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Abstract
Objective Colorectal cancer (CRC) is a major global health concern, necessitating the identification of biomarkers 
and molecular subtypes for improved clinical management. This study aims to evaluate the clinical value of 
adipogenesis-related genes and molecular subtypes in CRC.

Methods A comprehensive analysis of adipogenesis-related genes in CRC was performed using publicly available 
datasets (TCGA and GEO database) and bioinformatics tools. Unsupervised cluster analysis was employed to identify 
the molecular subtypes of CRC, while LASSO regression analysis was utilized to develop a risk prognostic model. The 
immunogenomic patterns and immunotherapy analysis were used to predict patient response to immunotherapy. 
Furthermore, qPCR analysis was conducted to confirm the expression of the identified key genes in vitro.

Results Through the analysis of RNAseq data from normal and tumor tissues, we identified 50 differentially expressed 
genes. Unsupervised cluster analysis identified two subtypes (Cluster A and Cluster B) with significantly different 
survival outcomes. Cluster A and B displayed differential immune cell compositions and enrichment in specific 
biological pathways, providing insights into potential therapeutic targets. A risk-scoring model was developed using 
five ARGs, which successfully classified patients into high and low-risk groups, showing distinct survival outcomes. The 
model was validated and showed robust predictive performance. High-risk patients exhibited altered immune cell 
proportions and gene expression patterns compared to low-risk patients. In qPCR validation, four out of the five key 
genes were consistent with the results of bioinformatics analysis.

Conclusion Overall, the findings of our investigation offer valuable understanding regarding the clinical relevance 
of ARGs and molecular subtypes in CRC, laying the groundwork for improved precision medicine applications and 
personalized treatment modalities.
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Introduction
With a steadily growing occurrence and significant 
impact on mortality, colorectal cancer (CRC) is recog-
nized as one of the leading malignant neoplasms world-
wide. Despite considerable advancements in the timely 
detection and management of CRC, the underlying 
mechanisms that give rise to this disease remain complex 
and not entirely understood [1, 2]. Fat tissues are widely 
present in the body, serving not only as an energy storage 
site but also playing crucial roles in metabolic regulation, 
immune response, and hormone signaling. Therefore, 
the regulatory mechanisms of adipocyte differentiation 
in tumor development, known as adipogenesis, have 
received considerable research attention [3, 4]. Studies 
have revealed dysregulation of key adipogenic factors 
in breast cancer [5], prostate cancer [6], ovarian cancer 
[7], pancreatic cancer [8], and their altered expression 
has been associated with tumor progression, metastasis, 
and resistance to therapy. Targeting these genes or their 
downstream pathways has shown promise in inhibiting 
these cancer growths and improving treatment outcomes 
[9].

In recent years, bioinformatics technology has demon-
strated great potential in revealing the molecular mecha-
nisms of tumors [10–13]. By integrating high-throughput 
sequencing data and systems biology approaches, we can 
comprehensively understand the expression and regula-
tory patterns of Adipogenesis-Related Genes (ARGs), 
which are genes associated with adipocyte differentia-
tion, in CRC. Given their probable significance in tumor 
development, advancement, and resistance to treatment, 
exploring these ARGs in-depth becomes imperative to 
elucidate the molecular intricacies of CRC and design 
tailored therapeutic strategies.

This article seeks to delve into the functions and poten-
tial mechanisms of ARGs in CRC by employing systems 
biology and bioinformatics analysis, and providing new 
insights and theoretical foundations for the pathologi-
cal physiology research and development of treatment 
methods for CRC. Through a deeper understanding of 
the regulatory network of adipocyte differentiation in 
the occurrence and development of CRC, we hope to 
open up new possibilities for personalized and precise 
clinical treatment, thereby providing more effective treat-
ment options for patients and reducing the incidence and 
related mortality rates of CRC.

Materials and methods
Data sets and preprocessing
The study flow chart is shown in Figure S1. For the 
retrieval of mRNA expression profiles and clinical 
data related to human colorectal cancer, a systematic 
computer search was performed on the Gene Expres-
sion Omnibus (GEO) dataset. One publicly accessible 

colorectal cancer cohort was retrieved from the GEO 
database. Additionally, we compiled a CRC cohort 
encompassing mutation and somatic copy number alter-
ation data from The Cancer Genome Atlas (TCGA). 
After standardizing the raw count data through the R 
package ‘DEseq2’ [14], we further processed it to obtain 
transcripts per kilobase million (TPM) values using the 
R package limma [15]. The Affymetrix-generated origi-
nal CEL files were sourced from either the GEO dataset 
or the ArrayExpress dataset. Thereafter, we conducted 
individual processing and normalization of the raw CEL 
files for each cohort, employing the R package affy [16]. 
Mapping of probes to gene symbols was performed 
with reference to the corresponding platform annota-
tion file. When multiple probes were associated with the 
same gene symbol, the probe displaying the most sensi-
tive signal was selected as the representative expression 
level for the gene. To account for potential batch effects 
across different experiments, we implemented the Com-
Bat function from the R package sva [17]. We performed 
combined processing and analysis on the TCGA and 
GEO CRC cohorts.

Differential gene expression
Differential expression analysis, employing the limma 
package, allowed us to discern the genes with differen-
tial expression (DEGs) between tumor and normal tis-
sues. Heatmap and volcano plot visualizations of the 
DEG results were created using the heatmap and ggplot2 
packages [18], respectively. Conducting univariate COX 
regression analysis allowed us to pinpoint DEGs that 
are associated with patient prognosis. Furthermore, the 
igraph package was utilized to construct a correlation 
network map of prognostic-related DEGs [19].

Copy number alteration analysis
We defined copy number variations (CNVs) with values 
greater than 0 as CNV amplifications and those less than 
0 as CNV deletions. We then calculated the percentage of 
CNV amplifications and deletions among the DEGs. To 
further investigate the genomic locations of CNV altera-
tions in adipogenesis-related DEGs, we plotted the posi-
tions of these CNV changes across the 23 chromosomes.

Consensus clustering analysis
Using the R package ‘ConsensusClusterPlus‘ [20], we 
characterized different molecular subtypes based on 
ARG expression. To ensure the robustness of the clas-
sification, we repeated the cluster determination 
process 1000 times in the colorectal cancer cohort. Visu-
alizing the distribution differences of ARGs subtypes was 
achieved through Principal Component Analysis (PCA). 
To evaluate the clinical importance of these subtypes, we 
explored their associations with clinical factors, including 
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prognosis, age, gender, and stage. Comparisons of over-
all survival (OS) among different clusters were performed 
using Kaplan-Meier survival curves, with a significance 
level set at P ≤ 0.05. Additionally, we employed the heat-
map R package [21] to generate a heatmap representing 
the expression patterns of ARGs, which exhibited signifi-
cant differences among the subgroups (P ≤ 0.05).

Construction of risk score
The glmnet package [20] was utilized for Lasso Cox 
regression analysis, integrating data from both TCGA 
and GEO cohorts, to identify the most promising prog-
nostic biomarkers. We utilized ten-fold cross-validation 
to construct models and confidence intervals for each 
lambda and eventually incorporated the most optimal 
key prognostic genes to build the risk model. To create 
training and testing sets, we randomly divided the TCGA 
combined with the GEO cohort at a 1:1 ratio. Employ-
ing the survival R package [22], we computed risk scores 
for each patient and classified them into high and low-
risk groups using the median value. We used the ‘pROC’ 
package [23] to generate receiver operating characteris-
tic (ROC) curves and evaluate the accuracy of the risk 
model. Furthermore, Kaplan-Meier survival analysis was 
executed on patients in the high and low-risk groups and 
1-year, 3-year, and 5-year ROC curves were plotted using 
the ‘timeROC’ package [24], incorporating data from the 
training and testing sets. Through univariate and multi-
variate Cox regression analyses, we assessed the capacity 
of the risk model to function as an independent prognos-
tic factor.

GSEA and GSVA analysis
The R programming language was utilized for Gene Set 
Enrichment Analysis (GSEA) by employing the “enrich-
plot“ [25] and “clusterProfiler” packages [26]. Two pre-
defined gene sets, namely “c5.go.symbols.gmt” and “c2.
cp.keg.symbols.gmt,“ were employed for the analysis. The 
primary objective of the enrichment analysis was to iden-
tify significantly enriched pathways based on a P-value 
threshold of < 0.05. To elucidate the biological relevance 
of the gene sets in the context of various biological pro-
cesses and disease progression, we employed the ‘GSVA’ 
package [27] to conduct Gene Set Variation Analysis 
(GSVA). Significant differences in gene set variation were 
determined using a significance threshold of |t| > 2 and a 
P-value < 0.05.

Establishment of a nomogram
A column line plot was generated using the outcomes 
from multivariate Cox regression analysis to enable visual 
risk prediction. Each factor was assigned a score, and the 
column line plot depicted the cumulative risk score for 
each individual. This plot allows for a visual assessment 

of the predicted risk levels across the study cohort. Both 
the nomogram and calibration plot were generated using 
the rms package in R software [28].

Immune-related features and prediction of 
immunotherapeutic
Quantification of immune cell infiltration levels in each 
cancer sample was accomplished using expression data, 
facilitating a comparison of cell infiltration level differ-
ences across various sample classifications. Additionally, 
we used the “e1071“ [29], “CIBERSORT“ [30], and “paral-
lel” packages [31] in R software to calculate the immune 
cell infiltration patterns in each tumor sample. Following 
that, we employed the ‘Limma’ R software to examine the 
variations in immune cell enrichment between the high 
and low-risk groups. Additionally, we integrated a series 
of predictive indicators for immune checkpoint inhibitor 
(ICI) response, including immune checkpoints, tumor 
immune dysfunction, and exclusion (TIDE) scores, to 
examine the connection between the risk model and the 
efficacy of immune therapy.

In vitro cell culture
We sourced colorectal cancer cell lines (SW480 and 
HCT116) and normal intestinal epithelial cell line 
(NCM460) from the Cell Repository of the Chinese 
Academy of Sciences (Shanghai, China). For all cell types, 
culture conditions involved the use of Dulbecco’s Modi-
fied Eagle Medium (DMEM) supplemented with 10% 
fetal bovine serum (FBS) and 1% penicillin-streptomycin 
solution, and maintenance in a 5% CO2 atmosphere at 
37 °C.

qRT-PCR
RNA extraction from the cell lines was performed using 
TRIzol reagent (Invitrogen), followed by cDNA syn-
thesis using the PrimeScript RT Reagent Kit (Takara, 
China) with the obtained RNA. Subsequently, qPCR was 
conducted on the Step One Plus Real-Time PCR system 
(Applied Biosystems, Carlsbad, CA, USA) under the fol-
lowing conditions: an initial denaturation step at 95  °C 
for 10 min, followed by 40 cycles of denaturation at 95 °C 
for 15 s and annealing/extension at 60 °C for 1 min. The 
list of gene primers was found in supplementary file.

Drug sensitivity analysis
In order to identify potential tumor treatment targets 
and improve tumor treatment, we utilized the Tumor 
Drug Sensitivity Multiomics Database (GDSC Data-
base https://www.cancerrxgene.org/) We downloaded 
the IC50 values of 198 drugs and used the “oncoPre-
dict” package to predict the IC50 of each sample in 
TCGA based on mRNA gene expression data. Applying 

https://www.cancerrxgene.org/
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Spearman correlation analysis to search for potential 
effective drugs for the treatment of colorectal cancer.

Statistical analysis
Using the ‘gsurvplot’ function, we generated Kaplan-
Meier survival curves and evaluated the differences in 
overall survival time between diverse groups via two-
sided log-rank tests. By employing the risk-scoring 
formula, we divided cancer patients into high-risk or 
low-risk subtypes, with the median as the cutoff. To 
identify characteristics significantly associated with 
overall survival, we performed univariate Cox regres-
sion analysis. Subsequently, multivariate Cox regression 
analysis was conducted to assess whether these charac-
teristics remained independent of other clinical features. 
All statistical analyses were performed using R software 
(version 4.1.3), and p-values < 0.05 were considered sta-
tistically significant.

Results
Overview of the expression and genetic variation of ARGs 
in CRC
To investigate the impact of ARGs on the occurrence 
and progression of CRC, we analyzed the RNAseq data 
of normal and tumor tissues from the TCGA database. 
We identified DEGs using a threshold of FDR < 0.05 and 
an absolute logFC greater than 1. This analysis led to the 
identification of 50 differentially expressed ARGs, which 
were visualized through a heatmap and a volcano plot 
(Figure S2A, B). We further performed univariate Cox 

analysis on the DEGs to determine their association with 
overall survival in CRC patients. The results revealed that 
a total of 13 differentially expressed ARGs were signifi-
cantly associated with patient survival outcomes, with 8 
ARGs associated with unfavorable survival outcomes 
(Figure S2C). The prognostic relevance and interrelation-
ships of these ARGs were summarized in a prognostic-
related network depicted in Figure S2D. Additionally, 
we analyzed copy number variations (CNVs) to further 
explore ARG mutations in colorectal cancer. We deter-
mined the occurrence rate of ARG mutations by inte-
grating CNV data and identified 45 ARGs with CNV 
alterations (Figure S2E), mostly characterized by copy 
number amplifications. The genomic locations of these 
CNV alterations are shown in Figure S2F. These results 
shed light on the potential prognostic value of ARGs in 
colorectal cancer and demonstrate their association with 
patient survival outcomes. The analysis of CNV altera-
tions provides additional insights into the occurrence and 
distribution of mutations in ARGs, which may contribute 
to a deeper understanding of the molecular mechanisms 
underlying CRC development.

Identification of ARGs subtypes
We employed unsupervised cluster analysis to stratify 
CRC patients’ samples based on ARGs expression lev-
els, leading to the identification of two distinct clusters, 
termed Cluster A and Cluster B (Figure S3). Survival 
analysis indicated a favorable survival advantage for 
patients in Cluster B (Fig. 1A). Subsequently, we applied 

Fig. 1 Molecular subtypes based on ARGs in CRC and their clinicopathological features. (A) Kaplan-Meier survival analyses for the two molecular sub-
types. UAMP(B), tSEN(C), and PCA(D) presented a great difference between the A and B subtypes. (E)The expression levels of prognosis related differen-
tially expressed ARGs between A and B subtypes. (F) The heatmap showed the prognosis related differentially expressed ARGs expression profiles and 
clinicopathologic characteristics among subtypes A and B
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three common dimensionality reduction techniques, 
namely PCA, t-SNE, and UMAP, to visualize the data, 
with each cell population represented by different col-
ors. The visualizations clearly distinguished Cluster A 
and Cluster B (Fig. 1B-D). Differential expression analy-
sis identified 13 ARGs with significant expression differ-
ences between the two clusters, including 9 upregulated 
and 4 downregulated in Cluster A compared to Cluster B 
(Fig. 1E). Notably, the clinical characteristics also exhib-
ited significant differences between the two subtypes, 
with patients in Cluster A displaying older age and higher 
STAGE staging (Fig. 1F).

To explore the immune microenvironment of Clusters 
A and B in CRC, we performed ssGSEA to compare the 
expression profiles of 23 immune cell subtypes between 
the two clusters. The results revealed that 18 out of 23 
immune cell subtypes exhibited differential expression 
between the clusters (Fig.  2A). Furthermore, to gain 
insights into the underlying biological alterations associ-
ated with the distinct clusters, we conducted GSEA and 
GSVA analyses. GSEA unveiled significant activation of 
ECM-receptor interaction and Focal adhesion pathways 
in Cluster A, whereas ribosome and oxidative phosphor-
ylation-related metabolic pathways were enriched in 
Cluster B (Fig.  2B). GSVA analysis of the two subtypes 

indicated that highly expressed DEGs in Cluster A were 
significantly enriched in cell communication and infor-
mation pathways, MAPK signaling pathway, and cell 
adhesion-related pathways (Fig. 2C, D).

Metabolic reprogramming induced by ARGs subtypes
The metabolic pathway covers various important bio-
logical molecule synthesis and decomposition processes 
within cells, which are crucial for normal cell function 
and survival. At the same time, dysmetabolism is also a 
core feature of cancer. The further screening of metab-
olism-related pathways through GSEA reveals that the 
molecular subtypes of CRC based on ARGs also reflect 
the metabolic alterations involved in the progression of 
colorectal cancer. As shown in Additional Table 1,  and 2, 
Besides fatty acid metabolism, Cluster B exhibits signifi-
cantly enriched metabolic pathways, encompassing the 
following categories: Carbohydrate Metabolism (Butano-
ate Metabolism, Propanoate Metabolism, Pyruvate 
Metabolism, CITRATE CYCLE TCA CYCLE, Starch and 
Sucrose Metabolism), Nucleotide Metabolism (Pyrimi-
dine Metabolism and Purine Metabolism), Amino 
Acid Metabolism (Arginine and Proline Metabolism, 
Cysteine and Methionine Metabolism), Drug Metabo-
lism (Drug Metabolism-Other Enzymes and Drug 

Fig. 2 Tumor microenvironment and Functional enrichment analysis of ARGs-based clusters in CRC. (A) Analysis of infiltrating immune cells between A 
and B subtypes. (B) Analysis of GSEA for subtypes A and B. C, D. Analysis of GSVA for subtypes A and B

 



Page 6 of 13Han et al. Lipids in Health and Disease          (2023) 22:217 

Metabolism-Cytochrome P450), Vitamin Metabolism 
(Retinol Metabolism), Organic Acid Metabolism (Glyox-
ylate and Dicarboxylate Metabolism), and Other Meta-
bolic Pathways (Porphyrin and Chlorophyll Metabolism, 
Glutathione Metabolism).

Construction and validation of risk prognostic models
To establish a feature-scoring model for evaluating the 
role of ARGs in CRC, we employed LASSO regression 
analysis to select the best prognostic feature-related 
genes from prognostic-related key genes. After incor-
porating the variables into the LASSO regression model 
with minimized λ, five ARGs were selected to construct 
the risk-scoring model (Fig.  3A). Initially, the samples 
were stratified into train and test groups with a 1:1 ratio. 
Figure 3B-D depicted the gene expression levels and sur-
vival time, along with the status distribution between the 
high and low-risk groups in various groups. The results 
showed an increasing proportion of patient mortality 
with elevated risk scores. Simultaneously, survival analy-
sis across the three groups revealed that patients with 
higher risk scores exhibited significantly inferior overall 
survival (OS) compared to those with lower risk scores 
(Fig.  4A-C). Time-dependent ROC analysis for 1-year 
(train group 0.695, test group 0.677, all samples group 
0.850), 3-year (train group 0.850, test group 0.814, all 

samples group 0.817), and 5-year (train group 0.813, test 
group 0.788, all samples group 0.771) overall survival 
further validated the robust predictive capacity of the 
ARGs-associated risk model for colon cancer patient sur-
vival (Fig.  4D-F). Subsequent multivariable Cox regres-
sion results indicated that the risk score independently 
served as a prognostic factor for OS (Fig.  4H). Patients 
in the A and B clusters also demonstrated differences in 
risk scores, with Cluster A patients exhibiting higher risk 
scores, corresponding to a poorer prognosis for previous 
patients in Cluster A (Fig.  4I). Sankey plots illustrating 
both groups displayed the correlation between ARGs risk 
model grouping, ARGs subtypes, and survival status. The 
high-risk group displayed a higher proportion of fatal 
outcomes compared to the proportion of alive patients, 
and within Cluster A, the proportion of high-risk patients 
was higher than that of low-risk patients (Fig. 4J). Based 
on the results of univariate and multivariate Cox regres-
sion analyses, we constructed a nomogram incorporat-
ing clinical staging and ARGs (Fig. 5A). The cumulative 
graph demonstrated a significant distinction between 
high and low-risk groups over time (Fig.  5B). Calibra-
tion curves indicated the high accuracy of the nomogram 
(Fig.  5C). These findings collectively suggest that ARGs 
possess a reliable capacity to discriminate tumor out-
come differences.

Fig. 3 Construction of prognostic model based on ARGs in CRC (A) LASSO Cox regression analysis. Distribution of the heatmap of ARGs (upper), survival 
time (middle), and risk score (below) in all cohorts (B), training cohort(C), and test cohort(D)
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Tumor mutation burden and immune landscape of ARGs 
subtypes
The current investigation employed the Maftools soft-
ware package to undertake a comparative analysis of 
somatic mutations between high and low-risk oncology 
cohorts. Our analysis revealed that the high-risk cohort 
(Figure S4A) displayed a significantly higher tumor 
somatic mutation rate when compared to the low-risk 
cohort (Figure S4B). Further identification of tumor 
driver genes in both cohorts indicated a higher number 
of such genes in the low-risk group (Figure S4C, D). The 
analysis of co-occurring and mutually exclusive muta-
tions in the high and low-risk cohorts showcased the cor-
relation among mutated genes, with green and orange 
colors representing co-occurrence and mutual exclusiv-
ity, respectively (Figure S4E, F). Moreover, the forest plot 
illustrating differentially mutated genes between the high 

and low-risk cohorts (Figure S5) indicated a higher pro-
portion of mutated genes in the low-risk group.

Immunogenomic patterns and immunotherapy analysis
Using the CIBERSORT method, we determined the 
proportions of 22 immune infiltrating cell types in each 
sample and subsequently investigated the differential 
expression of immune cells between the high and low-
risk groups. Our findings demonstrated that the high-risk 
group exhibited a higher proportion of resting immune 
cells (Fig.  6A). Furthermore, the correlation analysis of 
the 22 immune cell types revealed positive correlations 
indicated in red and negative correlations indicated 
in blue (Fig.  6B). Leveraging these results, we exam-
ined the relationship between genes involved in model 
construction and immune cells, observing that most 
genes showed negative correlations with immune cells 

Fig. 4 K-M survival curves of low- and high-risk patients in the training cohort(A), test cohort(B), and all cohort(C). D-F. The ROC curves at 1-, 3- and 
5-year in the mentioned three cohorts. H. Forest plots showing the results of the multivariate Cox regression analysis. I. Differences in risk scores between 
clusters A and B J. Sankey diagram shows the relationship between different ARG scores, risk scores, and survival outcomes

 



Page 8 of 13Han et al. Lipids in Health and Disease          (2023) 22:217 

(Fig.  6C). Interestingly, we observed a higher immune 
functionality in the high-risk group (Fig. 6D).

To evaluate the responsiveness of patients in the high 
and low-risk groups to immunotherapy, we initially con-
ducted a risk score analysis and explored the correlation 

of immune checkpoint molecules. Remarkably, we identi-
fied ten immune checkpoint molecules, including ICOS, 
HAVCR2, CTCN1, etc. which displayed significant posi-
tive correlations, while five immune checkpoint mol-
ecules, including ICOSLG, TNFSF9, IDO2, CD40LG, 

Fig. 5 Construction and validation of a nomogram (A) Nomogram for predicting the 1-, 3-, and 5-year OS of CRC patients. (B) Draw a cumulative risk map 
for high and low-risk groups (C) Calibration plots show the fits of 1-, 3- and 5-year predictions
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and TNFRSF4, showed significant negative correlations 
(Fig.  7A, B). Additionally, ESTIMATE analysis revealed 
that the high-risk group exhibited higher immune, stro-
mal, and ESTIMATE scores compared to the low-risk 
group (Fig.  7C). Subsequently, we employed the Tumor 
Immune Dysfunction and Exclusion (TIDE) algorithm 
(http://tide.dfci.harvard.edu/) to assess the efficacy of 
immunotherapy in high and low-risk populations. The 
results depicted in Fig.  7D indicated a higher propor-
tion of immunotherapy-resistant patients in the high-
risk group. Furthermore, the high-risk group displayed 
lower microsatellite instability (MSI) scores, higher TIDE 
scores, and T cell exclusion scores, with no significant 
difference in T cell dysfunction compared to the low-
risk group (Fig.  7E). Finally, through the evaluation of 
PD1 and CTLA-4, we found that patients in the low-risk 

group may exhibit a more favorable response to immuno-
therapy (Fig. 7F).

Drug response analysis
In order to identify potentially effective drugs for treating 
colorectal cancer, we examined the correlation between 
drug sensitivity (IC50 values) and gene expression pro-
files in high-risk and low-risk groups. Our analysis 
revealed that several drugs exhibited promising effects 
on colorectal cancer patients. Specifically, 39 drugs were 
identified as having potential efficacy in the treatment 
of colorectal cancer. Some of these drugs include Afure-
sertib, AGI-5198, Crizotinib, Dabrafenib, Dasatinib, and 
many others. Our analysis revealed that certain drugs, 
such as Dasatinib, Doramapimod, JQ1, and NU7441, 
demonstrated greater efficacy in the low-risk subgroup 
of patients (Figure S6). On the other hand, the remaining 

Fig. 6 Tumor microenvironment features related to the ARGs-based signature in CRC. (A) The proportions of immune cells in each sample of low- and 
high-risk groups according to CIBERSORT analysis. (B) The correlation of immune cells (C) The heatmap showed the relationship between ARGs and im-
mune cells. (D) Immune function analysis
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Fig. 7 Immune checkpoint profiles and immunotherapy evaluation related to the ARGs-based signature in CRC. A, B. correlations between the immune 
checkpoint expression and risk score. C. Comparison of TEM scores between the high and low-risk groups. D. analyze immunotherapy responses in high 
and low-risk groups by TIDE E. Predictive immunotherapy by comparing the score of MSI, Exclusion, Dysfunction, and TIDE in high and low-risk groups. F. 
Immunotherapy response analysis of high and low-risk groups through TCIA
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drugs showed higher efficacy in the high-risk subgroup 
of patients. These findings suggest that different patient 
risk profiles may influence the response to specific drugs, 
highlighting the importance of personalized medicine 
approaches in tailoring treatment strategies for colorec-
tal cancer patients. Further investigation is warranted to 
understand the underlying mechanisms and potential 
biomarkers associated with drug response in different 
risk groups.

Validation of key genes expression in tumor cell lines in 
vitro
We detected the expression of 5 ARGs (Cd36, FABP4, 
ANGPT1, ACADL, and CPT2) in CRC cell lines (SW480 
and HCT116) and normal intestinal epithelial cells 
(NCM460) using RT-qPCR in vitro. Except for ANGPT1, 
the expression trends of the other ARGs were consistent 
with those in TCGA (Figure S7).

Discussion
We acknowledge the potential association between fat 
synthesis and CRC, our research is warranted to gain a 
comprehensive understanding of the specific roles and 
interactions of these genes.

We comprehensively analyzed 200 ARGs in CRC by 
employing RNAseq data from both normal and tumor 
tissues acquired from the TCGA and GEO databases. 
Through differential expression analysis, we identified 
50 differentially expressed ARGs associated with CRC. 
A total of 40 ARGs were identified to be upregulated. 
The results of further univariate Cox analysis unveiled 
13 differentially expressed ARGs significantly linked to 
patients’ survival outcomes in CRC. Moreover, we dem-
onstrated that there is a complex correlation between 13 
differentially expressed ARGs related to prognosis. These 
findings emphasize the potential importance of ARGs in 
determining the prognosis of CRC patients.

How are ARGs des-regulated in CRC? Research indi-
cates that genetic variations associated with fat metabo-
lism may influence an individual’s degree of obesity and 
the expression of genes. We explored the genetic varia-
tions of ARGs in CRC by analyzing CNVs, this analysis 
identified a high mutation percentage of ARGs (45/50) 
with CNV alterations and mostly characterized by copy 
number amplifications. The presence of these CNV 
alterations in ARGs may contribute to the dysregulation 
of adipogenesis-related pathways, thereby influencing 
colorectal cancer development.

Furthermore, unsupervised cluster analysis based on 
ARGs expression levels led to the identification of two 
distinct subtypes, Cluster A and Cluster B. Patients in 
Cluster B exhibited a favorable survival advantage com-
pared to those in Cluster A, suggesting that these ARGs 

may play a role in defining the molecular characteristics 
of the subtypes in CRC.

What are the reasons for the survival differences 
between two different subtypes based on ARGs in 
colorectal cancer patients? In subtype A with poorer 
prognosis, we found most ARGs(9/13) are upregulated 
in tumor tissue. Abnormal expression of these ARGs may 
affect tumor development through multiple pathways 
(immune, metabolic, and other signaling pathways).

The process of fat synthesis is a biochemical process in 
which the body converts glucose and other metabolites 
into fatty acids and stores them in fat cells. This process 
is necessary under normal circumstances, but excessive 
fat synthesis can lead to various problems such as non-
alcoholic fatty liver disease (NAFLD) and insulin resis-
tance. Insulin resistance reduces the response of the 
body’s cells to insulin, which can stimulate the liver to 
synthesize more fatty acids and result in the accumula-
tion of fat in the liver, exacerbating the progression of 
NAFLD. Research suggests that individuals with pre-
existing NAFLD may have a higher incidence of CRC 
and liver metastasis [32]. In our study, colorectal cancer 
subtypes based on genes related to fat synthesis exhib-
ited disruptions in multiple metabolic pathways, includ-
ing sugar and lipid metabolism, nucleotide metabolism, 
amino acid metabolism, and drug metabolism pathways, 
among others. Understanding the relationship between 
genes associated with fat synthesis and their involvement 
in metabolic pathways in the development of tumors can 
aid in the development of new therapeutic approaches 
aimed at disrupting the energy supply and growth of 
tumors.

Glycolipid metabolism plays a crucial role in regulat-
ing immune function, as the activities within the immune 
system require energy support. Under normal circum-
stances, Glycolipid metabolism provides the necessary 
energy for immune cells, ensuring their effective execu-
tion of tasks. Moreover, sugar and lipid metabolism not 
only influence the energy supply of immune cells but 
also impact their differentiation and functionality. Fur-
ther analysis suggests that there is a higher proportion of 
immune cells and more activation of tumor-related sig-
naling pathways in subtype A compared with subtype B. 
The immune microenvironment alteration and various 
biological pathways activation may contribute to the dif-
ferent outcomes observed in the two subtypes.

Can ARGs stratify CRC patients’ risk and predict their 
prognosis? We conducted LASSO regression analysis 
and selected five hub ARGs to construct a risk-scoring 
model. The model successfully stratified patients into 
high and low-risk groups, with patients in the high-risk 
group showing significantly inferior overall survival. The 
predictive capacity of the model was further validated 
using time-dependent ROC analysis, demonstrating its 
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robustness in predicting patient outcomes. Notably, the 
risk score independently served as a prognostic factor for 
overall survival, highlighting the potential clinical rele-
vance of ARGs in predicting colorectal cancer prognosis.

Further research has found that patients in different 
risk groups have different immune microenvironments 
and reactions to immunotherapy, which will provide 
theoretical guidance and ideas for the development 
of immunotherapy based on patients in different risk 
groups.

Furthermore, the drug response analysis also identified 
potentially effective drugs for treating colorectal cancer. 
The analysis indicated that specific drugs showed greater 
efficacy in the low-risk subgroup of patients, while others 
showed higher efficacy in the high-risk subgroup. These 
findings suggest that considering patient risk profiles 
and ARG expression levels may be essential in tailoring 
personalized treatment strategies for colorectal cancer 
patients.

To validate and fully comprehend the role of ARGs in 
colorectal cancer, as well as to explore their therapeutic 
potential in clinical settings, further experimental vali-
dation and functional studies are essential. These efforts 
will be crucial in advancing our understanding and facili-
tating the translation of our findings into effective clinical 
interventions.

Our findings provide insights into the molecular 
mechanisms driving colorectal cancer development. This 
knowledge has the potential to guide the development of 
targeted therapies tailored to individual patients based 
on their ARGs expression profiles and risk scores.
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