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Ectopic and visceral fat deposition in aging, 
obesity, and idiopathic pulmonary fibrosis: 
an interconnected role
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Abstract 

Idiopathic pulmonary fibrosis (IPF) is considered an age-related disease. Age-related changes, along with other fac-
tors such as obesity, hormonal imbalances, and various metabolic disorders, lead to ectopic fat deposition (EFD). 
This accumulation of fat outside of its normal storage sites is associated with detrimental effects such as lipotoxicity, 
oxidative stress, inflammation, and insulin resistance. This narrative review provides an overview of the connection 
between ectopic and visceral fat deposition in aging, obesity, and IPF. It also elucidates the mechanism by which 
ectopic fat deposition in the airways and lungs, pericardium, skeletal muscles, and pancreas contributes to lung injury 
and fibrosis in patients with IPF, directly or indirectly. Moreover, the review discusses the impact of EFD on the sever-
ity of the disease, quality of life, presence of comorbidities, and overall prognosis in IPF patients. The review provides 
detailed information on recent research regarding representative lipid-lowering drugs, hypoglycemic drugs, and lipid-
targeting drugs in animal experiments and clinical studies. This may offer new therapeutic directions for patients 
with IPF.
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Introduction
Idiopathic pulmonary fibrosis (IPF) is a chronic and 
progressive disease that leads to the formation of lung 
scarring. The pathogenesis of IPF involves complex 
interactions between various cell types and signaling 

pathways, and the precise triggers and exact cause of 
IPF are still unknown. However, studies have reported 
that the development of IPF begins with alveolar epi-
thelial injury in the context of predisposing factors, 
such as genetics, aging, environment, epigenetics, 
immune response, and comorbidities. Persistent injury 
leads to metabolic dysfunction, senescence, abnormal 
epithelial cell activation, and impaired epithelial repair 
in alveolar epithelial cells (AECs). Dysregulated AECs 
interact with mesenchymal cells, immune cells, and 
endothelial cells through multiple signaling mecha-
nisms [1]. Molecular abnormalities involved in a series 
of profibrotic cellular interactions have been iden-
tified; the affected factors include reactive oxygen 
species (ROS), inflammatory cytokines, pulmonary 
surfactants, matrix remodeling factors, growth factors, 
and noncoding RNAs. Various cellular processes are 
also thought to promote lung fibrosis; such processes 
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include cell apoptosis, oxidative stress, mitochondrial 
dysfunction, and endoplasmic reticulum stress. These 
complex changes occur as a result of AEC injury, ulti-
mately leading to the transformation of fibroblasts into 
myofibroblasts, excessive deposition of extracellular 
matrix (ECM), pulmonary interstitial fibrosis, progres-
sive worsening of the disease, and eventually respira-
tory failure and death. Current treatment options for 
IPF have limited efficacy. Although two drugs, pirfeni-
done and nintedanib, approved by the Food and Drug 
Administration (FDA), have been reported to delay 
the decline in lung function in some IPF patients, the 
prognosis of IPF remains poor. The median survival 
of newly diagnosed adult IPF patients (typically over 
60 years old) is less than 5 years [2]. Lung transplanta-
tion is an effective treatment option for patients with 
end-stage IPF, but it is limited to a relatively young and 
healthy subset of patients [3]. Therefore, a better under-
standing of the underlying systemic pathogenic factors 
and mechanisms involved in IPF is crucial for optimiz-
ing IPF management and treatment.

IPF has been demonstrated to be an age-related dis-
ease [4], and changes in body composition accompany 
the processes of aging and obesity. Alterations in the 
immune-metabolic characteristics of adipose tissue and 
the redistribution of fat have been identified as risk fac-
tors for various age-related diseases [5]. Fat tissue not 
only functions to regulate temperature and store energy, 
as recent findings have also revealed its active role as 
an endocrine and immune organ. Adipose-derived fac-
tors and immune cell populations within adipose tissue 
impact systemic immunity and metabolism. Different 
immune cell populations exist in adipose tissue, and their 
composition and immune responses vary based on nutri-
tional and environmental conditions. Specifically, fac-
tors such as aging and obesity promote low-grade sterile 
inflammation within adipose tissue and excessive infiltra-
tion of immune cells. This is accompanied by a decline 
in the ability of adipose tissue to store lipids, leading to 
ectopic fat deposition (EFD). However, cold exposure 
resolves obesity-induced chronic inflammation [6]. Com-
pared to subcutaneous fat, visceral adipose tissue (VAT) 
is more strongly associated with chronic inflammatory 
diseases such as coronary artery disease, nonalcoholic 
steatohepatitis, diabetes, and obesity. In fact, there is 
also increasing recognition of the relationship between 
VAT and various lung diseases, including IPF. The effects 
of excessive VAT on pulmonary diseases include its 
mechanical effects on the respiratory tract, lipotoxic-
ity, pro-inflammatory properties, and oxidative stress. 
Recent evidence suggests that VAT could be a modifi-
able risk factor for IPF [7]. However, body composition 
analysis of IPF patients is often overlooked, and there is 

currently no comprehensive review on the complex rela-
tionship between fat deposition and IPF.

There is growing interest in the role of lipids in regu-
lating the process of pulmonary fibrosis. However, 
whether ectopic and visceral fat deposition serves as a 
profibrotic factor in the development of fibrosis and as 
a clinically intervenable factor remains largely unknown. 
This review emphasizes the frequently overlooked role 
of fat deposition in pulmonary fibrosis and summarizes 
abundant basic experiments and clinical trials. This is the 
first review to summarize lipid-lowering drugs, hypogly-
cemic drugs, and lipid-targeting drugs as a therapeutic 
approach for pulmonary fibrosis. By using bioinformat-
ics methods, this review reveals lipid metabolism-related 
genes (LMRGs) associated with pulmonary fibrosis, 
introduces IPF assessment tools that are easily appli-
cable in clinical practice, and offers novel intervention 
approaches from a new perspective to improve fat depo-
sition-associated pulmonary fibrosis.

Definition and causes of EFD
When adipose tissue dysfunction occurs or when the 
energy intake exceeds the storage capacity of subcutane-
ous adipose tissue (SAT), further calorie overload leads 
to excess lipid accumulation. Excess lipids accumulate in 
organs and tissues such as the liver, heart (pericardium, 
epicardium, and myocardium), lungs, intestines, pan-
creas, skeletal muscles, and blood vessels. This process is 
known as "EFD" [8]. One characteristic of EFD in humans 
is increased VAT accumulation, which is associated with 
abdominal obesity and is unrelated to body mass index 
(BMI) [8]. Obesity and aging significantly affect adipose 
tissue function by altering the spectrum of adipokines 
secreted by adipocytes, promoting adipocyte hypertro-
phy, changing the population and function of fibroadi-
pogenic progenitor (FAP) cells, and increasing adipose 
tissue macrophage (ATM) infiltration [9]. These effects 
prevent SAT from proliferating and expanding to serve 
as a protective fat storage depot. In fact, several factors 
can contribute to increased fat deposition; these factors 
include high-fat diets, high-sugar diets, decreased physi-
cal activity, low serum albumin levels [10] (which binds 
and transports free fatty acids [FFAs]), male sex, and hor-
monal imbalance [11].

EFD in the lung induces alveolar structural and functional 
damage in IPF
Accumulating evidence indicates that a high-fat diet 
promotes lung fibrosis [12]. In obese individuals, fat can 
directly accumulate in the lung and airways; adipose tis-
sue can be found in the outer walls of the larger airways, 
correlating with BMI, airway wall thickness, and higher 
neutrophil counts [13]. Studies on obese animal models 
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have shown elevated levels of phospholipids and triglyc-
erides in lung tissue [14]. Abundant lipid droplets can be 
observed in the pulmonary interstitium and lung mac-
rophages, concomitant with the destruction of ultras-
tructural features of alveolar epithelial type II cells (AT2), 
expansion of rough endoplasmic reticulum, reduced cel-
lular biosynthesis, impaired secretion of lung surfactant, 
and increased interstitial collagen [15]. Animal stud-
ies have revealed that obese diabetic rats exhibit a 136% 
increase in total lung triglyceride content, a 32% increase 
in interstitial collagen fibers, and a reduced diffusing 
capacity of the lungs for carbon monoxide (DLCO) [16].

EFD can also occur in lung lipofibroblasts (LIFs) of 
obese individuals. LIFs are important lung stromal cells 
that are commonly found adjacent to AT2 cells and sup-
port the self-renewal and differentiation of AT2 stem 
cells to AT1 cells. LIFs provide triglycerides to AT2 cells 
for the synthesis of pulmonary surfactant [17]. Fat depo-
sition associated with diabetes, obesity, and aging leads 
to impaired function of lung LIFs, compromising their 
ability to aid in the renewal of AECs and maintain alveo-
lar lipid homeostasis. Furthermore, dysfunctional LIFs 
can directly transdifferentiate into myofibroblasts, result-
ing in excessive ECM production and subsequent pulmo-
nary fibrosis [18–20].

Lipotoxicity of fat deposition and IPF: direct cytotoxicity 
and indirect proinflammatory effects
Lipotoxicity of FFAs to AECs promotes pulmonary fibrosis
The profibrotic role of pulmonary EFD is associated with 
the lipotoxicity of excessive fatty acids on AECs. Enlarged 
adipocytes also exhibit enhanced lipolysis, leading to 
increased delivery of FFAs to other organs. Increased FFA 
levels can disrupt the integrity of biological membranes 
in EFD tissues and alter cellular acid‒base homeosta-
sis. FFAs have been shown to activate Toll-like recep-
tor 2 (TLR-2), TLR-4/nuclear factor-kappaB (NF-κB), 
and c-Jun N-terminal kinase (JNK) signaling pathways, 
thereby promoting inflammation and insulin resistance 
[21, 22]. Furthermore, FFAs serve as precursors for the 
synthesis of harmful bioactive lipids, particularly cera-
mides and diacylglycerols. Overall, the deleterious effects 
resulting from the secretion of adipokines, lipid mol-
ecules, and inflammatory factors from ectopic fat tissues 
are referred to as "lipotoxicity."

Elevated levels of palmitic acid esters (a saturated FFA) 
have been observed in the lungs of patients with IPF, 
leading to endoplasmic reticulum stress and apopto-
sis in AECs. This phenomenon has been confirmed in a 
bleomycin (BLM)-induced IPF mouse model fed different 
diets [23]. The lipotoxicity of AECs induced by a high-fat 
diet suggests that EFD contributes to the initiation of IPF 
and exacerbates fibrosis severity. In addition to inducing 

endoplasmic reticulum stress and AEC apoptosis, lung 
EFD has been associated with increased lipid levels in 
bronchoalveolar lavage fluid (BALF) in a BLM-induced 
model. Alveolar macrophages engulf extracellular oxi-
dized phospholipids and transform into lipid-laden foam 
cells, releasing more transforming growth factor beta1 
(TGF-β1) and further exacerbating pulmonary fibrosis 
[24]. Lipid-lowering agents and cluster of differentiation 
36 (CD36, a fatty acid translocase) inhibitors or CD36 
gene knockout reduced the differentiation of lung fibro-
blasts to myofibroblasts in BLM mice [25, 26]. This sug-
gests that EFD plays a crucial role in pulmonary fibrosis 
through macrophage-CD36 oxidative lipid signaling.

Further metabolites of FFAs, known as bioactive sphin-
golipids, such as sphingosine-1-phosphate (S1P), play an 
important role in the pathogenesis of pulmonary fibrosis 
[27]. Under conditions of nutrient overload, S1P synthe-
sis increases using neural-derived sphingolipids as sub-
strates, and S1P acts as a second messenger by autocrine 
or paracrine binding to G protein-coupled receptors. 
Studies have shown that the levels of sphingosine kinase 
1 (SPHK1, catalyzing the generation of S1P) are signifi-
cantly increased in IPF patient lung tissues and strongly 
correlated with α-smooth muscle actin (α-SMA), vimen-
tin, and type I collagen. S1P and SPHK1 levels in BALF, 
serum, and peripheral blood monocytes of IPF patients 
are negatively correlated with lung function and posi-
tively correlated with mortality rate [28]. Animal and cell 
experiments have shown that the SPHK1/S1P signaling 
pathway is associated with TGF-β signaling, promot-
ing the activation of fibroblasts and their transformation 
into myofibroblasts through the activation of mitochon-
drial Rho kinase, the Hippo/YAP (Yes-associated protein) 
pathway, etc. [29–31].

Mechanism of adipose‑derived adipokines in pulmonary 
fibrosis
In addition to lipid molecules such as FFAs, adipose-
derived adipokines are also considered key participants 
in the development of pulmonary fibrosis in IPF patients 
and BLM-treated mice. Changes in the secretion lev-
els of various adipokines, including hormones (such 
as leptin and adiponectin) and peptides (such as angio-
tensinogen, apelin, resistin, and plasminogen activator 
inhibitor-1 [PAI-1]), have been observed in obese and 
elderly patients [32, 33]. Leptin and adiponectin play a 
role in the pathogenesis of obesity-related lung diseases 
by affecting systemic inflammation, regulatory T (Treg) 
cell activity, and T helper cell 17 (Th17) and T helper cell 
2 (Th2) immune responses [34]. It is known that aging, 
a high-fat diet, and adipose tissue dysfunction caused by 
obesity increase the leptin/adiponectin ratio, which is 
associated with lung function and fibrosis markers [35]. 
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Serum leptin levels are positively correlated with body fat 
and negatively correlated with lung function. In contrast 
to leptin, adiponectin levels are decreased in subjects 
with impaired lung function and obesity [36].

Leptin is secreted by adipocytes in white adipose tis-
sue, and leptin receptors are highly expressed on the sur-
face of alveolar macrophages. The binding of leptin to its 
receptor drives the activation of the NOD (nucleotide 
oligomerization domain)-like receptor thermal protein 
domain associated protein 3 (NLRP3) inflammasome. 
This leads to the production of pro-inflammatory and 
pro-fibrotic cytokines, such as interleukin (IL)-1, IL-18, 
and TGF-β, promoting AEC mitochondrial stress, cel-
lular apoptosis, and insulin resistance [37]. Activation of 
the NLRP3 inflammasome is also closely associated with 
increased collagen deposition and enhanced expression 
of connective tissue growth factor in pulmonary fibrosis 
[38]. Increased IL-1β signaling in the lungs promotes the 
expression of proinflammatory cytokines (such as IL-23 
and IL-5) and recruits T cells, B cells, and eosinophils 
to produce IL-13 and TGF-β1, which are critical regula-
tory factors for fibroblast activation and excessive ECM 
production [39]. However, VAT has a stronger negative 
correlation with adiponectin than subcutaneous fat [40]. 
Adiponectin was identified as an initiator of AMP-acti-
vated protein kinase (AMPK)-dependent autophagy.

Deficiency of adiponectin, which is associated with 
EFD, can lead to the generation of ROS and potassium 
efflux. This induces mitochondrial dysfunction and 
results in lung injury and activation of the NLRP3 inflam-
masome [41]. Adiponectin has also been identified as an 
anti-atherosclerotic, anti-inflammatory, and anti-diabetic 
adipokine, and these protective effects are attributed to 
its impact on the activation of the NF-kB (nuclear factor 
kappa B) pathway in B cells, which enhances insulin sen-
sitivity [37, 42].

Another important adipokine is angiotensinogen 
(AGT), which is produced by adipose tissue and accounts 
for one-third of the circulating AGT levels. In the obese 
state, adipose tissue-produced AGT increases [43], lead-
ing to excessive activation of the local adipose tissue 
and systemic renin-angiotensin system (RAS) [44–46]. 
Studies have revealed that patients with the ID/DD 
(insertion/deletion) polymorphism of angiotensin-con-
verting enzyme (indicating higher levels of the enzyme) 
are prone to pulmonary fibrosis [47]. Angiotensin II (Ang 
II) has been identified as a pro-apoptotic and pro-fibrotic 
factor in experimental pulmonary fibrosis animal mod-
els. In human lung fibroblast cultures, Ang II induces the 
activation of TGF-β1/Smad2/3, promoting fibroblast-
myofibroblast transition [48]. Elevated Ang II levels in 
the local or circulation of mouse lungs can induce pro-
gressive pulmonary fibrosis, while renin inhibitors such 

as aliskiren or angiotensin II type 1 receptor-specific 
antagonists, such as losartan, can block the production of 
ECM proteins and fibrogenic factors [49, 50].

Similar to Ang II, the adipokine PAI-1 is also overex-
pressed and released by adipocytes in obesity; it has been 
shown to have a definite promoting effect on pulmonary 
fibrosis [51]. PAI-1 is a recognized inhibitor of fibrinoly-
sis and can also affect the functionality of fibronectin, 
thereby interfering with cell adhesion [52]. Its overexpres-
sion contributes to the accumulation of ECM. PAI-1 is 
increased in the lungs of patients with pulmonary fibro-
sis. It not only promotes fibrosis but also activates alveo-
lar macrophages to promote inflammation, and through 
TGF-β1, it strongly induces AT2 cell senescence [53]. 
However, it should be noted that the current research 
on the direct relationship among Ang II, PAI-1 sourced 
from excessive adipose tissues, and IPF in humans is still 
limited in terms of quantity. Considering that visceral fat 
is one of the main sources of fibrotic and inflammatory 
factors, further research into the mechanisms underlying 
the association between visceral fat and fibrosis is crucial. 
The changes in aging adipose tissue and the involvement 
of fat deposition in the occurrence and development of 
IPF are shown in Fig. 1.

Insulin resistance and immune cell infiltration in the fat 
deposition of lungs promote IPF
Insulin resistance in fat deposition promotes IPF 
through TGF‑β signaling
Insulin resistance caused by elevated levels of adipokines, 
resistin and retinol-binding protein 4 and reduced lev-
els of adiponectin is another potential mechanism for 
the occurrence and development of IPF [54]. Addition-
ally, enlarged fat cells release proinflammatory cytokines, 
including tumor necrosis factor-alpha (TNF-α), IL-6, 
IL-8, and monocyte chemotactic protein-1 (MCP-1), 
leading to serine phosphorylation of insulin receptor sub-
strate-1 (IRS-1) production and blocking insulin signal 
transduction. This consequently reduces insulin sensitiv-
ity and causes insulin resistance, which is a key feature of 
metabolic syndrome [55]. Compared to elderly patients 
without metabolic syndrome, elderly patients with meta-
bolic syndrome have higher airway resistance. They also 
exhibit higher levels of proinflammatory mediators, such 
as leptin, IL-1β, IL-8, and TNF-α, lower levels of anti-
inflammatory mediators, including adiponectin, IL-1 
receptor antagonist, and IL-10, and increased expression 
levels of TGF-β1 and phosphorylated Smad-2/3 [35]. In 
mice, intranasal insulin administration enhances bron-
chial epithelial TGF-β1 expression, activating the TGF-β/
Smad signaling pathway and causing fibrosis around 
the airways and blood vessels. TGF-β also stimulates 
the differentiation of Th0 cells into Th17 cells, which 
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release IL-17 and contribute to airway hyperreactivity 
[54]. Serum vitamin D and NAD (nicotinamide adenine 
dinucleotide)-dependent deacetylase sirtuin (SIRT), an 
anti-aging factor, levels are decreased under conditions 
of insulin resistance. Vitamin D deficiency inhibits the 
phosphorylation of Smad-2/3, activates RAS activity, and 
subsequently activates TGF-β1 signaling, promoting pul-
monary fibrosis [56]. SIRT-1 has been shown to inhibit 
NF-κB activity and reduce inflammation through various 
mechanisms, including inhibiting iNOS (inducible nitric 
oxide synthase) activity and downregulating COX-2 
(Cyclooxygenase-2) expression, thereby alleviating oxi-
dative stress. Aerobic exercise in obese mice improves 
insulin resistance, reduces neutrophil infiltration in the 
lungs, decreases pro-inflammatory, pro-oxidative stress, 

and pro-fibrotic factors in BALF, and upregulates the 
expression of anti-inflammatory factors IL-10 and SIRT-1 
mRNA in the lungs [57]. Furthermore, studies have indi-
cated that SIRT-1 acts as a target for anti-pulmonary 
fibrosis drugs and inhibits the EMT in BLM-induced pul-
monary fibrosis in mice [58].

Fat deposition participates in the pathogenesis of IPF 
through immune cell infiltration
The presence of inflammatory cells in dysfunctional adi-
pose tissue can affect adjacent tissues and organs [59]. As 
mentioned earlier, ectopic fat can be directly deposited 
in airways, alveolar interstitium, lung LIFs, and alveolar 
macrophages, indicating that the lungs can be directly 
influenced by inflammatory factors released from local 

Fig. 1  Alterations in aging adipose tissue and the involvement of fat deposition in the occurrence and development of IPF. 1) During the aging 
process, excessive expansion of adipose tissue leads to hypoxia. This stimulates adipocytes and ATMs to secrete inflammatory chemokines, 
resulting in immune cell infiltration in aging adipose tissue. 2) Fibrosis in dysfunctional adipose tissue leads to lipotoxicity and an increased 
leptin/adiponectin ratio. This activates highly proinflammatory M1-type macrophages (M1 ATMs) through molecules such as leptin, PAI-1, 
FFA, and inflammatory cytokines, thereby exacerbating the inflammatory response. 3) Lipotoxicity and inflammation in aging adipose tissue 
leads to endoplasmic reticulum stress, mitochondrial dysfunction, apoptosis, autophagy and necrosis of AT2 cells. Subsequently, in the alveoli, 
cell debris, recruited immune cells, and foam cells (macrophages engulfing lipid droplets) participate in the inflammatory cascade response, 
resulting in fibroblast-to-myofibroblast (MYF) transformation and epithelial-mesenchymal transition (EMT). 4) Adipose factors such as Ang II, 
PAI-1, and S1P can also promote fibroblast-to-MYF transformation. 5) Lipotoxicity and inflammation not only promote the differentiation of LIFs 
into MYFs but also affect the supply of pulmonary surfactant precursors to AT2 cells. The figure was created using BioRender (www.​biore​nder.​com). 
Abbreviations: adipose tissue macrophages (ATMs), plasminogen activator inhibitor-1 (PAI-1), free fatty acids (FFA), alveolar epithelial type II cells 
(AT2), myofibroblast (MYF), epithelial-mesenchymal transition (EMT), Angiotensin II (Ang II), sphingosine-1-phosphate (S1P), lipofibroblasts (LIFs)

http://www.biorender.com
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adipose tissue and immune cell infiltration. Enlarged adi-
pocytes and reduced capillary density in hypertrophic 
adipose tissue lead to a hypoxic state in adipocytes, 
characterized by abnormal preadipocyte differentiation, 
inflammation, altered secretion profile, increased oxida-
tive stress and mitochondrial dysfunction in adipocytes, 
and accumulation of aged fat cells and fibrosis in adipose 
tissue [60]. The differentiation of preadipocytes to adi-
pocytes is decreased, and instead, their differentiation to 
ATMs expressing surface markers, such as F4/80, CD80, 
and CD86, is increased. Moreover, adipocytes undergo 
hypoxic cell death, recruiting a large number of mono-
cytes through MCP-1. These monocytes differentiate into 
proinflammatory M1 macrophages and form “crown-like 
structures,” a process activated through the NLRP3 path-
way [61]. During the formation of crown-like structures, 
lipid metabolism increases in ATMs, leading to lipotoxic-
ity, inflammation, and enhanced insulin resistance [62].

In obese and elderly VAT, ATMs are the most abundant 
immune cells. These cells account for 10% of immune 
cells in normal subjects and 50% of immune cells in obese 
individuals, and the ratio of M1 ATMs (proinflamma-
tory characteristics) to M2 ATMs (anti-inflammatory 
characteristics) is significantly increased in obese indi-
viduals [63]. Hypoxia may induce inflammation through 
hypoxia-inducible factor 1-alpha (HIF-1α) gene expres-
sion, triggering the secretion of proinflammatory media-
tors such as TNF-α, IL-6, IL-8, MCP-1, adipokines, and 
retinol-binding protein by hypertrophic adipocytes and 
M1 ATMs and promoting further immune cell infiltration 
[64, 65]. Lymphocytes constitute the second most abun-
dant immune cell population in the VAT of obese and 
elderly patients. There was a twofold increase in CD3 + T 
cells, predominantly CD8 + T cells (cytotoxic T cells), in 
aged mouse VAT compared to young animal VAT, and a 
similar trend was observed in obese mice [66, 67]. NLRP3 
regulates IL-18 and interferon-γ (IFN-γ) in white adi-
pose tissue and promotes the differentiation of effector 
CD8 + T cells, releasing proinflammatory and profibrotic 
molecules, such as IL-13 and IL-17, and M1 ATMs and 
alveolar macrophages. This leads to lung and systemic 
inflammation and insulin resistance [68]. Previous stud-
ies have shown a significant increase in the expression 
levels of IL-1β, IL-8, and IL-6 in BALF and lung tissue of 
pulmonary fibrosis patients and in animal models, and 
IL-1β or IL-6/IL-13 activation of JAK2 (Janus kinase 2) 
and STAT3 (Signal transducer and activator of transcrip-
tion 3) stimulates primary AT2 and lung fibroblasts. This 
stimulates the release of TGF-β1 by immune cells and 
fibroblasts, which induces EMT and fibroblast-to-MYF 
transformation, and promotes AT2 cell aging and an 
apoptotic phenotype [69, 70]. In the BLM-induced lung 
fibrosis animal model, lung inflammation, fibrosis, and 

collagen deposition depend on the IL-1R1/MyD88 sign-
aling pathway [71]. Elevated levels of IL-6 (> 25.20  pg/
mL) are an independent risk factor for acute exacerbation 
(AE-IPF) (odds ratio [OR] 1.014, p = 0.036) and mortal-
ity (OR 1.007, p = 0.018) in patients with interstitial lung 
diseases [72]. IL-17A inhibits autophagy in bronchial 
epithelial cells through the PI3K/Akt/mTOR pathway 
[73]. It also promotes lung fibroblast proliferation and 
contributes to lung inflammation and fibrosis through 
the IL-17A-TGFβ axis. The primary function of IL-8 is 
to amplify the differentiation of mesenchymal stem cells 
to fibroblasts, promote lung fibroblast proliferation and 
migration, recruit and activate macrophages, and play a 
crucial role in airway fibrosis and remodeling [74].

In recent years, it has been demonstrated that ectopic 
adipose tissue outside the lungs is also involved in the 
pathogenesis of IPF. Excessive pericardial adipose tis-
sue is a rich source of proinflammatory mediators in the 
systemic circulation and has been associated with higher 
levels of inflammatory markers (IL-6, TNF-α, MCP-1, 
CD11c, and iNOS) and fibrotic markers (collagen lev-
els, TGF-β, matrix metalloproteinase-3) in various car-
diovascular and pulmonary diseases, such as COVID-19 
(Coronavirus Disease 2019), COPD, pulmonary arterial 
hypertension, sleep apnea syndrome, heart failure, coro-
nary heart disease, and lung transplant recipients. There-
fore, excessive pericardial adipose tissue indicates a poor 
prognosis of these diseases. In 2021, Anderson MR and 
his colleagues found that for each doubling in pericar-
dial adipose tissue volume, the odds of interstitial lung 
abnormalities increased by 20%, while the FVC (forced 
vital capacity) percentage predicted a decreased of 5.5%. 
The study also identified the involvement of IL-6 and lep-
tin in the association between adipose tissue and lung 
fibrosis [75]. These findings suggest that proinflamma-
tory cytokines and adipokines from ectopic adipose tis-
sue outside the lungs can enter the pulmonary circulation 
and cause lung injury. In addition to inflammatory fac-
tors and adipokines, the neutrophil-to-lymphocyte ratio 
(NLR) and serum hs-CRP levels have also demonstrated 
a positive correlation with pericardial adipose tissue vol-
ume, and a high NLR has been shown to independently 
influence the occurrence of IPF [76, 77].

Fat deposition aggravates lung function loss in IPF
Mechanism of sarcopenia caused by fat infiltration
Studies suggest that fat deposition aggravates lung func-
tion loss in IPF, including but not limited to increased 
fat infiltration in skeletal muscle, airway and pericar-
dial adipose tissues. Skeletal muscle fat infiltration and 
skeletal muscle atrophy are considered to be harmful to 
muscle mass, strength, activity, and muscle metabolism 
[78]. The most common cause of death in IPF patients 
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is chronic respiratory failure, and skeletal muscle atro-
phy and skeletal muscle fat deposition are very common 
in patients with respiratory failure requiring mechani-
cal ventilation and malnutrition [79]. Additionally, these 
factors have been shown to increase the risks of hospi-
talization and death in IPF [80]. Chun-wei Li et al. pro-
posed that dysfunction of adipocytes caused by aging 
and obesity is the earliest driving factor of local inflam-
mation and insulin resistance [81]. This is followed by a 
systemically expanded vicious loop called “the metabag-
ing cycle,” in which excessive lipids can “spill over” into 
skeletal muscle tissue. These lipids accumulate in the 
form of intermuscular lipids, intramyocellular lipids, and 
lipid droplets within muscle cells, leading to the accu-
mulation of toxic lipids such as diacylglycerol and cera-
mides in skeletal muscle tissue [81]. Ceramides directly 
induce insulin resistance in skeletal muscle cells by 
blocking downstream signaling of insulin, such as the 
translocation of glucose transporter-4 (the main glu-
cose transporter for glucose uptake in skeletal muscle) 
[82]. Various other obesity-related lipid metabolites, 
such as homocysteine, free fatty acids, ROS, uric acid, 
and cholesterol crystals, activate the NLRP3 inflamma-
some to induce the production of IL-1β and IL-18 by 
macrophages. These cytokines can then further promote 
inflammation in T cells, impairing skeletal muscle insu-
lin sensitivity [83]. Muscle tissue is one of the primary 
effectors of insulin. Insulin resistance in muscle leads to 
restricted glucose uptake and synthesis of muscle glyco-
gen, as well as limited lipid uptake by muscle tissue. As a 
result, blood glucose is directed toward the synthesis of 
more fat in adipocytes, leading to the further elevation of 
free fatty acid concentrations and local hyperlipidemia. 
The increased blood glucose load contributes to systemic 
endogenous free radicals and inflammation, perpetuating 
the metabaging cycle [84].

In obesity, factors such as TNF-α, IL-18, IL-6, and 
iNOS are released by M1 ATMs, leading to reactive atro-
phy of skeletal muscle tissue and a decrease in the num-
ber of muscle cells [85]. As a population of mesenchymal 
stem cells, FAPs (fibro-adipogenic progenitors) possess 
multipotent differentiation potential, including the ability 
to differentiate to fibroblasts, adipocytes, chondrocytes, 
and osteoblasts [86]. When regulated by paracrine sig-
nals from adipose tissue proinflammatory factors, FAPs 
in skeletal muscle can differentiate to a fat cell-like phe-
notype, leading to reduced muscle cell regeneration and 
increased skeletal muscle fat infiltration. TNF-α, released 
by M1 ATM1s, plays a crucial role in the process of mus-
cle wasting and fat infiltration within skeletal muscle. 
Studies have shown that high levels of TNF-α directly 
impair mitochondrial biogenesis in muscle cells and dis-
rupt myotube formation in human primary myoblasts 

[87]. Additionally, TNF-α, through the activation of TNF 
receptor 1, triggers the activation of the caspase cascade, 
increasing apoptosis of muscle cells and FAPs. This sub-
sequently increases the release of TNF-α and exacerbates 
the vicious cycle. TNF-α not only induces programmed 
cell death in skeletal muscle cells but also upregulates 
ROS directly or indirectly through adipocyte necrosis 
and lipotoxicity. This, in turn, activates the NF-κB path-
way and upregulates the expression of muscle-specific E3 
ubiquitin ligase, muscle RING-finger protein-1 (MuRF1), 
promoting proteolysis of myofibrillar proteins and mus-
cle wasting [88]. In summary, the deposition of intramus-
cular lipids demonstrates significant lipotoxicity, leading 
to the induction and aggravation of mitochondrial dys-
function, oxidative stress, insulin resistance, and inflam-
mation. These molecular changes interact with each 
other, resulting in a vicious cycle that impairs muscle 
regeneration and ultimately increases the risk of systemic 
muscle wasting or cachexia [51].

Muscle fat infiltration is associated with lung function loss
The mechanisms underlying muscle wasting due to EFD 
can explain the prognostic differences observed in differ-
ent nutritional phenotypes in IPF patients. In a prospec-
tive study of 90 IPF patients, the proportions of normally 
nourished, nonsarcopenic obese, sarcopenic and sar-
copenic obese (muscle loss with increased visceral fat) 
patients were 67.8%, 25.3%, 4.6%, and 2.3%, respectively 
[89]. Compared to patients with nonsarcopenic obesity 
or sarcopenia, patients with sarcopenic obesity showed 
decreased protein synthesis and increased protein break-
down in respiratory muscles. These patients also exhib-
ited a reduction in respiratory muscle mitochondria and 
mitochondrial dysfunction compared to healthy control 
individuals [90]. This suggests a synergistic amplification 
of adverse consequences through the metabaging cycle 
formed by increased EFD and skeletal muscle loss, lead-
ing to maximized metabolic damage, decreased quality of 
life, and increased morbidity and mortality rates of IPF. 
IPF is a restrictive lung disease, and there is strong evi-
dence from large-sample studies suggesting that sarco-
penic obesity is primarily associated with an increased 
risk of restrictive lung disease in the elderly (OR 2.81, 
95% confidence interval [CI]: 1.72–4.59). The sarco-
penic obesity group had a significantly lower FVC than 
the normal control group, while the FEV1/FVC ratio (an 
indicator of obstructive ventilation) was not significantly 
different between the two groups [91]. The distribution 
of visceral fat and changes in muscle mass also explain 
the contradictory observations of BMI in the prognosis 
of IPF. Evidence suggests that weight loss in IPF indicates 
an increased risk of hospitalization and worse progno-
sis [92, 93]. However, some studies have also revealed a 
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protective effect of high BMI on survival in respiratory 
disease patients [94]. This “obesity paradox” is partly 
due to the limitations of using BMI to measure visceral 
obesity [95]. This suggests that weight, BMI, or other 
body composition indicators may not be suitable prog-
nostic indicators for IPF, and more direct measures of 
body composition need to be determined. Quantifica-
tion of skeletal muscle, visceral fat, and lean body mass 
has become a new hotspot in research [96, 97]. Studies 
have demonstrated that sarcopenia (decreased quan-
tity and poor physical performance) in patients with IPF 
is associated with high severity, poor quality of life and 
poor prognosis [98–103]. Inspiratory muscle training in 
IPF patients who can tolerate pulmonary rehabilitation is 
beneficial because it partially offsets muscle fat infiltra-
tion and muscle mass reduction associated with aging 
and improves disuse muscle atrophy [104, 105].

In conclusion, the damage inflicted by muscle fat 
deposition in IPF patients is multifactorial, including its 
impact on respiratory muscle dysfunction contributing 
to respiratory failure, systemic inflammation, oxidative 
stress, and cachexia. These findings may have substantial 
implications for the management of IPF patients, and the 
assessment of body composition, including muscle and 
visceral fat, should become a routine clinical practice 
in IPF. Future research can evaluate nutritional inter-
ventions based on patients’ nutritional phenotypes and 
develop personalized respiratory muscle training and 
other pulmonary rehabilitation programs.

Other factors lead to a negative effect on lung function
In addition to sarcopenia and respiratory weakness 
caused by respiratory muscle fat infiltration, there are 
at least three other factors that contribute to the nega-
tive impact of fat deposition on lung function in IPF 
patients. 1) Fat deposition in the visceral cavity produces 
mechanical obstructive effects on the respiratory tract 
and restrictive effects on the diaphragm. 2) Lipotoxicity 
resulting from fat deposition damages alveolar ultras-
tructure, reduces surfactant production, and promotes 
lung tissue fibrosis, leading to pulmonary diffusion dys-
function. It also leads to mild systemic inflammation that 
impairs lung immune responses and increases airway 
hyperresponsiveness (as discussed in Sects. " EFD in the 
lung induces alveolar structural and functional damage in 
IPF" and "  Lipotoxicity of fat deposition and IPF: direct 
cytotoxicity and indirect proinflammatory effects" of 
this review). 3) Fat deposition is involved in various IPF 
complications, including OSAS, pulmonary hyperten-
sion, COPD, and hemodynamic disturbance caused by 
increased pericardial fat [106]. EFD in the mediastinum 
and abdominal cavity limits lung expansion, leading to 
a significant decrease in expiratory reserve volume and 

functional residual capacity. The reduction in functional 
residual capacity is directly proportional to the severity 
of obesity, with overweight, mildly obese, and severely 
obese subjects presenting reduction rates of 10%, 22%, 
and 33%, respectively [107]. Fat deposition in the air-
ways, extrapleural space, and chest wall reduces lung 
compliance and increases respiratory resistance, result-
ing in a direct mechanical impact on respiratory func-
tion. Chronic lipotoxicity primarily affects lung diffusing 
capacity, while the cardiopulmonary complications of IPF 
mainly lead to ventilation/perfusion (V/Q) mismatch. 
Compared to patients with other chronic lung diseases, 
IPF patients often experience more common hypox-
emia and accompanying pulmonary hypertension due 
to impaired V/Q balance, which also limits tolerance to 
pulmonary rehabilitation therapy in IPF. The one-year 
incidence of AE-IPF is approximately 16.5%, and EFD-
related IL-6 and IL-8 are predictive factors for the early 
onset of AE-IPF [108]. The pulmonary function impair-
ment caused by EFD is of considerable importance in 
lethal AE-IPF cases [109]. In multivariate analysis, rest-
ing hypoxemia requiring oxygen therapy ([hazard ratio]
HR 2.44, 95% CI: 1.45–4.10), every 10% decrease in FVC 
percentage predicted (HR 1.28, 95% CI: 1.10–1.49), and 
every 10% decrease in DLCO percentage predicted (HR 
1.25, 95% CI: 1.04–1.51) were significantly associated 
with an increased risk of death or lung transplantation in 
IPF patients [110].

It has been shown that obesity-induced impaired lung 
function in patients can be effectively reversed through 
weight loss surgery [111]. In experimental animals that 
underwent gastric sleeve surgery, an improvement in 
alveolar structure, a reduction in collagen fiber and lipid 
deposition, an inhibition of the excessive proliferation of 
chronic hypoxia-induced capillary basement membrane, 
and an increase in capillary blood supply were observed 
[15]. Fortunately, fat deposition and lung function 
impairment caused by aging can be partially improved 
through dasatinib and quercetin. Senolytics are a class of 
drugs that selectively induce the death of senescent cells 
[5], and dasatinib and quercetin constitute the first com-
bination of senolytic drugs. Dasatinib can eliminate aged 
adipocyte progenitor cells [112] and reduce the secretion 
of inflammatory mediators in aging VAT. With senolytics 
treatment, the BLM-induced lung fibrosis mice showed 
downregulation of the inflammatory pathway in lung 
tissue and significant improvements in lung function 
and physical fitness [2]. In the first human trial, treat-
ment with dasatinib and quercetin resulted in an average 
improvement of 21.5 m in the 6-min walking distance of 
elderly patients [113]. With the progress of preclinical 
and phase I clinical trials, senolytics have shown great 
therapeutic prospects in IPF [114].
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Fat deposition promotes complications in IPF, intensifies 
the pathogenicity of environmental factors in IPF, 
and aggravates IPF prognosis and lung transplant 
outcomes
Fat deposition contributes to complications of IPF
The majority of IPF patients have pulmonary and/or 
extrapulmonary complications. Only 60–70% of deaths 
are directly attributable to IPF-related conditions, 
with the cause of death in the remaining patients likely 
being other comorbidities present in the elderly popula-
tion [115]. In a meta-analysis that included 126 studies, 
pulmonary complications in IPF included pulmonary 
hypertension (prevalence rate 3–86%), COPD (6–67%), 
OSAS (6–91%), and lung cancer (3–48%), and the non-
pulmonary diseases included type 2 diabetes (10–42%), 
ischemic heart disease (3–68%), congestive heart failure, 
gastroesophageal reflux disease (0–94%), sarcopenia, 
anxiety and/or depression [116]. These complications 
have been shown to be related to the functional status, 
quality of life, and survival time of IPF. This is particu-
larly true for lung cancer and pulmonary hypertension, 
which have the most substantial impact on the survival 
and lung transplant outcomes of IPF patients [117, 118]. 
Additionally, the cumulative number of complications is 
negatively correlated with IPF survival rates. Pulmonary 
hypertension before transplantation is associated with 
poor posttransplant survival [HR 4.832, p = 0.039] and 
increases the risk of posttransplant complications [119]. 
The EMPIRE registry study included 3,580 IPF patients 
from multiple countries, and at the time of enrollment, 
91.3% of patients had been diagnosed with at least one 
comorbidity, with over one-third (37.8%) reporting four 
or more comorbidities. The 5-year survival rates for 
patients without common complications and with 1, 2, 3, 
and ≥ 4 complications were 53.7%, 48.4%, 47.0%, 43.8%, 
and 41.1%, respectively [120].

Fat deposition increases the risk of complications in IPF
These comorbidities share common risk factors with IPF, 
and one of these factors is fat deposition (Fig.  2). Fur-
thermore, fat deposition exacerbates the pathogenicity 
of environmental factors (such as exposure to cigarette 
smoke and pathogens) on IPF and its comorbidities. For 
instance, fat deposition not only plays a role in the devel-
opment of IPF through mechanisms such as lipotoxicity, 
inflammation, oxidative stress, and fibrogenesis but also 
has direct evidence of fat deposition in the pancreas, 
leading to pancreatic fat infiltration. This pancreatic 
fat infiltration contributes to the occurrence of diabe-
tes, which is a common pulmonary comorbidity in IPF 
patients [121]. Adipocytes mainly infiltrate the pancre-
atic parenchyma and accumulate near islets. The number 

of D68-positive cells in islets is positively correlated with 
homeostatic model assessment of insulin resistance 
(HOMA-IR) and the area of pancreatic adipocytes and 
leads to intensified local inflammation, β-cell apoptosis 
promotion, and alterations to insulin secretion and glu-
cose tolerance [122], which are well-known mechanisms 
of diabetes. A case‒control study showed that type 2 dia-
betes is an independent risk factor for IPF, with a higher 
incidence of diabetes in IPF patients than in patients 
without IPF (11.3% vs. 2.9%) [119, 123]. A meta-analysis 
of 260,000 individuals revealed that the odds of having 
diabetes were increased by 1.54 times in IPF patients 
compared to patients without IPF (95% CI, 1.30–1.84; 
P < 0.001) [124]. Another meta-analysis of nine case‒
control studies also reported similar results (OR 1.65, 
P < 0.0001) [125]. In a cohort study, the presence of dia-
betes (HR 2.5, 95% CI 1.04–5.9) was identified to increase 
mortality in the IPF cohort [126]. Based on this evidence, 
the co-occurrence and connection of pancreatic and pul-
monary pathologies in IPF can be partially explained by 
EFD. In addition to extrapulmonary comorbidities, EFD 
is also involved in respiratory system comorbidities in 
IPF. The mechanical effects of EFD on airway caliber, lung 
capacity, and cardiac diastole are mainly associated with 
COPD, OSA, and pulmonary hypertension, while its pro-
motion of inflammation and airway hyperresponsiveness 
is mainly associated with asthma and increased patho-
genicity of environmental factors (such as COPD and 
pulmonary infections) [127, 128]. Fat deposition leads 
to decreased numbers and functional defects of natural 
killer cells, resulting in impaired malignant cell clearance 
and an increased risk of lung cancer [129]. Its impact on 
respiratory muscle depletion is mainly related to respira-
tory failure and cachexia in COPD and lung cancer [130]. 
Long-term hypoxemia contributes to the occurrence of 
pulmonary heart disease.

Drugs of hypoglycemic or lipid‑lowering and targeted 
lipid‑mediated pathways for pulmonary fibrosis
An increasing number of researchers believe that hyper-
glycemia and lipid deposition may be risk factors for 
pulmonary fibrosis, which is closely associated with 
systemic inflammation and oxidative stress. In recent 
years, various drugs for glycemic regulation and lipid 
modulation have shown antifibrotic properties. Among 
them, hypoglycemic drugs, including empagliflozin (a 
sodium-glucose cotransporter-2 inhibitor), liraglutide 
(a glucagon-like peptide 1 receptor agonist), metformin, 
and rosiglitazone, have been shown to have good effects 
in alleviating pulmonary fibrosis in various animal mod-
els (see Table 1). Lipid-lowering drugs have also attracted 
attention, and studies have shown that fenofibrate, 
pravastatin, atorvastatin, ezetimibe and probucol can 
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significantly reduce the development of pulmonary fibro-
sis in animal models (see Table 1, Ref. [131–139]).

Moreover, based on preclinical and clinical research 
data, three major lipid-targeting drugs have been tested 
in patients with IPF (Table  2. Ref. [140–146]). First, 
mTOR inhibitors or PI3K/mTOR inhibitors, such as 
sirolimus (rapamycin) and omipalisib (GSK2126458), 
have completed randomized, double-blind phase I clini-
cal trials for patients with IPF. Another lipid target of 
interest is LPA1, which has been shown to mediate fibro-
blast recruitment [147]. In a phase II clinical trial, the 
first-generation LPA1 receptor antagonist BMS986020 
significantly slowed the decline rate of FVC in patients 
with IPF, but this trial was prematurely terminated due 
to an increased risk of hepatic enzyme abnormalities. The 
second-generation LPA1 receptor antagonist BMS986278 
has demonstrated good properties in various preclini-
cal animal experiments [148] and is currently in a phase 

II clinical trial. The third potential lipid target is ATX. 
Phase III clinical trials of the ATX antagonist GLPG1690 
(ISBELA 1 and 2) to treat IPF were terminated because 
the benefit-risk profile no longer supported continuing 
the study. However, other ATX antagonists are still under 
investigation, such as the drugs BBT-877 and cudetax-
estat (BLD-0409), which are poised to enter phase II clin-
ical trials to evaluate their efficacy and safety in patients 
with IPF.

In addition, other lipid-targeting drugs are currently 
being tested in clinical trials for IPF, such as PBI4050 (a 
GPR40 agonist and GPR84 antagonist). This drug has 
completed an open-label phase II clinical trial in IPF 
patients, demonstrating its safety when used alone or in 
combination with nintedanib or pirfenidone. Further-
more, GPLG1250 (a functional antagonist of GPR84) has 
shown antifibrotic effects in animal models and has com-
pleted phase II clinical trials. In addition to the targets 

Fig. 2  Alterations in adipose tissue distribution in aging individuals contribute to the development of IPF. The left part illustrates the distribution 
of white adipose tissue and brown adipose tissue in the healthy human body. The right part shows a list of comorbidities associated 
with an excessive accumulation of ectopic fat and visceral adipose tissue in elderly individuals. The figure was created using BioRender (www.​biore​
nder.​com). Abbreviations: alveolar epithelial type II cells (AT2), chronic obstructive pulmonary disease (COPD), insulin resistance (IR), lipofibroblast 
(LIF), myofibroblast (MYF), obstructive sleep apnea syndrome (OSAS), pulmonary arterial hypertension (PAH), surfactant protein A (SPA)

http://www.biorender.com
http://www.biorender.com
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Table 2  Clinical trials of targeted lipid-mediated pathways for pulmonary fibrosis

NCT Target Specificity Interventions Phase Primary outcome 
Measures

Enrollment Allocation Ref

01462006 mTOR inhibitor Drug: Sirolimus
Other: Placebo

1 Change in peripheral 
blood concentration 
of the CXCR4 + fibrocytes 
up to 22 weeks
Number of subjects 
with drug side-effects 
up to 22 weeks

32 Randomized
Crossover Assignment
Quadruple
Primary Purpose: Treat-
ment

 [140]

01725139 PI3K/mTOR inhibitor Drug: Omipalisib
Other: Placebo

1 PD endpoints pAKT/AKT
AUC in blood 
for GSK2126458
Cmax in blood 
for GSK2126458
Pre-dose concentration 
at the end of the dos-
ing interval in blood 
for GSK2126458
Concentration 
of GSK2126458 in BALF

17 Randomized
Parallel Assignment
Double
Primary Purpose: Treat-
ment

 [141]

03502902 PI3K/mTOR inhibitor Drug: HEC68498
Other: Placebo

1 Adverse event 
up to 4 weeks: to assess 
the safety and tolerability 
of single dose adminis-
tered

55 Randomized
Parallel Assignment
Quadruple
Primary Purpose: Treat-
ment

-

01766817 LPA1 receptor antagonist Drug: BMS-986020
Other: Placebo matching 
with BMS-986020

2 Change from baseline 
in FVC rate to week 26

325 Randomized
Parallel Assignment
Triple
Primary Purpose: Treat-
ment

 [142]

04308681 LPA1 receptor antagonist Drug:
BMS-986278
Other:
BMS-986278 placebo

2 Rate of change in ppFVC 
in IPF participants 
up to week 26

278 Randomized
Parallel Assignment
Triple
Primary Purpose: Treat-
ment

 [143]

04069143 LPA1 ligand for PET Diagnostic test:
18F-BMS-986327

1 Incidence of AEs up to 3d 
after participation
Incidence of SAEs 
up to 30d after participa-
tion
Radiation dosimetry 
calculated from PET-CT 
images 30d after partici-
pation
Test–retest repeatability 
30d after participation
Biodistribution and lung 
uptake calculated 
from the PET-CT images 
30d after participation

14 Non-Randomized
Parallel Assignment
Open Label
Primary Purpose: Diag-
nostic

-

03711162 ATX inhibitor Drug: GLPG1690
(ISABELA1)
Other: Placebo

3 Annual rate of decline 
in FVC up to week 52

525 Randomized
Parallel Assignment
Quadruple
Primary Purpose: Treat-
ment

 [144]

03733444 ATX inhibitor Drug: GLPG1690
(ISABELA2)
Other: Placebo

3 Annual rate of decline 
in FVC up to week 52

781 Randomized
Parallel Assignment
Quadruple
Primary Purpose: Treat-
ment

 [144]
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that have entered testing, many lipid metabolism-related 
genes that are under investigation, such as Thy-1 (a glyco-
phosphatidylinositol anchored cell surface glycoprotein), 
SphK1, and S1PL (S1P lyase), have shown promising 
antifibrotic effects in in vitro or animal experiments and 
may become new therapeutic targets [149, 150]. In con-
clusion, further research on the mechanisms of glycemic 
regulation, lipid modulation and lipid-targeting drugs in 
pulmonary fibrosis may provide new treatment options 
for patients with IPF.

LMRGs are associated with poor prognosis of IPF
To further discuss the relationship between lipid metabo-
lism and IPF prognosis at the gene level, this review pro-
vides prognostic analysis results according to LMRGs. 
These results suggest that high expression levels of mul-
tiple LMRGs, which promote lipid accumulation, were 
associated with a poor survival prognosis in IPF patients. 
An additional file shows this in more detail (see Addi-
tional file 1).

The EFD-related alterations in fat metabolism and 
secretion explain the negative correlation between exces-
sive VAT and IPF progression, quality of life, and prog-
nosis. This review highlights the benefits of interventions 
such as NLRP3 inflammasome-targeted therapy to 
improve ectopic fat tissue dysfunction, anti-aging treat-
ments, aerobic exercise, respiratory muscle strength 
training, dietary modifications, and even bariatric 

surgery for IPF patients. Additionally, this review sum-
marized that fat deposition is a common risk factor 
for both IPF and its pulmonary and extrapulmonary 
comorbidities. The reported findings suggest that in the 
majority of IPF patients who currently have limited drug 
treatment options and are unable to tolerate pulmonary 
rehabilitation, improving ectopic and visceral fat deposi-
tion and managing IPF comorbidities play a key role in 
optimizing survival quality and extending survival time 
for IPF patients.

Strengths and limitations
The major strength of this review is that it provides a new 
perspective on the pathogenesis and prognosis of IPF. 
Improving ectopic and visceral fat can contribute to the 
prevention and treatment of this fatal disease. Further-
more, understanding the molecular mechanisms and 
signaling pathways of excessive fat deposition-related 
pulmonary fibrosis is crucial for researchers and drug 
developers to identify new therapeutic targets. Moreo-
ver, the biomarkers, clinical assessment tools, treatments, 
complications, and prognosis of IPF discussed in this 
review can improve clinical management. However, there 
are some limitations in this review. First, differences in 
study designs and participants make it challenging to 
extract data for meta-analysis or to give recommenda-
tions and guidance based on reliable evidence. Second, 
it is necessary to continuously track the outcomes of 

NCT Number from https://​clini​caltr​ials.​gov/; PI3K Phosphoinositide 3-kinase, Mtor Mammalian target of rapamycin, LPA1 Lysophosphatidic acid receptor type1, 
ATX Autotaxin, GPR G-protein-coupled receptor, PD Pharmacodynamic, AKT Protein kinase B,pAKT Phosphorylated Akt, AUC​ Area under the curve, Cmax Maximum 
observed concentration, BALF bronchoalveolar lavage fluid, FVC Forced vital capacity, ppFVC Percent predicted forced vital capacity, AEs Adverse events, SAEs Serious 
adverse events, PET-CT Positron emission tomography-computed tomography

Table 2  (continued)

NCT Target Specificity Interventions Phase Primary outcome 
Measures

Enrollment Allocation Ref

05483907 ATX inhibitor Drug: BBT-877
Other: Placebo

2 Reduction in FVC 
(ml) decline com-
pared to the placebo 
after 24 weeks of treat-
ment

120 Randomized
Parallel Assignment
Triple
Primary Purpose: Treat-
ment

-

05373914 ATX inhibitor Drug: BLD-0409
Other: Matching placebo

2 Changes in FVC (L) 
from Baseline to week 26

200 Randomized
Parallel Assignment
Quadruple
Primary Purpose: Treat-
ment

-

02538536 GPR40 agonist/GPR84 
antagonist

Drug: PBI-4050 2 Number of subjects 
with abnormal laboratory 
values and/or adverse 
events that are related 
to treatment (time Frame: 
4 months)

41 N/A
Single group Assignment
Open Label
Primary Purpose: Treat-
ment

 [145]

03725852 GPR84 antagonist Drug: GLPG1205
Other: Placebo

2 Change from baseline 
in FVC at week 26

68 Randomized
Parallel Assignment
Quadruple
Primary Purpose: Treat-
ment

 [146]

https://clinicaltrials.gov/
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ongoing clinical trials to determine the safety and efficacy 
of these drugs (hypoglycemic or lipid-lowering drugs, 
lipid-targeting drugs) in the treatment of IPF. Last, due 
to a lack of relevant studies, this review cannot provide 
quantitative thresholds and changes in blood glucose, 
lipid levels, and fat deposition during the occurrence and 
development of pulmonary fibrosis.

Conclusions
In summary, the impact of ectopic and visceral fat dep-
osition on IPF is complex and involves multiple factors, 
including mechanical injury, lipotoxicity, inflammatory 
mediators, and insulin resistance. Additionally, ectopic 
and visceral fat deposition plays a role in various stages 
of IPF, from onset and exacerbation to complications and 
prognosis. Current research indicates that medications 
aimed at improving sugar and lipid metabolism may slow 
the rate of decline in lung function and reduce the extent 
of pathological lung fibrosis. Potential therapeutic targets 
associated with abnormal adipose tissue function have 
been identified; these targets include the NLRP3 inflam-
masome, SIRT, and important lipid-related genes linked 
to IPF.

This review holds great relevance for clinical practice, 
as it highlights a noticeable correlation between fat depo-
sition and pulmonary fibrosis based on clinical obser-
vations. While the six-minute walk test is a commonly 
employed method in clinical practice to evaluate cardio-
pulmonary function and prognosis in IPF, it may not be 
feasible for patients in advanced stages or experiencing 
acute exacerbations. The review introduces various indi-
cators and tools of body composition analysis that have 
demonstrated a robust association with lung function 
and prognosis in pulmonary fibrosis. These noninvasive, 
easily quantifiable assessment methods offer potential 
alternatives for evaluating IPF conditions. They pave 
the way for identifying the necessity for improvements 
in body fat distribution and exercise capacity, especially 
in high-risk pulmonary fibrosis patients. Furthermore, 
this review emphasizes the importance of focusing on 
the mechanisms of excessive fat deposition in IPF and 
the latest clinical evidence, which holds promising pros-
pects for the future. This suggests that physicians can 
potentially prevent and treat IPF by intervening in obe-
sity (through lifestyle interventions and lipid-targeting 
drugs), addressing sarcopenia (through exercise and pul-
monary rehabilitation), and targeting inflammation and 
LMRGs (via inflammasome modulation and potential 
gene therapies). However, to gain a deeper understand-
ing of the role of excessive fat deposition in IPF, it is nec-
essary to provide simultaneous assessments of ectopic 
fat deposition, metabolic status, and the degree of lung 
fibrosis. Experimental validation of key mechanisms is 

also essential in future studies. Ultimately, these efforts 
may lead to the development of novel management or 
treatment strategies for IPF, the formulation of personal-
ized nutritional and rehabilitation plans, and the signifi-
cant assessment of lung transplantation risks.
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