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Abstract 

Background Acute pancreatitis (AP) is an unpredictable and potentially fatal disorder. A derailed or unbalanced 
immune response may be the root of the disease’s severe course. Disorders of lipid metabolism are highly correlated 
with the occurrence and severity of AP. We aimed to characterize the contribution and immunological characteris-
tics of lipid metabolism-related genes (LMRGs) in non-mild acute pancreatitis (NMAP) and identify a robust subtype 
and biomarker for NMAP.

Methods The expression mode of LMRGs and immune characteristics in NMAP were examined. Then LMRG-derived 
subtypes were identified using consensus clustering. The weighted gene co-expression network analysis (WGCNA) 
was utilized to determine hub genes and perform functional enrichment analyses. Multiple machine learning meth-
ods were used to build the diagnostic model for NMAP patients. To validate the predictive effectiveness, nomograms, 
receiver operating characteristic (ROC), calibration, and decision curve analysis (DCA) were used. Using gene set varia-
tion analysis (GSVA) and single-cell analysis to study the biological roles of model genes.

Results Dysregulated LMRGs and immunological responses were identified between NMAP and normal individuals. 
NMAP individuals were divided into two LMRG-related subtypes with significant differences in biological function. The 
cluster-specific genes are primarily engaged in the regulation of defense response, T cell activation, and positive regu-
lation of cytokine production. Moreover, we constructed a two-gene prediction model with good performance. The 
expression of CARD16 and MSGT1 was significantly increased in NMAP samples and positively correlated with neu-
trophil and mast cell infiltration. GSVA results showed that they are mainly upregulated in the T cell receptor complex, 
immunoglobulin complex circulating, and some immune-related routes. Single-cell analysis indicated that CARD16 
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was mainly distributed in mixed immune cells and macrophages, and MGST1 was mainly distributed in exocrine 
glandular cells.

Conclusions This study presents a novel approach to categorizing NMAP into different clusters based on LMRGs 
and developing a reliable two-gene biomarker for NMAP.

Keywords Acute pancreatitis, Lipid metabolism, Machine learning, Biomarkers, Molecular clusters

Introduction
Acute pancreatitis (AP) is an inflammatory disease of the 
pancreas whose course depends on severity. According to 
the 2012 revision of the Atlanta classification, AP could 
be classified as mild, moderately severe, or severe [1]. 
Moderately severe acute pancreatitis (MSAP) is charac-
terized by temporary organ failure, local complications, 
or an aggravation of a co-morbid condition. Severe acute 
pancreatitis (SAP) refers to continued organ failure that 
lasts more than 48  h [1]. Non-mild acute pancreatitis 
(NMAP), including MSAP and SAP, occurs in 20% of AP 
patients [2]. Although treatment methods such as early 
enteral feeding, fluid resuscitation, and organ support 
therapy are often used in clinical settings, the mortality 
rate of NMAP can reach 35%, which is much greater than 
MAP [2]. A derailed or unbalanced immune response 
may be the root of the disease’s severe course. Stimula-
tion of acinar cells initiates a local immune response, and 
cells of the innate immune system from the bone mar-
row, such as monocytes and neutrophils, are recruited to 
areas of damaged tissue in the pancreas [3]. The immedi-
ate response of the immune system to local cellular injury 
influences the progression of AP. Intervention targeting 
the immune response mechanisms involved is one of the 
most promising therapeutic options for AP. Therefore, 
there is a need to study the immune characteristics in 
AP and find potentially modifiable risk factors and novel 
biomarkers for the early identification of high-risk AP 
individuals.

Hypertriglyceridemia has long been thought of as the 
third most frequent cause of AP [4]. With more studies 
being done on dyslipidemia during AP, the connection 
between hypertriglyceridemia and AP is becoming more 
and more distinct [4]. Acute renal damage, acute respira-
tory distress syndrome, and a longer duration of hospital 
stay are all independently linked to higher blood triglyc-
eride levels during AP, according to a large number of 
recent clinical investigations [5–7]. The study found that 
AP patients with hyperlipidemia were at greater risk for 
more severe pancreatitis [8]. At the same time, it was dis-
covered that strict control of triglyceride concentration 
after acute pancreatitis presentation decreased the proba-
bility of recurrence [8]. In addition, it has been found that 
hypertriglyceridemia during AP, regardless of etiology, 
is linked to continuous organ failure, which is a leading 

decisive factor in AP mortality [9–11]. As a result, it is 
promising to study the molecular subtypes and develop 
new diagnostic biomarkers for NMAP patients based on 
lipid metabolism-related genes (LMRGs).

First, we performed a systematic analysis of the LMRGs 
and immunological characteristics between normal 
and NMAP individuals. Then, based on  DE-LMRGs, 
NMAP individuals were split into two lipid metabolism-
related subgroups. The differences in immune cell infil-
tration and key pathways were studied further between 
the two subgroups. NMAP-specific and cluster-specific 
genes were identified using weighted gene co-expression 
network analysis (WGCNA), and the biological roles 
and pathways of gene enrichment were investigated. A 
two-gene diagnostic model consisting of CARD16 and 
MGST1 was discovered by applying the least absolute 
shrinkage and selection operator (LASSO), random for-
est (RF), and support vector machine recursive feature 
elimination (SVM-RFE). The receiver operating charac-
teristic (ROC) curves, nomogram, decision curve analy-
sis (DCA), and calibration curves were used to verify the 
diagnostic model’s effectiveness. At last, we explored the 
biological characteristics, single-cell maps, and immuno-
fluorescence of these two model genes and constructed 
their ceRNA regulatory networks. These findings would 
improve our comprehension of the lipid metabolism 
mechanism in AP and offer fresh ideas for the early 
detection of NMAP.

Method
Data preparation
The GSE194331 dataset, including 87 AP patients 
and 32 normal samples, was obtained from the Gene 
Expression Omnibus (GEO) database, and the clinical 
information on the samples can be obtained from previ-
ous studies [12]. After excluding the MAP samples, 30 
NMAP patients (20 MSAP and 10 SAP) and 32 normal 
individuals were included in this research. Considering 
the number of genes and their relevance score, as well 
as previous studies, we selected 1004 LMRGs (relevance 
score > 10) from the GeneCards database for this analy-
sis [13, 14]. With adjusted P < 0.05 and |logFC|> 2 as the 
criterion, differentially expressed genes (DEGs) between 
normal and NMAP samples were found by the “limma” 
program [15].
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Evaluating the immune cell infiltration
We looked at the differences in the immune microenvi-
ronment between people with NMAP and people who 
are healthy using the CIBERSORT algorithm, which can 
figure out the percentages of infiltration of 22 different 
types of immune cells. Individuals with a p-value < 0.05 
represented that the evaluation of the proportions of 
22 immune cell subsets generated by CIBERSORT was 
accurate. These samples were then utilized for further 
assessing the variations in immune infiltration between 
different molecular subtypes [16].

Cluster analysis
The “ConsensusClusterPlus” package was applied to 
cluster NAMP samples using the expressed levels of 
the DE-LMRGs [17]. The reliability of clustering results 
was demonstrated by PCA. The biological characteris-
tics of different subtypes were further compared.

Identifying specific genes in key modules
We used the “WGCNA” package in R to find mod-
ules and genes that are linked to NAMP and lipid 
metabolism-related clusters [18]. Using the optimal 
soft power, the weighted neighbor matrices were built 
and converted to a topological overlap matrix (TOM). 
The minimum module size was set to 100, and then 
the TOM dissimilarity metric was used to construct 
the modules. Genes with gene significance (GS) > 0.5 
and module membership (MM) > 0.8 were considered 
specific genes [19].

Functional enrichment analysis
The STRING database was utilized to examine protein 
interactions using a composite score > 0.15 as a condi-
tion to determine the validity of such interactions [20]. 
Functional enrichment analysis was conducted using 
the Metascape database [21].

Identifying the best model genes for NMAP
LASSO, RF, and SVM-RFE were performed to filter 
genes. LASSO was performed by the R package “glm-
net” to avoid overfitting and by 10-fold cross-validation 
to tune the optimal penalty parameter λ [22, 23]. RF 
was performed using the R package “Random Forest” 
(ntree = 500) [24]. The feature importance was deter-
mined by the mean decrease Gini index calculated by 
RF, and genes with relative importance > 1.5 were deter-
mined as characteristic genes. Meanwhile, SVM-RFE 
was employed using the R package “e1071” [25]. SVM-
RFE uses the principle of structural risk minimization, 
which aims to optimize the learning performance by 
minimizing the empirical error. Then, the hub genes for 

the following studies were chosen from the intersection 
of the three subsets. The “pROC” package was used to 
calculate the ROC curves to evaluate the model’s pre-
dictability [26]. The correlation of the model genes 
CARD16 and MGST1 in peripheral blood was assessed 
by the GTEx dataset in GEPIA, an online tool for bioin-
formatics based on TCGA and GTEx [27].

Establishment of a nomogram
A nomogram integrating model genes was constructed 
by the “rms” R package [28]. Meanwhile, the calibration 
and DCA curves were used to evaluate the predictive 
accuracy of the nomogram [29].

Analysis of the model genes
Gene set variation analysis (GSVA) was conducted for 
model genes by the “GSVA” package [30]. The association 
between model genes and immunochemicals was evalu-
ated based on CIBERSORT results. Meanwhile, using the 
Human Protein Atlas (HPA: https:// www. prote inatl as. 
org/), immunofluorescence was used to demonstrate cel-
lular localization. The latest version of the HPA database 
has integrated large datasets with single-cell type level 
information, and the single-cell type data is integrated 
into the gene search results page, making it possible for 
visitors to access all the information from a gene-specific 
perspective [31]. Therefore, we also examined the single-
cell type atlases of the model genes in the pancreatic tis-
sues using the HPA platform.

Construction of ceRNA network
To discover the ceRNA network that may be regulated 
by model genes. The TargetScan, miRDB, and miRanda 
databases were utilized to forecast miRNA-mRNA pairs 
[32]. Only genes that were simultaneously included in 
all three databases were considered potential mRNA 
targets for additional investigation. The spongeScan 
database was utilized to forecast miRNA-lncRNA pairs 
[33]. Cytoscape was finally used to visualize the ceRNA 
network.

Result
Dysregulation of LMRGs and immune characteristics 
in NMAP
The current study was illustrated in the flow chart (Fig. 1). 
Figure 2A illustrates the DEGs between NMAP and nor-
mal individuals. We took the intersection of DEGs and 
LMRGs, and nine LMRGs were found to have differential 
expression (Fig. 2B). Among them, the expression levels 
of XIST and ALOX15 were lower, whereas CES1, RETN, 
HP, IL10, CYP19A1, PPARG, and ARG1 gene expres-
sion levels were higher in NMAP than in normal samples 
(Fig.  2C). Correlation analysis showed mostly positive 

https://www.proteinatlas.org/
https://www.proteinatlas.org/
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correlations between DE-LMRGs, except for ALOX15 
and XIST (Fig. 2D). Figure 2E showes the location of the 
DE-LMRGs in chromosomes.

We employed the CIBERSORT algorithm to assess the 
infiltration proportions of various immune cell subpopu-
lations within each sample and to explore differences in 
immune infiltration between NMAP and normal sam-
ples. It was found that NMAP patients presented higher 
infiltration levels of T cells CD4 memory activated, neu-
trophils, and mast cells resting. The number of T cells 
CD8, T cells CD4 memory resting, B cells naive, and NK 
cells resting was higher in normal individuals (Fig. 2F and 
G). Correlation analyses showed that except for CES1 
and XIST, the remaining seven DE-LMRGs were sig-
nificantly positively or negatively correlated with T cells 
gamma delta and T cells CD4 memory resting (Fig. 2H).

Identification of LMRG‑related clusters in NMAP
To further understand the LMRG-related expression 
patterns in NMAP, we classified the NMAP data based 
on nine DE-LMRG expression profiles using a consen-
sus clustering technique. When the NMAP individuals 
were split into two clusters, the results were the most 
stable (Fig.  3A). A significant difference across the two 
groups was identified by PCA (Fig.  3B). We looked at 
the gene expression variations of 9 LMRGs between C1 
and C2 to investigate the molecular disparities among 
clusters. PPARG, HP, CYP19A1, ARG1, IL10, RETN, 
and CES1 were all strongly elevated in the C2 cluster, 
whereas ALOX15 was substantially decreased (Fig.  3C). 

The differences in immune cell infiltration between the 
two clusters were then compared. We found that the C1 
group had a significantly higher abundance of T cells 
CD4 memory resting and NK cells resting, whereas the 
C2 group had a significantly higher abundance of T cells 
CD4 memory activated, T cells gamma delta, and mac-
rophages (Fig.  3D and E). Additionally, we used GSVA 
to look into possible distinctions in biological function 
among these two clusters. The findings showed that C1 
was primarily involved in the regulation of endoplasmic 
reticulum tubular network organization, regulation of 
plasma cell differentiation, and protein export, while C2 
was primarily enhanced in antigen processing and pres-
entation, regulation of histone modification, and meth-
ylation (Fig. 3F and G).

Gene module screening and co‑expression network 
development
WGCNA was first utilized to discover the important 
modules related to NMAP. The scale-free R2 parameter 
was set to 0.9 to identify co-expressed modules (Fig. 4A). 
The most relevant module was the blue one (Fig.  4B). 
For further investigation, the hub genes in the blue mod-
ule were picked (Fig.  4C). Given the important role of 
lipid metabolism in AP and the significant biological 
differences between LMRG-related molecule clusters, 
WGCNA was also used to assess the critical modules 
that had strong connections to clusters associated with 
LMRG (Fig. 4D). The LMRG-related clusters were most 

Fig. 1 The research’s analytical workflow in detail
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connected to the turquoise module (Fig. 4E). The crucial 
genes for the turquoise module were also picked (Fig. 4F).

Functional enrichment analysis
When the module-associated genes of LMRG-related 
clusters were intersected with the module-associated 
genes of NMAP, a total of 91 cluster-specific genes were 
found (Fig. 5A). The PPI analysis showed that most genes 
were closely linked, except for POR, ROPN1L, NDU-
FAF1, C20orf24, and PNPLA1 (Fig.  5B). These genes 
were considerably abundant in the regulation of the 
defense response and T cell activation, according to the 
Metascape (Fig. 5C).

Construction of the model
According to the 91 cluster-specific genes, three 
machine learning models were created. Six genes have 
been discovered to be possible biomarkers for diagnosis 
using the LASSO regression technique (Fig. 6A and B). 
Eighteen genes were extracted from these genes as can-
didate biomarkers by the SVM-RFE algorithm (Fig. 6C 
and D). Regarding the RF algorithm, six genes with 
scores for importance greater than 1.5 were included 
in the ensuing analysis (Fig. 6E and F). Finally, the two 
genes (CARD16 and MGST1) were then overlaid by 
a Venn diagram and used as powerful diagnostic bio-
markers (Fig. 6G).

Fig. 2 The comparison between NMAP and normal samples. A Volcano plot of the DEGs. B Venn diagram of the LMRGs and the DEGs. C 
Heatmap showing the expression levels of 9 DE-LMRGs in C1 and C2. D The correlation between nine DE-LMRGs. E Location of the DE-LMRGs 
in chromosomes. F, G Comparison of 22 immune cell infiltration levels between NMAP and normal samples. H The relationship between nine 
DE-LMRGs and immune cells
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Fig. 3 Two LMRG-related clusters in NMAP. A NMAP patients are divided into two subgroups. B PCA can clearly distinguish two subgroups. C The 
boxplot demonstrates the difference in expression of nine DE-LMRGs between the two clusters. D, E Comparison of 22 immune cell infiltration 
levels between the two clusters. F Differences in function enrichment between C1 and C2 by GSVA. G Differences in the KEGG pathway between C1 
and C2 using GSVA. *P < 0.05; **P < 0.01; ***P < 0.001

(See figure on next page.)
Fig. 4 Construction of the co-expressed network. A The scale-free fit index and the mean connectivity for various soft-thresholding powers 
in the first WGCNA. B Heatmap showing the correlation between different modules and NMAP traits. The color of the module indicates 
the correlation between the corresponding module and the trait. C Scatter plot of blue module genes. Genes with GS > 0.5 and MM > 0.8 
were considered specific genes. D The scale-free fit index and the mean connectivity for various soft-thresholding powers in the second 
WGCNA. E Heatmap showing the correlation between different modules and clusters. The color of the module indicates the correlation 
between the corresponding module and the trait. F Scatter plot of turquoise module genes. Genes with GS > 0.5 and MM > 0.8 were considered 
specific genes
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Fig. 4 (See legend on previous page.)
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Evaluation of the model
Figure  7A illustrates the expression levels of CARD16 
and MGST1 in each sample. Boxplots revealed that 
NMAP samples had substantially greater levels of 
CARD16 and MGST1 expression than normal samples 
(Fig. 7B and C). In addition, we analyzed the correlation 
between CARD16 and MGST1 in normal samples of 
whole blood using the GTEx dataset in GEPIA. It was 
found that there was a significant positive correlation 
between CARD16 and MGST1 (Fig. 7D), suggesting an 
interaction between the two genes. According to the 
ROC curves, it can be found that CARD16 and MGST1 
both have good predictive value (Fig. 7E). More impor-
tantly, the two-gene prediction model demonstrated 

more favorable performance with an AUC value of 
0.994 (Fig.  7F). To further confirm the model’s accu-
racy, we compared it with the previously published 
AP diagnostic biomarkers. We found that the AUC of 
CARD16, MGST1, and our two-gene model was signifi-
cantly higher than that of existing diagnostic biomark-
ers (Fig. 7G and H) [34, 35].

In addition, we also created a nomogram to estimate 
the potential hazards of NMAP individuals (Fig.  7I). 
The calibration curve demonstrated that there was lit-
tle variation between the projected and reality risk for 
NMAP (Fig.  7J). In addition, the DCA curve demon-
strated that the overall clinical benefit was greater than 
in the case in which either all or none of the tests were 
used for diagnosis (Fig. 7K).

Fig. 5 Functional enrichment analysis of hub genes. A Taking the intersection of the specific genes from the two cluster analyses yielded 91 hub 
genes. B PPI analysis reveals correlations between hub genes. C Functional enrichment analysis of hub genes using the Metascape database
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Biological functions of CARD16 and MGST1 in NMAP
To investigate the potential functional and molecular 
mechanisms of CARD16 and MGST1 in NMAP, GSVA 
was performed. It was found that they both were mainly 
upregulated in the T cell receptor complex, immunoglob-
ulin complex circulating, as well as some immune-related 
routes, and downregulated in the negative regulation 
of chronic inflammatory response and oxidative phos-
phorylation (Fig.  8A-D). Then, the relationship between 
two model genes and immunochemicals was further 
explored. The results revealed that they largely linked 
negatively with resting NK cells, T cells CD4 mem-
ory resting, and T cells CD8 and positively with neutro-
phils, mast cells resting, and T cells gamma delta (Fig. 8E 
and F). These results suggest that CARD16 and MGST1 
may promote NMAP progression by mediating these 
inflammatory and immune-related pathways and cells.

The ceRNA networks, single‑cell maps, 
and immunofluorescence analysis
It is generally accepted that miRNAs bind to mRNAs and 
then cause gene silence and decrease the expression of 
genes. However, by binding to miRNA response regions, 
its upstream molecule, lncRNA, can influence miRNA 
function and boost the expression of genes. The inter-
actions between RNAs are known as ceRNA networks. 

Using multiple public databases, CARD16- and MGST1-
based ceRNA networks were constructed separately. In 
the end, we identified 5 objective miRNAs and 30 objec-
tive lncRNAs of CARD16 (Fig. 9A) and 4 objective miR-
NAs and 14 objective lncRNAs of MGST1 (Fig. 9B). The 
network revealed mechanisms that regulate model genes 
at the transcriptional level.

Additionally, we analyze the single-cell type for 
CARD16 and MGST1 using the HPA database. It was 
found that CARD16 was mainly distributed in mixed 
immune cells and macrophages, and MGST1 was mainly 
distributed in exocrine glandular cells (Fig.  9C and D). 
Then, we explored the cellular localization of CARD16 
and MGST1. CARD16 was detected in mitochondria, 
and MGST1 was detected in mitochondria and endoplas-
mic reticulum (Fig. 9E and F).

Discussion
The degree of seriousness of AP, a condition character-
ized by inflammation, varies greatly, from mild manifes-
tations with a low death rate to serious ones with a high 
death rate [36]. Therefore, early identification of NMAP 
is needed to identify individuals who are at risk for organ 
dysfunction or complications and which patients might 
benefit from earlier, more intensive treatment. Lipid 
metabolism has an important impact on AP and is closely 

Fig. 6 Identifying the best model genes for NMAP by multiple machine learning methods. A, B The LASSO regression selected 6 genes based 
on minimum lambda values (C, D) Identify 18 genes based on SVM-RFE (E, F) RF ranked the importance of all genes to get 6 genes with scores 
for importance greater than 1.5. G The Venn diagram exhibiting the intersection of three machine learning models
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Fig. 7 Diagnostic effect of the two-gene model on NMAP. A Expression of CARD16 and MSGT1 in different individuals. B, C Box plots show 
the expression difference in CARD16 and MSGT1 between NMAP and normal samples. D Correlation analysis of CARD16 and MGST1. E ROC curves 
for the evaluation of the CARD16’s and MSGT1’s prediction ability for NMAP. F ROC curves for the evaluation of the two-gene model’s prediction 
abilities for NMAP. G, H ROC curves of our biomarkers and existing AP diagnostic biomarkers. I The nomogram consisting of CARD16 and MSGT1 
for forecasting NMAP. J, K Calibration curve and DCA curve to measure the prediction capability of the model. *P < 0.05; **P < 0.01; ***P < 0.001
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related not only to the occurrence of AP but also to its 
severity. Therefore, it’s valuable to investigate the func-
tion of LMRGs in NMAP.

In this research, the gene expression profile of LMRGs 
in normal and NMAP samples was first thoroughly inves-
tigated. There were nine LMRGs identified by differential 
expression analysis. Immune cells have a major impact 
on the severity of the AP and are strongly linked to the 
systemic reaction to pancreas damage [37, 38]. As a con-
sequence, variances in immune cell infiltration among 
NMAP and normal samples were next contrasted. It was 

found that NMAP patients had greater infiltration ratios 
of neutrophils and mast cells. Neutrophils were found 
to be critical in the development of AP, and treatment 
aimed at neutrophils significantly reduced tissue damage 
and prevented pancreatitis [39, 40]. Mast cells also usu-
ally play a key role in the inflammatory reaction in AP 
[41], which is consistent with the results we obtained.

Then, two independent clusters with distinct biologi-
cal functions were identified to highlight the different 
patterns of lipid metabolism in NMAP patients. C2 was 
mainly enriched in antigen processing and presentation, 

Fig. 8 GSVA and correlation analysis of immune cells. Comprehensive scoring of (A, B) CARD16 and (C, D) MSGT1 using the GSVA to explore 
the potential molecular mechanisms by which model genes affect NMAP. E Correlations between 22 types of immune cells and CARD16. F 
Correlations between 22 types of immune cells and MSGT1



Page 12 of 15Liu et al. Lipids in Health and Disease            (2024) 23:1 

regulation of histone modification and methylation, while 
C1 was mainly involved in the regulation of endoplasmic 
reticulum tubular network organization, regulation of 
plasma cell differentiation, and protein export. Therefore, 
risk stratification based on LMRG is a potential method 
for determining prognosis and managing people with 
NMAP.

Although molecular typing is critical for the functional 
mining of LMRGs, it is difficult to accurately predict 
risk scores for specific individuals. To solve this prob-
lem, a model consisting of two genes with outstanding 
performance in predicting NMAP was developed using 
WGCNA and machine learning techniques. In addition, a 
nomogram for the diagnosis of NMAP was created using 
CARD16 and MSGT1. The ROC, DCA, and calibration 

curves demonstrated the strong predictive value of the 
model. Meanwhile, we compared it with the previously 
published AP diagnostic biomarkers. Wang et al. identi-
fied three immunogenic cell death-related genes (LY96, 
BCL2, and IFNGR1) using the same dataset as ours, and 
Ji et  al. identified two genes (CDH1 and CLDN4) that 
may serve as diagnostic biomarkers for AP using mouse 
samples. Compared with them, our two-gene model has a 
significant advantage in the discovery of NMAP.

CARD16, also known as Caspase Recruitment 
Domain Family Member 16, is a small molecule con-
sisting of 97 amino acids and characterised by a soli-
tary CARD motif. The motif exhibits a sequence 
identity of 92% with the prodomain of caspase-1 [42]. 
The CARD16 protein functions as a decoy to hinder 

Fig. 9 The ceRNA networks, single-cell maps, and immunofluorescence of CARD16 and MSGT1. A, B The ceRNA networks of CARD16 and MSGT1. 
C, D The single-cell type atlases of CARD16 and MSGT1 in the pancreatic tissues. E, F The immunofluorescence of CARD16 and MSGT1
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the binding of RIP2 to caspase-1 by means of CARD-
CARD interaction in the context of the inflammatory 
response. Consequently, this leads to the suppression 
of caspase-1 activity and the initiation of NF-κB activa-
tion [43]. Furthermore, it has been found that CARD16 
plays a role in the stemness maintenance of glioma 
stem cells and the inhibition of cAMP-induced differ-
entiation [44]. Microsomal glutathione S-transferase 1 
(MGST1) is a member of the MAPEG family of mem-
brane proteins. It is a homotrimeric protein with three 
glutathione binding sites that is found in large amounts 
in the outer mitochondrial membranes and the endo-
plasmic reticulum. MGST1 was shown to be an 
important mediator of inflammation with glutathione 
S-transferase and peroxidase activities [45]. Emerging 
data suggest mitochondrial MGST1 may contribute to 
apoptotic cell death under chemical or oxidative stress 
[46]. Furthermore, MGST1 exerts inhibitory effects on 
the process of ferroptosis in cancer cells by interact-
ing with ALOX5, or its lipid peroxidase activities [47]. 
MGST1 is considered a tumor marker, and its overex-
pression has been linked to a poor prognosis in sev-
eral malignancies [48–50], and proposed as a potential 
therapeutic target for pancreatic cancer [51]. Addition-
ally, it could serve as a biomarker to predict treatment 
efficacy and assess cancer risk [52, 53]. MGST1 poly-
morphisms may also influence an individual’s suscepti-
bility to specific cancers [54]. However, no studies have 
reported the roles of CARD16 and MGST1 in AP, and 
their potential mechanisms in the development of AP 
still need to be further explored.

For a deeper investigation of the potential func-
tions and molecular mechanisms of CARD16 and 
MGST1 of NMAP, GSVA was performed. CARD16 and 
MGST1 were found to be mainly upregulated in the T 
cell receptor complex, immunoglobulin complex cir-
culating, as well as some immune-related routes, and 
downregulated in the negative regulation of chronic 
inflammatory response and oxidative phosphoryla-
tion. Further immune cell correlation analysis identified 
that the model genes were closely linked to neutro-
phils and mast cells. Numerous studies have shown a 
close correlation between neutrophils and the serious-
ness of AP and that they are crucial to the system-wide 
inflammatory reaction and other damage to organs 
brought on by AP. An important factor in determin-
ing pancreatic damage and inflammation is increased 
and persistent neutrophil activation [40]. Mast cells 
play a significant role in activating local and systemic 
inflammatory responses in the early stages of the dis-
ease [55] and are intimately related to the severity and 

unfavorable outcomes of AP [41]. These results suggest 
that CARD16 and MGST1 may promote the activation 
and recruitment of neutrophils and mast cells through 
the regulation of the above pathways and functions, 
thereby promoting pancreatic injury and systemic 
inflammation.

Study strengths and limitations
As far as we know, this is the first bioinformatics research 
to thoroughly examine LMRGs in AP. Given the com-
monalities of high mortality and concomitant organ 
dysfunction in MSAP and SAP, both MSAP and SAP 
samples were included in the present study to enable 
early diagnosis of NMAP. We innovatively used LMRGs 
as the basis for grouping and further identified model 
genes by WGCNA and multiple machine learning meth-
ods. However, it is important to recognize that our model 
validation is still not robust enough, and further basic 
experimental and clinical studies are still needed. Spe-
cifically, blood samples from NMAP and normal samples 
will be collected for metabolomics analysis to verify the 
presence of abnormal lipid metabolism in NMAP. The 
dysregulation of model gene expression in NMAP will 
be verified by PCR and other methods, and the changes 
in the levels of AP-related markers will be observed after 
the knockdown of target genes in AP cell models. Mean-
while, the expression of the target gene in human mast 
cell lines and monocyte cell lines needed further investi-
gation to clarify its role in immune cells. In addition, the 
sequencing of clinical samples is needed to validate the 
predictive ability of our model in a clinical cohort.

Conclusion
This study presents a novel approach to categoriz-
ing NMAP into different clusters based on LMRGs and 
developing a reliable two-gene diagnostic biomarker 
for NMAP patients. Importantly, this study may pro-
vide a theoretical basis for future studies of AP lipid 
metabolism.
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