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socioeconomics. Despite the intricacy and diversity of 
the etiology of spine-related disorders, IVDD has been 
considered to be one of the top etiologic factors [1]. 
IVDD is a prevalent degenerative disease featuring a 
gradual reduction in protein glycans and moisture con-
tent in the nucleus pulposus [2] and consequent rupture 
of the discs between the vertebrae, inducing pressure 
on spinal nerves. The present conservation therapies or 
operative interventions are unable to reverse IVDD [3].

DM is a systemic disease caused by defective insu-
lin secretion or insulin resistance, and approximately 
90% of diabetes patients have type 2 diabetes [4, 5]. DM 
is a multiorgan disorder impacting multiple tissues and 
organs, including bone and cartilage [6]. A controlled 

Introduction
Owing to the aging of the population, the number 
of people suffering from IVDD is growing dramati-
cally. The major characteristic of IVDD is chronic low 
back pain (LBP), which greatly impacts patients’ daily 
lives and poses a great challenge to public health and 
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Abstract
Background To validate the causal relationship between type 2 diabetes mellitus (T2DM) and intervertebral disc 
degeneration (IVDD) and to identify and quantify the role of triglycerides (TGs) as potential mediators.

Methods A two-sample Mendelian randomization (MR) analyses of T2DM (61,714 cases and 1178 controls) and IVDD 
(20,001 cases and 164,682 controls) was performed using genome-wide association studies (GWAS). Moreover, two-
step MR was employed to quantify the proportionate impact of TG-mediated T2DM on IVDD.

Results MR analysis showed that T2DM increased IVDD risk (OR: 1.0466, 95% CI 1.0049–1.0899, P = 0.0278). Reverse 
MR analyses demonstrated that IVDD does not affect T2DM risk (P = 0.1393). The proportion of T2DM mediated 
through TG was 11.4% (95% CI 5.5%-17.4%).

Conclusion This work further validates the causality between T2DM and IVDD, with a part of the effect mediated by 
TG, but the greatest impacts of T2DM on IVDD remain unknown. Further studies are needed to identify other potential 
mediators.
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study by Liu and his team involving 772 participants, as 
well as a retrospective-study in India found that a dura-
tion of T2DM of > a decade and poorly controlled T2DM 
can increase IVDD risk. In addition, a 4-year longitudinal 
study from the Wakayama Spine Study further confirmed 
the strong association between DM and the incidence of 
IVDD [7–9]. IVDD is a serious medical issue [10] that 
often causes moderate to severe pain in patients. This 
pain not only affects their quality of life but also increases 
the corresponding medical costs [11, 12]. However, tradi-
tional approaches have focused on treating IVDD based 
on the symptoms [13]. Accordingly, it is particularly criti-
cal to identify risk factors for IVDD and understand the 
association between them and IVDD to prevent or delay 
the occurrence or development of IVDD. This could 
reduce the prevalence of IVDD and minimize the bur-
dens on the health care system and socioeconomic sys-
tem. Therefore, it is of great practical importance to study 
and validate the association between T2DM and IVDD 
as early as possible. In addition, several retrospective 
studies based on large populations have shown that TG 
impacts the degradation level and increases the probabil-
ity of lumbar disc herniation in patients with IVDD [14, 
15]. There is also a strong link between elevated TG levels 
and DM [16, 17]. Thus, TG may be a potential mediator 
between T2DM and IVDD. However, traditional epide-
miologic studies are susceptible to instrument inaccura-
cies, uncontrollable confounders, and inverse causation, 
which eventually cause instability of the results. Research 
regarding the effect of lipid factors in mediating the asso-
ciation between T2DM and IVDD is also scarce, and 
thus, studies designed to avoid bias are needed to con-
firm the association between T2DM and IVDD as well as 
the mediating factors involved.

MR is a novel research method. It utilizes genetic vari-
ants linked to target traits to assess the causality between 
exposures and outcomes as instrumental variables 
(IVs). Compared with traditional observational stud-
ies, MR is extensively utilized in investigating potential 
causality between exposure and outcome because of its 
higher confidence in inferring causality, overcoming 

confounders, measurement error, and reverse causality 
issues [18]. The two-sample MR approach requires sepa-
rate extraction of genetic variation in exposure and out-
come in diverse datasets, which enables it to verify the 
causality between T2DM and IVDD with more robust 
statistical efficacy. In addition, the proportion of the 
impact of T2DM on IVDD that may be mediated through 
TG was quantified, which better identifies the role of tri-
glycerides in this pathway.

Materials and methods
Study design
The research utilized the Twosample TwosampleMR 
[19] software package, an R language program package 
designed to estimate the causality between exposures and 
outcomes through the use of GWAS generalization data. 
Single nucleotide polymorphisms (SNPs) are genetic 
tools for inferring exposure impacts on outcomes.

Data sources and selection of SNPs
The GWAS pooled data relevant to the purposeful char-
acterization of the European population were obtained 
from open databases. GWAS databases with a larger 
sample size and number of SNPs were prioritized. 
T2DM-related data (Xue A et al., 2018) came from a 
European Bioinformatics Institute database meta-anal-
ysis involving three large T2DM GWASs with a total of 
655,666 individuals [20]. TG-relevant data (Richardson 
et al., 2020) were obtained from the GWAS of the char-
acterization of nonfasting cyclic lipoprotein lipids via 
the UK BioDatabase, involving more than 441,016 sub-
jects [21]. The IVDD data came from the FinnGen data-
base and involved 184,683 individuals, including 20,001 
patients with IVDD and 164,682 controls (Table 1). First, 
SNPs matching the whole genome prominence threshold 
(P < 5 × 10− 8) requirement were included. To prevent the 
influence of strong linkage disequilibrium (LD), an LD 
threshold (r2 < 0.001) was set. In addition, SNPs whose 
F-statistic was > 10 were utilized to prevent weak instru-
mental bias [22] (Table S1-4).

Table 1 Summary of GWAS datasets included in this study
Phenotype Sample size (case/

control)
Number of SNPs Population Units Data-

bases
Exposure
Type 2 diabetes (ebi-a-GCST006867) 655,666 (61,714/1,178) 5,030,727 European logOR EBI 

database
Mediation
Triglycerides (ieu-b-111) 441,016 12,321,875 European Not applicable UKB 

database
Outcome
Intervertebral disc degeneration 
(finn-b-M13_INTERVERTEB)

184,683 (20,001/164,682) 16,380,337 European Not applicable FinnGen 
database

SNP, single nucleotide polymorphism; Name of data set: ebi-a-GCST006867, ieu-b-111, finn-b-M13_INTERVERTEB
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Primary analysis
Two-sample bidirectional MR was utilized to evaluate 
the causality between T2DM and IVDD (Fig.  1A). The 
Inverse variance weighting (IVW) results were taken 
as the major observation. Furthermore, the MR‒Egger, 
weighted median, simple mode, and weighted mode 
approaches were used for verification.

Mediation analysis
Mediation analysis was performed with two-step MR to 
test whether TGs were a mediator of T2DM on IVDD 
(Fig.  1B). The overall influence of T2DM on IVDD can 
be categorized into a direct impact of T2DM on IVDD 
(e in Fig. 1B) and an indirect (mediated) impact of T2DM 
through the mediator. The indirect effect was calculated 

Fig. 1 Diagram of analytical relationships. (A) The total influence between T2DM and IVDD. ‘a’ indicates the total influence of T2DM on IVDD. ‘b’ indicates 
the total influence of IVDD on T2DM. (B) Diagram of direct and indirect impacts. ‘c’ indicates the effect of T2DM on TG. ‘d’ indicates the effect of TG on IVDD 
(indirect impact = c × d). ‘e’ indicates direct effects = a - c × d. Mediation ratio = c × d / a
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as follows: the first step was to compute the impact of 
exposure on the mediator variable to obtain c, and the 
second step was to compute the impact of the mediator 
on the outcome to obtain d. The two coefficients then 
were multiplied together, yielding the indirect impact (c 
× d in Fig. 1B). The percentage mediated impact was then 
computed by dividing the indirect impact by the overall 
impact (c × d / a in Fig. 1C). A higher percentage of medi-
ated effect indicates a larger proportion of the effect of 
T2DM affecting IVDD through TG. A 95% confidence 
interval was also calculated using the delta method [23].

Sensitivity analysis
The IVW method has high reliability based on a combi-
nation of Wald estimations for every SNP via a method of 
meta-analysis, which yields a total estimation of exposure 
impact on the outcome [24]. However, the MR‒Egger 
approach, which is based on the Cochran’s Q statistics, 
primarily accounts for the dosage association of IVs with 
the outcome and considers partial pleiotropy [25]. Thus, 
heterogeneity was detected with the MR‒Egger and IVW 
approaches. Moreover, an enormous advantage of the 
MR‒Egger approach is that the presence of the intercept 
term is taken into account in the regression; thus, the 
MR Egger regression equation was utilized for evaluat-
ing the horizontal pleiotropy of the genetic tools. P > 0.05 
indicated no heterogeneity and horizontal pleiotropy. 
Furthermore, MR‒pleiotropy residual sum outlier (MR‒
PRESSO) testing was executed, which has high accuracy 
in identifying horizontal pleiotropy and outliers, and can 
reduce heterogeneity in causality estimates via exclusion 
of SNPs that cause heterogeneity [26]. Finally, to ensure 
that the stability of the results remained unaffected by 
individual SNPs, “leave-one-out” sensitivity analysis was 
conducted by removing each SNP individually and deter-
mining whether the results were stable.

Statistical analysis
All analyses were completed in R 4.3.1. In addition, Phe-
noScanner [27] was employed for assessing all genetic 
tool-related phenotypes. The “Forestploter” package was 
used for forest mapping. The “MRPRESSO” package was 
used to detect outliers.

Results
Association between T2DM and IVDD
The IVW approach results suggest that T2DM signifi-
cantly increased IVDD risk (OR: 1.0466, 95% CI 1.0049–
1.0899, P = 0.0278) and reverse MR analysis indicated 
no reverse causality for IVDD on T2DM (P = 0.1393). 
In addition, the remaining four MR analysis methods 
yielded similar results (Fig. 2 and Table S5).

Association between T2DM and TG
The IVW approach results suggested an apparent causal-
ity between T2DM and TG (OR: 1.0676, 95% CI 1.0537–
1.0816, P = 9.0024 × 10− 23). Furthermore, the remaining 
four MR analysis methods yielded similar results (Fig. 2 
and Table S5).

Association between TG and IVDD
TG was significantly related to IVDD (OR: 1.0833, 95% 
CI 1.0141–1.1571, P = 0.0174) with the IVW approach. 
The remaining four MR analysis methods yielded similar 
results (Fig. 2 and Table S5).

The ratio of TG-mediated T2DM to IVDD association
The mediating role of TG in the correlation between 
T2DM and IVDD was analyzed. The analysis suggested 
that T2DM was related to elevated TG levels, which in 
turn were linked to an elevated IVDD risk. The calcula-
tions showed that TG accounted for 11.4% (95% CI 5.5%-
17.4%) of the elevated IVDD risk associated with T2DM 
(Fig. 1C).

Fig. 2 Forest plot of MR analysis results
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Sensitivity analysis
Sensitivity analysis showed a degree of heterogeneity in 
some of the MR analysis processes (Table S6). The hetero-
geneity may arise from independent MR patterns of vari-
ation [28]. For example, when genes appear on the same 
chromosome, they can be linked to each other without 
following the law of independent assortment of heredity. 
In addition, IVs from different analysis platforms, experi-
ments, populations, etc., may be heterogeneous and thus 
affect the results of Mendelian randomization analysis. 
The pleiotropy analysis shows weak pleiotropy evidence 
at the level of the orientation of the TG instrument. This 
suggests that some of the IVs may influence the outcome 
through other factors; however, the current technology is 
not yet able to fully explore the specific features involved 
in all SNPs. In addition, all the MR analysis procedures 
in this study were tested by MR-PRESSO analysis, and 
all SNPs that could lead to pleiotropy and heterogeneity 
were eliminated. Thus, the results of the present study 
still have strong credibility (Table S6). The leave-one-out 
test also demonstrated that the results were reliable (Fig. 
S1).

Discussion
Recently several controlled surveys have been performed 
to examine the link between T2DM and IVDD. However, 
current studies are confined to the causality between the 
two, and there is uncertainty regarding the mediators 
between the two and the potential mechanisms. There-
fore, within the current research, in addition to further 
validating the causality between T2DM and IVDD, two-
step MR analysis was executed to analyze whether the 
causality between them is mediated through TG. The 
study results provide further evidence that T2DM is 
related to increased IVDD risk and suggest that 11.4% of 
this effect is mediated through TG.

LBP represents a worldwide problem that poses a seri-
ous health and socioeconomic challenge. Approximately 
80% of the population develops this disease throughout 
their life. IVDD is currently recognized as the main cause 
of these symptoms [29]. Although mechanical com-
pression, aging, genetics, autoimmunity, and toxicants 
have been demonstrated to increase IVDD risk, the link 
between systemic diseases and the pathogenesis of IVDD 
still requires further study [30–32]. Several prior observa-
tional investigations revealed a link between T2DM and 
IVDD [7–9]. The underlying mechanisms may be related 
to direct damage caused by reactive oxygen species 
(ROS), accumulated advanced glycosylation end prod-
ucts (AGEs), apoptosis, senescence, extracellular matrix 
(ECM) changes, hyperglycemia, obesity, and micro-
vascular damage [33–35]. Zheng and his team found 
that the pathogenesis of IVDD is closely related to ROS 
by quantitating the ROS levels in human degenerated 

intervertebral discs via staining [36]. ROS formation by 
metabolizing oxygen in oxygen-utilizing cells is an inher-
ent part of aerobic organisms, and ROS regulate homeo-
stasis via multiple pathways, such as nuclear factor-κB, 
PI3K/AKT and protein kinase activation pathways [37]. 
Oxidative stress is an important element that induces 
procedural apoptosis, and its two main modes of death 
include apoptosis and autophagy, both of which play 
important roles in IVDD [38]. In addition, Huma Rizwan 
et al. found that high glucose levels could regulate mito-
chondrial dysfunction and apoptosis by enhancing ROS 
production [39]. In summary, T2DM may trigger the 
mitochondrial apoptotic pathway by increasing the level 
of ROS and thus induce apoptosis in nucleus pulposus 
and cartilage endplate (CEP) cells, ultimately resulting in 
the worsening of IVDD.

Dyslipidemia is a familiar characteristic of DM. In 
patients with diabetes, a correlation exists between ath-
erosclerotic disorders and TG levels. Patients with dia-
betes are more susceptible to cardiovascular disease and 
hypertriglyceridemia at any given serum cholesterol level 
[40]. Thus, DM may exert subsequent effects by altering 
TG levels. In addition to the association with cardiovas-
cular disease, there is a significant association between 
TG and degenerative IVD disease. A large observational 
study in Finland uncovered a link between elevated 
TG levels and sciatica [41]. In addition, a sizeable Brit-
ish cohort study revealed a marked correlation between 
TG and LBP, after adjusting for a variety of factors [42]. 
A follow-up report noted that TG could be a predictor 
of the morbidity of radiolucent LBP [43]. In addition, a 
case-control analysis demonstrated that lumbar disc her-
niation patients exhibited higher serum TG levels [44].

However, the detailed mechanism of the link between 
TG and IVDD is still unknown. Underlying links between 
IVDD and atherosclerosis due to dyslipidemia were dis-
covered in prior research. Kauppila and his team found 
that atherosclerosis of the abdominal aorta, particularly 
segmental arterial orifice stenosis, may act as a caus-
ative agent for IVDD [45]. Additionally, a 25-year track-
ing report states that in the abdominal aortic posterior 
wall, calcified atherosclerotic sediments may increase 
IVDD risk and are related to LBP [46]. In addition, from 
an anatomical point of view, the lumbar vertebral body is 
supported by a branch of the lumbar artery. This artery 
stems from the bottom of the abdominal aorta. How-
ever, atherosclerosis tends to appear earliest in the lowest 
branches. As a result, atherosclerosis often occurs at or 
near the branch openings of the lumbar arteries, leading 
to lumbar artery segmental stenosis or occlusion [46, 47].

In summary, TG may be a mediator between T2DM 
and IVDD. Thus, a logical link between them may be that 
T2DM promotes atherosclerosis by increasing TG lev-
els, which results in decreased blood availability to the 
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relevant lumbar ganglia. This leads to IVD malnutrition 
and inadequate nutritional sustenance to IVD cells, even-
tually resulting in IVDD.

Study strengths and limitations
This study has several strengths. The causality between 
T2DM and IVDD and the mediating role of TG were val-
idated by MR analysis, and confounding by confounders 
and reverse causality was excluded. Exposure, outcome, 
and mediation data were obtained from GWAS research 
with large samples and SNP counts, guaranteeing the 
representativeness of IVs in the MR analysis. In addi-
tion, bias was minimized via a two-sample study design 
with no overlap of data at the exposures and outcomes. 
However, there are some unavoidable limitations to this 
study. First, the MR analyses used here were based only 
on online public database pooling data from studies with 
different analytical platforms, experiments, and popula-
tions from different regions of Europe, and thus, some 
heterogeneity is inevitable. Thus, the conclusions must 
also be tested in a large number of clinical trials. Second, 
the data were mainly based on European populations, 
and no subgroup analyses were performed on sex-spe-
cific populations. The SNPs extracted from the European 
population are not well representative of the populations 
of other continents due to differences in economic con-
ditions, climate levels, and geography and large sex dif-
ferences, which makes the application of this study to 
non-European and sex-specific populations somewhat 
limited. Finally, this study was mainly analyzed from the 
perspective of genetics, and the specific intrinsic mecha-
nisms need to be explored in depth through more basic 
experiments in the future.

Conclusion
In summary, this analysis provides further validation of 
the causality between T2DM and IVDD, where some 
of the impact is mediated by TG. While some media-
tion through TG is evident, a significant portion of the 
causal impact of T2DM on IVDD remains to be under-
stood. Thus, further research is needed to elucidate other 
potential mediating elements. For the management of 
IVDD patients in clinical practice, while controlling 
blood glucose levels, proper attention should also be paid 
to TG levels. This will promote a better delay in the pro-
gression of IVDD and improve the overall prognosis and 
patients’ daily lives. Moreover, research on the interac-
tions between T2DM, TG, and IVDD is still in its infancy, 
and more detailed mechanisms remain to be explored to 
further fill the gaps in the areas of prevention and delay 
of IVDD.
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