.773 (0.759–0.786) 0.755 (0.733–0.776) 0.657 (0.641–0.673) 0.506 (0.486–0.527) 0.852 (0.838–0.865) 1.426

FLI 0.879 (0.869–0.888) 0.848 (0.830–0.866) 0.751 (0.736–0.765) 0.613 (0.593–0.634) 0.914 (0.903–0.924) 25.876

LAP 0.854 (0.843–0.864) 0.810 (0.790–0.829) 0.740 (0.725–0.755) 0.592 (0.571–0.613) 0.893 (0.882–0.905) 28.720

ZJU 0.900 (0.891–0.908) 0.865 (0.848–0.882) 0.773 (0.759–0.787) 0.640 (0.620–0.661) 0.925 (0.915–0.935) 34.549

FSI 0.872 (0.863–0.882) 0.904 (0.889–0.919) 0.676 (0.660–0.692) 0.565 (0.546–0.585) 0.938 (0.928–0.948) -2.408

 K-NAFLD 0.836 (0.825–0.847) 0.810 (0.790–0.829) 0.715 (0.700-0.731) 0.570 (0.550–0.591) 0.890 (0.878–0.902) -2.589

Fig. 3 AUC and 95% CI for noninvasive scores to detect MAFLD risk in different subgroups of the NHANES cohort. A for METS-IR, (B) for TyG, (C) 
for TyG-BMI, (D) for TyG-WC, (E) for TyG-WtHR, (F) for VAI, (G) for HSI, (H) for FLI, (I) for LAP, (J) for ZJU, (K) for FSI, and (L) for K-NAFLD



Page 8 of 14Zou et al. Lipids in Health and Disease          (2023) 22:145 

nonoverweight, and those who were nonhypertensive 
and hypertensive, nondiabetic and diabetic. In the male 
subgroup, ZJU demonstrated the highest AUC, although 

the difference in AUC between ZJU and TyG-BMI was 
not statistically significant (P = 0.504). Additionally, ZJU 
exhibited the highest AUC in the overweight subgroup, 

Fig. 4 The Clinical utility of the indices were evaluated by decision curves in the NHANES cohort (A) and Western China cohort (B). The x-axis 
measures the threshold probability. The y-axis represents net benefits , calculated by subtracting the relative harms (false positive) from the benefits 
(true positives)

Fig. 5 AUC and 95% CI for noninvasive scores to detect MAFLD risk in different subgroups of the Western China cohort. A for METS-IR, (B) for TyG, 
(C) for TyG-BMI, (D) for TyG-WC, (E) for TyG-WtHR, (F) for VAI, (G) for HSI, (H) for FLI, (I) for LAP, (J) for ZJU, (K) for FSI, and (L) for K-NAFLD
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without a statistically significant difference in AUC com-
pared to TyG-BMI (P = 0.308).

Overall, the above results suggest that TyG-BMI was 
superior to other indices in terms of its combined ability 
to predict MAFLD risk in the Western China cohort.

Discussion
MAFLD is the most prevalent chronic liver disease glob-
ally, and its disease burden is on the rise. Consequently, 
numerous studies are investigating noninvasive, prag-
matic, and dependable disease predictive models to 
identify and manage individuals at high risk of MAFLD, 
ultimately mitigating the disease burden. The present 
study evaluated the predictive capacity of 12 widely 
employed, noninvasive indices or models for estimating 
the risk of MAFLD in both U.S. and Chinese cohorts. 
The predictive capacity of TyG and VAI in determin-
ing individual risk for MAFLD was found to be lim-
ited in both the NHANES and Western China cohorts, 
whereas the remaining 10 noninvasive scores demon-
strated superior predictive performance. It is noteworthy 
that although variations in predictive performance were 
observed across different populations and subgroups, 
the TyG-related indices exhibited superior performance 
in predicting MAFLD overall. Specifically, the TyG-WC 
demonstrated the best performance in the NHANES 
cohort, while the TyG-BMI exhibited the best perfor-
mance in the Western China cohort. Despite not achiev-
ing the highest AUC in certain subgroups, the lack of 
statistical significance in the difference between the AUC 
of TyG-WC/TyG-BMI and the highest AUC within the 
corresponding subgroups, combined with the straight-
forward calculation formula, minimal variables needed, 
and cost-effectiveness, suggests that TyG-WC/TyG-BMI 
outperformed other methods overall.

MAFLD is a multifactorial disease of a complex nature 
that encompasses genetics, environment, and metabo-
lism [41]. Among them, genetic susceptibility genes 
associated with MAFLD have received attention from 
researchers in recent years, especially transmembrane 6 
superfamily member 2 (TM6SF2) [42]. TM6SF2 plays a 
crucial role in hepatocellular lipid metabolism, regulates 
very low-density lipoprotein (VLDL) secretion and is 
implicated in hepatocyte inflammation [43]. The nonsyn-
onymous variant in TM6SF2 (E167K, rs58542926) results 
in protein dysfunction, leading to an excessive buildup 
of TG in the liver, thereby contributing to the onset of 
fatty liver disease [44]. However, the pathogenesis of 
MAFLD remains incompletely understood, with the 
“double-hit” and “multiple-hit” theories being the most 
widely accepted [45, 46]. Regardless of the “double-hit” 
theory or “multiple-hit” theory, IR is a crucial component 
in the development of MAFLD [8, 47–51]. At present, 

the hyperinsulinemic-euglycemic clamp (HEC) [52, 53] 
technique stands as the foremost method for directly 
assessing IR. However, owing to its operational intricacy, 
noninvasive fasting insulin (FINS)-based indices are com-
monly employed in clinical settings to evaluate IR. None-
theless, the clinical utility of FINS is constrained due to 
its nonroutine nature. Consequently, a plethora of fast-
ing insulin-independent indices, including TyG-related 
indices and METS-IR, have been devised to accurately 
reflect IR and serve as indirect substitutes [10–13, 20]. 
The mechanism may be attributed to the two primary 
constituents of TyG-WC/TyG-BMI (TG and FPG), which 
are associated with “glucotoxicity” and “lipotoxicity” that 
play a key role in the development of IR [54, 55]. TGs are 
predominantly derived from the uptake of free fatty acids 
(FFAs) by the liver. In the presence of IR, the breakdown 
of adipose tissue in the periphery is augmented, result-
ing in an excessive production of FFA that enters the liver 
via the portal vein system and accumulates aberrantly 
within the hepatic tissue. Consequently, this abnormal 
accumulation leads to an upregulation of intrahepatic 
TG synthesis. Moreover, elevated concentrations of FFAs 
exhibit lipotoxic properties, impeding insulin signaling 
and impairing insulin utilization in various target organs 
across the body, thereby exacerbating IR. It is noteworthy 
that the excessive influx of FFAs into skeletal muscle and 
hepatocytes hampers glucose uptake in these tissues by 
inhibiting insulin, thereby disrupting glucose metabolism 
[56, 57]. It is evident that IR significantly influences the 
onset and progression of NAFLD/MAFLD by disrupt-
ing glucose and lipid metabolism and promoting exces-
sive fat accumulation in hepatocytes. This reciprocal 
relationship between IR and hepatocellular fat storage 
establishes a detrimental cycle that constantly promotes 
the development and advancement of NAFLD/MAFLD. 
Since the two components of TyG-BMI/TyG-WC are 
important components of glucose metabolism and lipid 
metabolism, respectively, TyG-WC/TyG-BMI is closely 
related to the occurrence of MAFLD, which is not only 
a risk factor for MAFLD but also a reliable indicator for 
the prediction of MAFLD. Considering the favorable pre-
dictive capabilities of TyG-BMI/TyG-WC in assessing the 
risk of MAFLD, it would be advantageous to prioritize 
the inclusion of metrics pertaining to IR, lipid metabo-
lism, and glucose metabolism, such as FPG, TG, and 
the emerging focus on remnant cholesterol (RC), in the 
development of future MAFLD prediction models. RC 
predominantly signifies cholesterol content within VLDL 
remnants and exhibits a significant association with the 
risk of MAFLD/NAFLD [58, 59].

Prior research has demonstrated the favorable pre-
dictive capacity of TyG-related indices in relation to 
NAFLD/MAFLD [14–19, 60–62]. Khamseh et  al. [60] 



Page 10 of 14Zou et al. Lipids in Health and Disease          (2023) 22:145 

found that TyG-WC and TyG-BMI were significantly 
associated with NAFLD in an overweight/obese cohort 
and could reliably predict the risk of NAFLD in this 
population. In addition, Sheng et  al. [61] conducted a 
comparative analysis of 15 indices related to obesity and 
lipid levels, revealing that TyG-related parameters exhib-
ited the most robust association with NAFLD. Specifi-
cally, in the female subgroup, TyG-WC demonstrated a 
predictive capacity for NAFLD with an AUC of 0.905, 
while TyG-BMI exhibited an AUC of 0.908. In the male 
subgroup, TyG-WC displayed an AUC of 0.836, and TyG-
BMI displayed an AUC of 0.843. Furthermore, Chang 
and colleagues [62] investigated the prognostic efficacy 
of TyG-associated indices for MAFLD in 20,922 Chi-
nese participants. The results indicated that TyG-BMI 
exhibited the highest predictive capacity, with an AUC 
of 0.933 (0.927–0.938) in the female subgroup and 0.870 
(0.864–0.876) in the male subgroup. TyG-WC followed 
with AUCs of 0.922 (0.915–0.928) and 0.847 (0.841–
0.854), respectively. A paucity of research has conducted 
comparisons between predictive models developed for 
fatty liver and indirect indices that reflect IR. A study 
utilizing the NHANES database conducted a compari-
son between the TyG-related indices and VAI and LAP, 
revealing that the former exhibited superior predictive 
capabilities for both MAFLD and NAFLD risk [19]. The 
studies mentioned earlier were assessed using a singular 
approach, relying solely on the AUC to determine pre-
dictive value. In contrast, the current study stands out as 
the most extensive investigation of predictive models for 
fatty liver and noninvasive indices that indirectly reflect 
IR in a cross-sectional analysis. Furthermore, this study 
systematically and comprehensively evaluates the predic-
tive capacity of these models.

In the NHANES cohort, the AUC of FLI was found to 
be greater than that of other noninvasive scores, with the 
exception of TyG-WC. Similarly, in the Chinese cohort, 
the AUC of ZJU was observed to be higher than that of 
other noninvasive scores, except for TyG-BMI. The find-
ings were consistent with prior external validation stud-
ies of fatty liver prediction models. Li et  al. conducted 
an external validation of ZJU, FLI, HSI, LAP, and VAI for 
NAFLD risk in a cohort of 19,804 individuals in western 
China and reported that ZJU exhibited an AUC of 0.925 
(95% CI: 0.919–0.931) with a cutoff value of 35.29, sur-
passing the performance of the other four noninvasive 
models. Furthermore, ZJU demonstrated superior sensi-
tivity, specificity, positive predictive value, and negative 
predictive value compared to the other four models [63]. 
Fu et al. conducted a study on 107 severely obese Western 
women with NAFLD and found that ZJU outperformed 
HSI, LAP, and VAI, with an AUC of 0.742 (95% 0.647–
0.837) [64]. A Japanese study revealed that ZJU and FLI 

had similar AUCs of 0.886 and 0.884, respectively. Fur-
ther analysis by sex indicated that ZJU had a higher AUC 
than FLI in both the male and female groups, while FLI 
performed better in the diabetes subgroup [65]. How-
ever, in a study from eastern China, FLI demonstrated 
a superior AUC of 0.852 (95% 0.839–0.864) for NAFLD 
risk compared to ZJU, LAP, and VAI, and DCA showed a 
higher net benefit [66].

After the renaming of NAFLD to MAFLD, a limited 
number of studies have investigated the efficacy of pre-
dictive models in diagnosing MAFLD. Notably, a recent 
study utilizing the NHANES III database found that FLI 
exhibited the highest diagnostic value for MAFLD diag-
nosed by ultrasonography, with an AUC of 0.793 (0.786-
0.800) [67]. Additionally, an external validation article 
assessing MAFLD diagnosed by VCTE, also based on 
the NHANES database, reported that FLI had a superior 
AUC of 0.840 (95% 0.822–0.858) compared to ZJU (0.826 
(0.808–0.845)), FSI (0.833 (0.815–0.852)), HSI (0.814 
(0.795–0.834)), LAP (0.826 (0.807–0.844)), and VAI 
(0.747 (0.723–0.770)) [68]. Furthermore, Han and col-
leagues conducted an analysis of noninvasive prediction 
models for the diagnosis of MAFLD using CT and deter-
mined that FLI exhibited the most effective diagnostic 
ability, with the highest AUC of 0.791 (95% 0.766–0.816) 
and an optimal cutoff value of 29.9, which was better than 
HSI, VAI, ZJU, and LAP [69]. The ZJU algorithm, devel-
oped in China, comprises BMI, FPG, TG, and ALT/AST 
ratio, while the FLI algorithm, first developed in Italy in 
2006, is the first predictive model applied to the diagnosis 
of NAFLD, consisting of BMI, TG, GGT, and WC. Both 
algorithms incorporate variables that reflect metabolic 
conditions, which are a crucial aspect emphasized in 
the diagnosis of MAFLD. This may explain the superior 
performance of FLI and ZJU in identifying MAFLD risk. 
In the Western China population, ZJU exhibited supe-
rior performance compared to FLI. This trend was fur-
ther substantiated in the subgroup analysis of the study, 
wherein the NHANSE cohort indicated that although 
FLI outperformed ZJU overall, ZJU exhibited the high-
est AUC of 0.880 (95% 0.857–0.902) among the non-His-
panic Asian group (Supplement Table 12).

Recently, several hepatology societies have gone 
through several rounds of investigation and discussion to 
form a consensus [70]. Specifically, they have proposed 
the adoption of a novel terminology for the precise cate-
gorization and nomenclature of fatty liver disease. Under 
this proposed framework, steatotic liver disease (SLD) 
would serve as a comprehensive term encompassing the 
diverse etiologies of steatosis, which include metabolic 
dysfunction-associated steatotic liver disease (MASLD), 
metabolic and alcohol-related steatotic liver disease 
(MetALD), alcohol-associated liver disease (ALD), 
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etiology-specific SLD, and cryptogenic SLD. The diagno-
sis of MASLD bears striking resemblance to MAFLD but 
requires only the presence of one cardiovascular-related 
metabolic disorder and hepatic steatosis to be diagnosed. 
Overall, the release of the consensus is only a first step, 
and the impact of the new disease name and diagnostic 
criteria on other populations and organizations needs 
to be further evaluated. Irrespective of the alteration in 
nomenclature, it is critical that noninvasive methods 
identify people at high risk for fatty liver disease early 
and determine the point at which specialized treatment 
is needed.

Study strengths and limitations
Several advantages of this study are worth mention-
ing. First, in this research, liver steatosis was measured 
by VCTE, which is more accurate than ultrasonography 
[71]. Second, this study comprised two validation cohorts 
consisting of 12,278 participants from the United States 
and China. The inclusion of such a substantial sample 
size and data from two different centers enhances the 
reliability of the study’s findings. Third, this study aimed 
to assess and compare noninvasive indices and models 
in terms of their AUC, subgroup analysis, NRI, IDI, and 
DCA, thus providing a more comprehensive analysis 
compared to previous literature.

On the other hand, there are some limitations. First, 
due to its impracticality and invasiveness in a sample of 
thousands, liver biopsy, the diagnostic gold standard, was 
not performed in this study. Second, this study found that 
the optimal noninvasive model for MAFLD risk identifi-
cation was different across regions and races; therefore, 
external validation is needed in regions other than China 
and the United States.

Conclusion
In summary, TyG-BMI demonstrated satisfactory diag-
nostic efficacy in identifying individuals at high risk of 
MAFLD in the western Chinese population, surpassing 
other noninvasive scores or models. Conversely, TyG-
WC exhibited optimal diagnostic value and satisfactory 
diagnostic performance for high-risk MAFLD in the US 
population. These indices necessitate fewer variables, 
possess straightforward calculation formulas, are cost-
effective, and can be applied across various medical insti-
tutions to facilitate early identification, treatment, and 
mitigation of the disease burden. In light of the findings 
obtained from the present study, it may be advisable to 
discontinue the pursuit of a “perfect” noninvasive model 
and instead employ the most appropriate model tailored 
to different regions and ethnicities.
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