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Lipids in Health and Disease

Lipoprotein(a) in patients with breast 
cancer after chemotherapy: exploring potential 
strategies for cardioprotection
Ziqing Wang1 and Jian Li1* 

Abstract 

Developments in neoadjuvant and adjuvant chemotherapy (CHT) have led to an increase in the number of breast 
cancer survivors. The determination of an appropriate follow-up for these patients is of increasing importance. Deaths 
due to cardiovascular disease (CVD) are an important part of mortality in patients with breast cancer.

This review suggests that chemotherapeutic agents may influence lipoprotein(a) (Lp(a)) concentrations in breast 
cancer survivors after CHT based on many convincing evidence from epidemiologic and observational researches. 
Usually, the higher the Lp(a) concentration, the higher the median risk of developing CVD. However, more clinical trial 
results are needed in the future to provide clear evidence of a possible causal relationship. This review also discuss 
the existing and emerging therapies for lowering Lp(a) concentrations in the clinical setting. Hormone replacement 
therapy, statins, proprotein convertase subtilisin/kexin-type 9 (PCSK9) inhibitors, Antisense oligonucleotides, small 
interfering RNA, etc. may reduce circulating Lp(a) or decrease the incidence of CVD.

Keywords  Cardiovascular disease, Lipoprotein(a), Measurements, PCSK9 inhibitors

Introduction
Lp(a) is a composite microparticle that exists in body 
serum; it consists of apolipoprotein B-100 (apoB-100) 
molecule from the low-density lipoprotein (LDL) class 
lipoproteins that combines with the macromolecular 
weight glycoprotein (apolipoprotein a(apo(a)) [1, 2]. 
Apo(a) is hallmark protein constituent of Lp(a) that has 
a disulfide protein linkage to apoB-100. There is strong 
expression of the Lp(a) gene in the liver [3]. Lp(a) is the 
most genetically regulated lipoprotein, as more than 90% 
of the concentration is determined by genes [2]. The cir-
culating Lp(a) concentration is significantly affected by 
the LPA locus coding for apo(a) and lack-of-function 

genetic mutations in the APOE locus and PCSK9 R46L 
[4, 5]. Lp(a)/apo(a) is endocytosed by lattice-protein-
mediated endocytosis and subsequently enters the lyso-
some to be degraded [6] Fig. 1.

Lp(a) is formed by a high molecular weight glycopro-
tein (apo(a)) that combines with the apoB-100 molecule 
of the LDL class of lipoproteins.

Moreover, Lp(a) is an individually predictive factor of 
CVD. Globally, 20–30% of the population exhibits Lp(a) 
levels of over 30 mg/dl [7, 8]. High levels of Lp(a) are also 
remarkably related to the risk of coronary heart disease 
[9]. Lp(a) ≥ 125 nmol/L indicates an elevated risk for ath-
erosclerotic cardiovascular disease (ASCVD), especially 
at higher Lp(a) levels [10]. The average and median lev-
els of Lp(a) vary across racial and ethnic populations, 
and Lp(a) concentrations are 12% more in females [4, 
11]. Although there were notable variations in the aver-
age concentrations of Lp(a) between races, the estimated 
hazard ratios were similar for each equal increase in 
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Lp(a) levels in White, Black as well as South Asian popu-
lations. The risk gradient of Lp(a) distribution was similar 
to that of high-density lipoprotein (HDL) or LDL choles-
terol concentrations. Among people without ASCVD, the 
risk of ASCVD events within 10 years is greater in peo-
ple with Lp(a) concentrations above 150 nmol/L than in 
other groups [12].

LDL-C is the primary driver of atherosclerotic CVD 
[13]. All LDL particles play an atherogenic role to some 
extent. Evidence suggesting causal roles of additional 
apoB-containing lipoproteins in ASCVD is increasing 
[14]. HDL/apoAI may perform an anti-inflammatory and 
antioxidant function in atherosclerotic plaques by pro-
moting cholesterol efflux, attenuating intraplaque oxi-
dative modifications of LDL, and inhibiting LDL-driven 
inflammatory processes to slow plaque progression [15].

According to GLOBOCAN 2020 estimates of can-
cer morbidity and mortality, breast cancer has become 
the most prevalent cancer for women. The global can-
cer burden is projected to continue to increase through 
2040 [16]. Therefore, it is essential to prevent cancer and 
improve its prognosis. Neoadjuvant CHT has become a 
common therapy in early-stage breast cancer [17]. Due 
to advances and developments in cancer treatment, 

increasing numbers of patients with cancer are given 
hope of long-term survival. However, many researches 
have indicated that current breast cancer treatment may 
adversely affect the health of the cardiovascular system 
for the remaining survival time of breast cancer survivors 
and may contribute to disorders of lipid metabolism [18, 
19]. This review summarizes studies on changes in Lp(a) 
level after CHT among patients with breast cancer and 
assesses their risk of CVD. Furthermore, we discuss the 
current and emerging treatments for decreasing Lp(a) 
concentrations in the clinical setting. The purpose of 
this review is to address the practical implications of the 
results and explore potential strategies for cardioprotec-
tion for cancer survivors.

Lipoprotein(a) in breast cancer after chemotherapy
Early adjuvant CHT for breast cancer is commonly used 
with anthracyclines and paclitaxel, which can improve 
both disease-free and general survival rates of patients 
[20, 21]. Many of adjuvant therapies used for breast can-
cer have variable negative impacts on the cardiovascular 
system [22]. It has been shown that anthracyclines used 
for breast cancer can lead to bone marrow suppression 
and disorders of lipid metabolism during the early stages 

Fig. 1  The structure of Lp(a)
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of treatment. In addition, in some studies, a higher risk 
of cardiotoxicity, a reduction in cardiac function, and an 
elevated risk of cardiac failure and cardiomyopathy can 
occur during the later stages of CHT [23, 24]. For breast 
cancer survivors, radiation therapy can also lead to an 
elevated risk of heart failure, CAD, and cardiovascular 
death [25].

A prospective study conducted by Jordana Carolina 
Marques Godinho-Mota et  al. included 99 women with 
recently diagnosed with breast cancer. Their outcomes 
showed that CHT (anthracyclines with taxanes) was 
related to a rise in lipid-related markers but a decline in 
high-density lipoprotein cholesterol (HDL-C) levels [26]. 
Recently, many investigators have been interested in the 
influence of (neo) adjuvant CHT on levels of circulat-
ing lipid, such as dyslipidemia. Moreover, only a small 
number of people are concerned about the impacts of 
neoadjuvant CHT on Lp(a) indicators. Lp(a) is an inde-
pendently significant contributor to risk that predicts 
the severity of emerging CVD among postmenopau-
sal women. This suggests that Lp(a) is probably the key 
to the preventive and therapeutic lipid aspects of such 
patients [27].

Dating back as far as 1996, T Saarto et  al. performed 
adjuvant CHT in 59 patients with confirmed breast can-
cer and measured their Lp(a) concentrations before and 
after treatment. The findings demonstrated that circu-
lating Lp(a) levels were elevated substantially only for 
patients who developed permanent amenorrhea [28]. It is 
hypothesized that this may be due to the negative effect 
of ovarian decline induced by chemotherapeutic agents 
on Lp(a). Patients with declining ovarian function exhibit 
more risk factors for CVD (hypertension, obesity, etc.) 
[29]. Lu [30] conducted a similar study and observed that 
patients treated with an anthracycline-based CHT had 
considerably increased Lp(a) concentrations before the 
last cycle. Patients treated with an anthracycline-plus-
paclitaxel CHT had decreased Lp(a) levels following the 
first cycle, but these levels elevated before the final cycle 
of CHT. Prolonged CHT may also result in variations 

in LDL-C and Lp(a) concentrations. However, no sta-
tistically considerable difference in Lp(a) levels were 
observed in the studies of Sharma M [20] and Qu [31].

Some studies have shown that CHT markedly changes 
circulating lipid concentrations in breast cancer survi-
vors, but the roles of different chemotherapeutic agents 
on lipids or lipoproteins are different. The majority of 
relevant studies had the same results [20, 32, 33]. ApoA1 
and HDL-C concentrations were greatly lower and LDL-
C, Triglycerides (TG), serum total cholesterol and apoB 
(a component of Lp(a)) concentrations were considerably 
higher [20, 26, 34–36]. Giskeødegård GF’s study revealed 
a marked increase in TG and very LDL-related choles-
terol and lipids concentrations, compared to other lipids 
[37]. Patients with premenopausal breast cancer seem 
to be more vulnerable to this change [38]. This may be 
because younger patients have higher sex hormone lev-
els and superior lipid metabolism, so plasma lipid con-
centrations may be more sensitive to chemotherapeutic 
drugs [35] Table 1.

Cardiovascular risk among breast cancer survivors
When cancer survivors have longer life expectancy and 
are treated more cumulatively with cytotoxic treat-
ments, they are more in danger of dying from CVD 
[39]. Jennifer L Patnaik’s work counted the percent-
age distribution of the main reasons for death among 
patients with breast cancer aged 66 and above. They 
discovered that in the study population, CVD was a 
major reason for death (15.9%), and the second rea-
son was breast cancer (15.1%) [40]. Abdel-Qadir H 
also found that CVD (16.9%) surpassed breast cancer 
(14.6%) as the major cause of death for the same popu-
lation at 10 years after diagnosis [41]. Breast cancer sur-
vivors may have a greater risk on atherosclerosis, as this 
risk was 2.4 times higher than that for women without 
breast cancer. Additionally, patients older than 45 years 
had a higher prevalence of metabolic syndrome (54.2% 
vs. 37.0%) and diabetes (19.8% vs. 6.8%) [42, 43]. CVD 

Table 1  Summary of studies on the measurement of Lp(a) in patients with breast cancer after chemotherapy

Year Author Population type Treatment Conclusion Ref

1996 Saarto, T 59 premenopausal women Cyclophosphamide, methotrexate, 
and 5-fluorouracil

Lp(a) was significantly higher [28]

2016 Sharma M 12 women (aged between 25 and 65) Doxorubicin, cyclophosphamide, 
epirubicin,5’-fluorouracil and docetaxel

No significant difference in Lp(a)
(P > 0.05)

[20]

2020 Qi Lu 1016 premenopausal and 627postmeno-
pausal women and 93 peri-menopausal 
women

Anthracycline-based and taxane-based Lp(a) was significantly higher(P < 0.05) [30]

2020 Fanli Qu 216 premenopausal and 317 postmeno-
pausal women

Docetaxel, epirubicin and cyclophos-
phamide

No distinct difference in Lp(a)(P > 0.05) [31]
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is usually a delayed effect of therapy. The disease usu-
ally occurs about seven years after treatment for breast 
cancer has been completed [44].

Roberta Florido examined the incidence of CVD for 
cancer survivors in the ARIC study. The study involved 
12,414 participants and the prevalence of breast cancer 
was greatest (35%) for women in this group. Independ-
ent of traditional cardiovascular risk factors, CVD risk 
was markedly higher in cancer survivors than in people 
without cancer (37%); for example, breast cancer was 
significantly associated with CVD risk [45].

Effects of Lp(a) on the cardiovascular system
There has been a great amount of work devoted to 
the impacts of Lp(a) on the cardiovascular system. 
Convincing evidence from epidemiologic and obser-
vational studies indicate higher Lp(a) concentrations 
have a possible causal relationship with calcified aortic 
valve stenosis, peripheral arterial disease and ischemic 
stroke [46–48]. In addition, a Phenome-wide Mende-
lian randomization study demonstrated that a greater 
concentration of circulating Lp(a) was statistically rel-
evant to an enhanced risk of some circulatory diseases, 
including various heart diseases, hypertension, and cer-
ebrovascular diseases, and certain endocrine diseases, 
including hypercholesterolemia, hyperlipidemia and 
type 2 diabetes [49].

As mentioned above, Lp(a) is made up of an apo(a) 
and an LDL-like fraction, which establishes a nuclear 
connection between the thrombosis process (mediated 
by the apo(a) fraction) and the atherosclerosis process 
(mediated by the LDL-like fraction) [50]. It is generally 
acknowledged that elevated Lp(a) levels are indepen-
dently linearly correlated with calcific aortic stenosis and 
CVD [47, 51]. Normally, the greater the Lp(a) concentra-
tion is, the higher the median hazard of developing CVD 
[47]. This is probably contributed by the pro-atheroscle-
rosis and pro-inflammatory roles of Lp(a). Some inflam-
matory diseases, including rheumatoid arthritis and 
systemic lupus erythematosus, are related to increased 
Lp(a) concentrations [52, 53].

There are large clinical studies suggesting that raised 
Lp(a) concentrations may lead to the incidence of venous 
thromboembolism, which is attenuated by PCSK9 inhi-
bition [54]. In contrast, Michael B. Boffa et al. indicated 
that Lp(a) was not a risk contributor to the formation of 
venous thrombosis but promotes the platelet activation 
and aggregation as well as the progression of rupture-
prone plaques, leading to atherosclerotic events [50, 55]. 
However, more experiments are needed to demonstrate 
thrombogenic function of Lp(a) because the pathological 
mechanisms behind it remain elusive.

Therapeutic reduction of lipoprotein(a)
Despite the importance of increased Lp(a) concentra-
tions in ASCVD, no lipid-lowering agent has thus far 
been shown to reduce CVD risk by significantly lowering 
Lp(a) concentrations [56]. Particularly, PCSK9 monoclo-
nal antibodies are presently approved drugs for use that 
have been suggested to reduce cardiovascular event risk 
and Lp(a) concentration [54]. In the 25,096 participants 
of FOURIER trial, O’Donoghue ML measured Lp(a) 
concentrations and found that evolocumab (a mono-
clonal immunoglobulin that binds specifically to human 
PCSK9) markedly decreased Lp(a) concentrations by an 
average of 26.9%. Among patients with Lp(a) concentra-
tions greater than median, evolocumab decreased mor-
tality risk from myocardial infarction and coronary heart 
disease by 23% [57]. Moreover, in the prolonged tracking 
study, patients randomized to receive evolocumab had 
a 20% lower incidence of mortality from cardiovascular 
causes, myocardial infarction or ischemic stroke than the 
placebo [58]. Functions of PCSK9 inhibitors have been 
similarly substantiated in other studies [59–62] Table 2.

Effect of HRT on Lp(a)
At one time, hormone replacement therapy (HRT) was a 
common part of drug therapies used for postmenopau-
sal women. The use of HRT declined dramatically with 
the Women’s Health Initiative in 2002 [73]. Several stud-
ies demonstrate that HRT significantly reduces Lp(a) 
concentrations in postmenopausal women [74]. In the 
analysis of the HERS study, the reducing impact of pro-
gestin and estrogen on Lp(a) among postmenopausal 
women was greatest in the 4th quartile of Lp(a) elevation 
(55 to 236  mg/dL) [75]. S R Salpeter summarized and 
compared the influence of HRT on Lp(a) in randomized 
controlled trials from April 1966 to October 2004, with 
an average 25% reduction in Lp(a) [-25.0% [CI, -32.9 
to -17.1%)] [63]. However, HRT may prevent CAD in 
younger (age < 60 years) menopausal women, but in older 
menopausal women (age > 60  years), HRT may increase 
their risk of CVD during the first 1–2 years of use [76]. 
Because HRT will increase C-reactive protein and pro-
thrombin concentrations, it is associated with a systemic 
inflammatory response. Although it reduces Lp(a) con-
centrations, it cannot reduce the incidence of getting cor-
onary heart disease [77].

Statins
Statins has significantly improved cardiovascular out-
comes and is currently an essential approach for lipid-
lowering therapies [78]. Statins improve endothelial 
nitric oxide synthase activity. It also can increase athero-
sclerotic plaque stability by inhibiting the production of 
isoprenoid intermediates in the cholesterol biosynthesis 
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pathway [79]. Thus, it plays its cardiovascular protective 
role, which is referred to as “pleiotropic effects”. Moreo-
ver, statins have been suggested to inhibit the growing 
and surviving of tumor cells, delaying the progression of 
breast cancer and preventing its recurrence [80]. Breast 
cancer survivors also have improved survival rates by 
using statins [81]. The clinical routine use of statins to 
prevent cardiotoxicity caused by anthracyclines is cur-
rently under discussion.

In an analysis of six randomized studies, statins mark-
edly increased circulating Lp(a) levels. The average per-
centage changes at baseline ranged from 18.7% to 24.2% 
in the group using atorvastatin and 11.6% to 20.4% in 
the group using pravastatin [64, 82]. The researchers 
found that numerous patients using statins for preven-
tion of CVD still suffered cardiovascular events despite 
achieving target levels of LDL-C [83]. Plasma Lp(a) levels 
become a powerful indicator of remnant CVD risk when 
CVD risk is decreased due to elevated LDL-C concen-
trations [7]. Despite treatment with statins, Lp(a) has an 
independent deleterious effect on patients [84]. Angela 
Pirillo raises the question of whether statins causing ele-
vated Lp(a) levels are of clinical value. It can be argued 
that we should consider the absolute level of Lp(a) and 
that percentages can be misleading. Studies indicate that 
a substantial decrease in absolute Lp(a) concentrations is 
needed to obtain the risk of CVD reduction comparable 
to that of a decline in LDL-C concentrations of 1 mmol/L 
[85]. In a study by de Boer et  al., statin therapy did not 
change the CVD risk related to Lp(a) compared with 
that of the placebo [86]. We consider that statins are still 

recommended for patients with higher Lp(a) concentra-
tions because it decrease the incidence of CVD. Further-
more, we need more studies in the future to investigate 
the function of hypolipidemic drugs in the metabolism of 
Lp(a).

Aspirin
Aspirin decreases apo(a) gene transcription, resulting in 
decreased Lp(a) production by hepatocytes [87]. In the 
primary prevention of CVD events, treatment by aspirin 
has been demonstrated to decrease Lp(a)-mediated ath-
erosclerotic thrombotic events [65, 88]. The reduction 
in ASCVD risk by aspirin may be due to a reduction in 
Lp(a) levels. No evidence exists to definitively confirm 
that this treatment can decrease Lp(a) concentrations. 
Aspirin is used as a primary prevention for lowering the 
incidence of CVD in people with higher Lp(a) levels [65]. 
However, it was also discovered to lower the incidence of 
breast cancer, so its use is becoming a rising trend in can-
cer control [89, 90]. Aspirin decreases the chance of met-
astatic cancer and improves the survival rate of patients 
with breast cancer [91]. In postchemotherapy survivors, 
treatment with aspirin could achieve benefits in terms of 
prognosis and prolonged survival, but multicenter clini-
cal trials are needed to verify this assumption.

PCSK9 inhibitors
PCSK9 is considered to be an appealing target for treat-
ing dyslipidemia [92]. PCSK9 contributes to the degrada-
tion of hepatic low-density lipoprotein receptor (LDLR). 
It also has a function to metabolize circulating Lp(a) [93]. 

Table 2  Impact of different therapeutic agents on Lp(a) levels and therapeutic roles for breast cancer

Therapeutic agent Population type Change in Lp(a) Therapeutic roles for breast cancer

Hormone replacement therapy Post-menopausal women -25% [63] Not applicable

Statins Randomized population 8.5–19.6% [64] Delays the progression and prevents 
its recurrence

Aspirin Randomized population Inconclusive results but can reduce 
the CVD risk [65]

Reduces the incidence and the chance 
of cancer metastasis

PCSK9 inhibitors Patients with high baseline Lp(a) -24.5–29.5% (more significant 
in those with baseline Lp(a) 
of ≤ 125 nmol/l) [66]

Not applicable

Lipoprotein apheresis Patients with high baseline Lp(a) -60–70% [67] Not applicable

Mipomersen Patients with high baseline Lp(a) -26.4% [68] Not applicable

AKCEA-APO(a)-LRX Patients with baseline Lp(a) > 60 mg 
per deciliter

-50–80% [69] Not applicable

IONIS-APO(a) Patients with baseline 
Lp(a) ≥ 75 nmol/L

-60–80% [70] Not applicable

SLN360 Patients with baseline 
Lp(a) ≥ 150 nmol/L

Dose dependent ( -10–98%) [71] Not applicable

Olpasiran(AMG890) Patients with high baseline Lp(a) -70–97% [72] Not applicable

Inclisiran Patients with high baseline Lp(a) Inconclusive results Not applicable
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PCSK9 mediates the degradation of low density lipopro-
tein receptor-related protein 1 in HEK293 and HepG2 
cells and mouse B16 melanoma cells. Independent of 
LDLR, PCSK9 promotes low density lipoprotein recep-
tor-related protein 1 degradation [94].

PCSK9 inhibitors, which include evolocumab and ali-
rocumab, can significantly improve the lipid profile of 
people at high cardiovascular risk [62, 95]. Evolocumab 
has be proven to decrease LDL-C concentrations to 
30  mg per deciliter and reduce the incidence of CVD 
by inhibiting PCSK9 [96]. PCSK9 mAbs are effective in 
safely lowering Lp(a) concentration clinical practice, 
especially in patients with increased Lp(a) concentrations 
[97, 98]. Accordingly, monoclonal antibodies that sup-
press PCSK9 have become a hopeful choice for reducing 
Lp(a) levels [99]. Moreover, the net meta-analysis further 
indicated that therapy with alirocumab decreased total 
cause mortality rate and serious adverse events (SAEs), 
and evolocumab treatment decreased the risk of myocar-
dial infarction [100].

Nevertheless, the mechanism whereby PCSK9 inhibi-
tors decrease elevated Lp(a) concentrations remains 
controversial.

First, Alirocumab (PCSK9 inhibitor) accelerates the 
catabolism of Lp(a). The mechanism is likely to a signifi-
cant upregulation of LDLR and decreased the competi-
tion for these receptors for Lp(a) and LDL particles [101]. 
PCSK9 associates with the epidermal growth factor 
structural domain A of LDLR, guiding its destruction into 
endosomes or lysosomes [92]. Rocco Romagnuolo pro-
posed that LDLR is a PCSK9-regulated Lp(a) clearance 
receptor. They found that PCSK9 inhibition results in a 
combination of a significantly lower LDLR abundance 
and LDL in the supraphysiologic liver, thus revealing that 
LDLR is an important pathway for Lp(a) clearance [6].

If the LDLR pathway completely explains Lp(a) clear-
ance, it can be expected that PCSK9 inhibitor treatment 
will uniformly decrease Lp(a) and LDL-C in the same 
individual in 2:1 ratio (consistent reduction) [102]. In 
a clinical trial, there was no clear correlation between 
decrease in Lp(a) and LDL-C after treatment with PCSK9 
inhibitors [97]. This inconsistent decline may indicate 
that PCSK9 inhibitor treatment decreases plasma Lp(a) 
by an alternative route of LDL receptor removal. This 
presumption was further confirmed by the widespread 
incidence of inconsistent Lp(a) and LDL-C responses fol-
lowing treatment with alirocumab that was identified in a 
postevent summary analysis from the ODYSSEY phase 3 
clinical trial [102].

Shapiro MD also proposed that Lp(a) removal is not 
only modulated through the LDLR pathway, but that 
there may be other mechanisms at play. It may also 

be regulated by the apo(a) isomer size. The length of 
the kringle type 4 chain compared to other receptors 
is the primary determining factor of its capacity to 
bind LDLR. Their conclusions indicate that patients 
with bigger apo(a) subtypes may have a stronger Lp(a) 
reduction response after treatment with evolocumab 
[103]. The extent to which PCSK9 inhibitors decrease 
Lp(a) concentrations varies widely. To investigate this 
variability, Valentin Blanchard evaluated the correla-
tion between Lp(a) concentration and apo(a) size after 
PCSK9i treatment in 268 patients. The size of apo(a) 
was found to act as an independent deciding factor of 
the response to PCSK9i, and Lp(a) levels decreased by 
3% for each additional kringle structural domain [104].

Additionally, in Croyal M’s study that investigated 
both lack of function and gain of function Lp(a) 
dynamics in PCSK9 mutant patients, the main finding 
was that the rate of absolute VLDL-apoE production 
was positively related to the rate of absolute Lp(a)-
apo(a) production. They hypothesized that variations 
in apoE levels in Lp(a) precursors work on the binding 
of apo(a)-apoB100, while at the same time it is possi-
ble that the impact of PCSK9 on Lp(a) correlate with its 
effect of apoE metabolism [5, 105] Fig. 2.

The mechanism for lowering Lp(a) concentrations 
by inhibiting PCSK9 has not been clarified. One of the 
most supported hypotheses is that LDLR is a PCSK9-
regulated Lp(a) clearance receptor. Lp(a) can combines 
with LDLR and compete against LDL. Internalization 
of Lp(a) depends on lattice-protein-coated pits in the 
cell, and its degradation occurs in the lysosome. Lp(a) 
is not bound to PCSK9. PCSK9 inhibition resulted in 
increased LDLR abundance and the upregulation of 
LDLR activity in hepatocytes, specifically increasing 
ability of the Lp(a) molecule to bind with affinity to 
LDLR and enhancing internalization of LDLR/Lp(a) 
complexes in hepatocytes.

Lipoprotein(a) apheresis
Lipoprotein apheresis can affect multiple lipoproteins. 
Lipoprotein apheresis provides effective reduction of 
Lp(a) and LDL apoB-100 concentrations by about 60 to 
70% [106, 107]. Lp(a) apheresis is a method of immu-
noadsorption specific for Lp(a) that will only decrease 
Lp(a) concentrations [108, 109]. A prospective con-
trolled clinical trial using Lp(a) apheresis showed pro-
gressive regression of coronary atherosclerosis after 
weekly elimination of Lp(a) over an 18-month period 
[107]. Lipoprotein apheresis is a useful therapy for 
reducing Lp(a) concentrations and is well-tolerated. 
However, it is expensive and lacks randomized con-
trolled trials, making its widespread use difficult.
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Antisense oligonucleotides
Mipomersen
Mipomersen is a type of second-generation antisense 
oligonucleotide; it is a twenty-polymer oligonucleotide 
that is compatible with the human-specific apoB-100 
messenger RNA coding region. Mipomersen suppresses 
the synthesis of apoB-100, thereby reducing Lp(a) con-
centrations in patients at higher CVD risk [110]. In Raal 
FJ’s research, Lp(a) concentrations were significantly 
lower in a group of patients with homozygous famil-
ial hypercholesterolemia who were previously treated 
with lipid-lowering medications, including high-dose 
statins, by taking 200 mg mipomersen weekly [111].

AKCEA‑APO(a)‑LRX
AKCEA-APO(a)-LRX treatment was given to 286 
patients with higher Lp(a) levels and preexisting CVD 
for 6 to 12 months, and the outcomes of the study sug-
gested AKCEA-APO(a)-LRX led to a dose-dependent 
reduction in Lp(a) concentrations [69].

IONIS‑APO(a)
In two randomized and double-blind trials con-
ducted by Viney NJ, IONIS-APO(a) was indicated 
that decreased Lp(a) concentrations in volunteers by 
60–80% and was positively correlated with concentra-
tion [70].

siRNA
SLN360
SLN360 is a small interfering RNA (siRNA) targeting 
LPA messenger RNA. A dose-dependent decrease in 
Lp(a) levels was noted after therapy on SLN360 in the 
phase 1 study in 2022 [71].

Olpasiran(AMG890)
Olpasiran is a synthetic siRNA aimed at specifically 
inhibiting the translating of LPA messenger RNA in 
hepatic cells that effectively lowers Lp(a) concentrations. 
Olpasiran reduces Lp(a) levels by 70–97% [72]. To inves-
tigate the efficacy and security of olpasiran in the clinical 
reduction of Lp(a), the OCEAN(a)-DOSE study is under-
way. The results have not yet been reported [112].

Inclisiran
Inclisiran is a siRNA inhibiting the synthesis of PCSK9. 
In ORION-1 (ClinicalTrials.gov, NCT02597127), incli-
siran significantly reduced concentrations of LDL-C and 
PCSK9. Lp(a) concentrations also decreased in the group 
receiving inclisiran treatment [113]. A dramatic decrease 
in LDL-C concentrations was found in ORION-10 and 11 
[114]. Because of the long biological half-life of inclisiran, 
twice-yearly dosing can result in a sustained lowering of 
LDL-C concentrations [115]. Clinical trials on inclisiran 
are ongoing.

Fig. 2  A model of PCSK9 inhibitor receptor-mediated Lp(a) catabolism



Page 8 of 13Wang and Li ﻿Lipids in Health and Disease          (2023) 22:157 

Somatic genome editing
Alexandria M. Doerfler recently screened for CRISPR‒
Cas9 genes and established a mouse model of LPA 
transgenic mice expressing the physiologic-related size 
apo(a). Adeno-associated virus (AAV) vector delivery of 
CRISPR‒Cas9 disrupts the LPA transgene in liver. Apo(a) 
was almost eliminated from circulation by AAV-CRISPR 
within one week. This trial suggests the viability of dis-
rupting the LPA gene within the body using CRISPR‒
Cas9 to reduce Lp(a) concentrations [116] Fig. 3.

Discussion
Based on the studies discussed above in this review, it 
can be inferred that breast cancer survivors possibly have 
increased cardiovascular risk and disturbed lipid metab-
olism after CHT. In the studies by Saarto T [28] and Lu 
[30], Lp(a) concentrations were significantly increased 
in breast cancer survivors after CHT. However, in other 
subsequent related experiments, Lp(a) concentrations 
were mostly not notably altered. The experimental results 
are questionable because of the lack of a globally har-
monized Lp(a) measurements. Because CHT regimens 
of the studies involved are not fully identical, the effects 
of different drugs on lipoproteins are different and may 
result in confounding results. It is difficult to separately 
assess the effect of a chemotherapeutic drug on lipids 
in the body because the paclitaxel drugs are used nearly 
exclusively in conjunction with anthracyclines for treat-
ment. The influence of anthracyclines on lipid metabo-
lism were long-lasting [39]. More precise experiments are 
needed in the future to explore the changes in Lp(a).

In Giskeødegård GF’s study of longitudinal altera-
tions in lipids after breast cancer therapies, they simi-
larly revealed a progression toward atherogenic lipid 
signatures in all groups after therapy [37]. The cause of 
this abnormality in lipoprotein metabolism is not clear. 
On the one hand, CHT drugs may harm a number of 

normal tissue cells, leading to cellular oxidative stress 
as well as abnormal catabolism. On the other hand, 
ovarian failure due to CHT may also be the cause of 
dyslipidemia. Adriamycin (an anthracycline) decreased 
ABCA1 gene expression and apoA1 protein levels 
in hepatocytes. Since apoA1 and ABCA1 are essen-
tial for hepatic generation of HDL, this effect prob-
ably explains the relationship between adriamycin and 
decreased HDL levels [20]. Anthracyclines reduce HDL 
expression to inhibit its role in transporting cholesterol 
from vascular endothelium to the liver for recycling or 
elimination [117]. Paclitaxel promotes an increase in 
apoB expression and induces a decline in LDL recep-
tor expression. These two actions may together lead to 
a disturbance in lipid metabolism and a greater preva-
lence of CVD [20]. Besides radiotherapy and chemo-
therapy, lifestyle changes in cancer survivors may lead 
to alterations in lipoprotein profiles through altered 
glutamate-glutamine metabolism [37].

Lipids are strongly associated with breast cancer 
progression and prognosis, but their effects are con-
troversial [118]. In a study by Jung SM, breast cancer 
survivors with high LDL-C and low HDL-C concentra-
tions suggested lower rates of cancer recurrence [119]. 
However, Dong S et al. followed 3499 women who were 
diagnosed with breast cancer. Their research showed 
that elevated TG concentrations at baseline and one 
year postoperatively raised the risk of recurrence, and 
increased HDL concentrations were associated with 
longer survival times. Both endocrine therapy and CHT 
can lead to elevated circulating lipid levels [120]. Mala 
Bahl also obtained similar results [121]. One specula-
tion is that high cardiovascular mortality caused by 
dyslipidemia decreases breast cancer recurrence rates. 
The risk of dying from cardiovascular causes exceeds 
that of cancer death in elderly women with breast can-
cer [41]. Public still needs to pay attention to the risk of 

Fig. 3  Summary of gene-based approaches under development
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CVD. Endocrine therapy, obesity, and reduced exercise 
are also critical contributors to elevated incidence of 
CVD in breast cancer survivors.

The degree of reduction in Lp(a) concentrations that 
can influence CVD risk in clinical practice is still a 
question for exploration. A Mendelian randomization 
analysis evaluated the relationship between the inci-
dence of coronary heart disease and Lp(a) concentra-
tions in 48,333 subjects of European descent from 5 
studies. This study found that lowering Lp(a) level by 
about 100 mg/dL has the potential to achieve a signifi-
cantly decrease in the clinical risk of coronary heart 
disease, which is equivalent to the effect of decreasing 
LDL-C concentrations by 38.67 mg/dL with statins [9]. 
However, in a subsequent study by Claudia Lamina, 
the decline in Lp(a) concentrations was changed to 
65.7 mg/dL in order to obtain the identical clinical out-
come as the decrease in LDL-C of 38.67  mg/dL [122]. 
As number of meta-analyses and clinical studies to 
date to assess Lp(a) concentrations after CHT are mini-
mal, more trials and literature are needed to support 
and explore this. The treatments currently available to 
decrease Lp(a) concentrations are suitable for patients 
with higher Lp(a) concentrations and an underlying 
disease.

A study by Cha J used a transgenic mouse that pro-
duces Lp(a) and found that Lp(a) probably has a function 
in the control of tumor growth and metastasis. The inves-
tigators believe that the probable mechanism of effect 
functions through competitive suppression of fibrin-
induced extracellular matrix degradation by the Lp(a) 
component. This finding may reveal Lp(a) as an emerg-
ing and important target for tumor therapy [123]. Future 
studies on Lp(a) are promising to elucidate the specific 
mechanisms implicated by PSCK9i and method by which 
lowering Lp(a) affects CVD burden.

A clearer understanding of the connections among 
atherosclerosis, cancer treatment and lipid metabolism 
could provide the best lipid therapy for patients with 
cancer and reduce the burden of CVD. Monitoring of 
cardiotoxicity after breast cancer has not been resolved 
and there are no standard clinical guidelines to guide this 
[124]. Do Young Kim proposed The CHEMO-RADIAT 
score used to stratify cardiovascular risk in breast cancer 
survivors, which could help clinicians in their treatment 
decisions [125].

In addition to medication, positive lifestyle changes are 
the effective ways to prevent CVD and improve progno-
sis, such as psychological support [126], improving fam-
ily support [127], proper nutrition [128] and exercises. 
Positive mental health has been determined to be pro-
spectively associated with improved outcomes related to 
CVD [126].

Conclusions and perspectives
Developments in neoadjuvant CHT contributed to an 
increase in breast cancer survivors. The determination of 
an appropriate follow-up for these patients is of increas-
ing importance. An expanding body of evidence supports 
that various anticancer therapies may influence Lp(a) 
concentrations in breast cancer survivors. This review 
emphasizes the role of Lp(a) assessment and its implica-
tions in breast cancer care. Notably, this could be a pos-
sible risk factor for CVD in this population.

In addition, we provide an overview of the existing 
connection between cardiovascular prognosis and Lp(a) 
among patients with breast cancer receiving CHT. High 
Lp(a) levels may have adverse effects on their cardiovas-
cular system. This review summarizes the treatments 
available to reduce Lp(a) concentrations in the clini-
cal setting and the latest advances in the use of PSCK9 
inhibitors. Also, we highlight the need to pay more 
attention to patients with breast cancer after CHT, who 
require safe and effective strategies for cardioprotection. 
Research on cardiac care for cancer survivors is still at 
its initial stage. Our findings need to be further investi-
gated with more large-scale, prospective clinical trails, 
in patients with breast cancer receiving different classes 
of chemotherapeutic agents. Lipid-related effects on car-
diovascular performance and well-being among cancer 
survivors have recently been an important research area. 
Governments and local communities should provide 
comprehensive health behavior counseling interventions 
for CVD prevention and management for many cancer 
survivors.
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