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Abstract
Background Numerous studies have affirmed a robust correlation between residual cholesterol (RC) and the 
occurrence of cardiovascular disease (CVD). However, the current body of literature fails to adequately address the link 
between alterations in RC and the occurrence of CVD. Existing studies have focused mainly on individual RC values. 
Hence, the primary objective of this study is to elucidate the association between the cumulative RC (Cum-RC) and 
the morbidity of CVD.

Methods The changes in RC were categorized into a high-level fast-growth group (Class 1) and a low-level slow-
growth group (Class 2) by K-means cluster analysis. To investigate the relationship between combined exposure to 
multiple lipids and CVD risk, a weighted quantile sum (WQS) regression analysis was employed. This analysis involved 
the calculation of weights for total cholesterol (TC), low-density lipoprotein (LDL), and high-density lipoprotein (HDL), 
which were used to effectively elucidate the RC.

Results Among the cohort of 5,372 research participants, a considerable proportion of 45.94% consisted of males, 
with a median age of 58. In the three years of follow-up, 669 participants (12.45%) had CVD. Logistic regression 
analysis revealed that Class 2 individuals had a significantly reduced risk of developing CVD compared to Class 1. 
The probability of having CVD increased by 13% for every 1-unit increase in the Cum-RC according to the analysis 
of continuous variables. The restricted cubic spline (RCS) analysis showed that Cum-RC and CVD risk were linearly 
related (P for nonlinearity = 0.679). The WQS regression results showed a nonsignificant trend toward an association 
between the WQS index and CVD incidence but an overall positive trend, with the greatest contribution from TC 
(weight = 0.652), followed by LDL (weight = 0.348).

Conclusion Cum-RC was positively and strongly related to CVD risk, suggesting that in addition to focusing on 
traditional lipid markers, early intervention in patients with increased RC may further reduce the incidence of CVD.
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Introduction
Cardiovascular disease (CVD) stands as the foremost 
cause of both mortality and disability in China [1, 2]. In 
the past three decades, the incidence of CVD in China 
has risen dramatically [3]. Between 2005 and 2020, the 
overall burden of premature deaths from CVD in China 
was greater than the global average, far exceeding that 
in some middle- and high-income countries [4, 5]. CVD 
has emerged as a major public health issue that threatens 
people’s health and well-being. From the perspective of 
population epidemiology, identifying simple, economi-
cal, and reproducible indicators to establish a CVD risk 
prediction model has become a popular research topic 
in recent years and can help better identify susceptible 
groups at high-risk of CVD.

Dyslipidemia serves as a notable and independent risk 
factor in the onset and progression of cardiovascular 
events. For a long time, lipid-lowering targets for dyslip-
idemia prevention and treatment have focused mainly 
on low-density lipoprotein (LDL) levels. However, even 
when LDL reaches lipid-lowering target values, the risk 
of major adverse cardiovascular events remains, referred 
to as residual risk [6, 7]. There is growing evidence that 
triglyceride (TG) and/or triglyceride-rich lipoprotein 
(TRL) cholesterol levels may contribute to this residual 
risk [8]. Therefore, recent studies have gradually focused 
on residual cholesterol (RC). Several studies have proven 
the importance of RC in predicting CVD incidence and 
its prognosis independent of LDL [9, 10]. Monitoring 
RC levels may help determine potential CVD risk not 
reflected by LDL. Recent research [11] revealed that RC 
was strongly linked to the incidence of metabolic syn-
drome and the occurrence of CVD. This study is limited 
by the use of a single database and only used data from a 
single measurement at baseline, which may not allow us 
to observe trends in disease risk. Currently, most studies 
have focused on baseline RC levels. There are a limited 
number of studies examining the relationship between 
alterations in RC levels and CVD incidence. Baseline RC 
levels provide information only about static factors, while 
dynamically changing RC levels may better reflect an 
individual’s cholesterol metabolism and trends. Studying 
changes in RC levels can provide a better understanding 
of how cholesterol levels fluctuate in individuals during 
treatment and thus allow a more accurate assessment of 
the risk of CVD.

The data source is the China Health and Retirement 
Longitudinal Study (CHARLS) database, which contains 
numerous high-quality microdata encompassing the 
household and individual profiles of middle-aged and 
older adults aged 45 and older in China. Compared with 
previous studies that used only single measurements of 
RC, cumulative RC (Cum-RC) was used in this study to 
explore the characteristics of populations with different 

RC trends and to provide a holistic and comprehensive 
view of the impact of dynamic alterations in RC on the 
incidence of CVD and older to make the results more in 
line with real-world conditions.

Study population
The CHARLS database provided the data for this analy-
sis. The CHARLS national baseline survey was under-
taken in 2011 (Wave 1), and further waves of the study 
were performed in 2013 (Wave 2), 2015 (Wave 3), and 
2018 (Wave 4) in 150 counties and 450 urban and rural 
community neighborhood committees throughout 28 
provinces. The county/district and village sampling levels 
used a probability proportional to size (PPS) approach. 
Prior to participation, all subjects provided written 
informed consent [12].

Data for 17,708 study subjects were collected from the 
2011 baseline survey as the initial population, and those 
who met the study objectives were selected according 
to the following inclusion criteria: (1) aged ≥ 45 at Wave 
1; (2) had total cholesterol (TC), high-density lipopro-
tein (HDL), and LDL levels at Wave 1 and Wave 3; (3) 
had not yet suffered from CVD, including heart disease 
and stroke, at Wave 1 and Wave 3; and (4) had CVD sta-
tus information recorded at Wave 4. Ultimately, 5,372 
patients were included in the study population. Figure 1 
depicts the specific filtering procedure for respondents.

Evaluation of RC and Cum-RC
The Cum-RC values from 2012 to 2015 were used for this 
study. The formula RC = TC – HDL – LDL [13] was used 
to calculate the RC values. In addition, the cumulative 
level of RC between 2012 and 2015 was calculated based 
on the formula Cum-RC = (RC2012 + RC2015)/2 × time 
(2015 − 2012) [14].

Definition of CVD
New-onset CVD was the primary outcome of this 
research. According to a previous CHARLS-related 
study, CVD incidence was ascertained by the patient’s 
answers to the questionnaire question in Wave 4: “Has 
your doctor ever told you that you have a heart-related 
illness (including angina, myocardial infarction, coronary 
artery disease, congestive heart failure, or other heart 
disease) or had a stroke?” If the participant answered 
“yes”, he or she was defined as having experienced a car-
diovascular event [15, 16].

Covariates
Baseline data were collected from in-person interviews 
of study participants by staff trained in questionnaire 
administration. The questionnaire covered demographic 
information (age, sex, residence, marriage), body mass 
index (BMI), health status (hypertension, dyslipidemia, 
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and diabetes), lifestyle information (smoking, alcohol 
consumption), medication use (antihypertensive, lipid-
lowering, hypoglycemic), and socioeconomic status 
(education). The residences were categorized as urban 
or rural [12]. Disease history included hypertension, dys-
lipidemia, and diabetes. In terms of education level, the 
study participants were categorized into four groups: no 
education, primary education, secondary education, and 
college education and above. Fasting venous blood col-
lection was performed by professionally trained person-
nel, and TC, LDL, HDL, FPG, glycosylated hemoglobin 
A1c (HbA1c), and uric acid (UA) were measured.

Statistical analysis
Given the non-normal distribution of the study mea-
surements, they were reported using the median and 
interquartile range (IQR), and counts were statistically 
described using frequency and percentage [n (%)]. Mul-
tiple imputations were used to fill in missing data to 
maximize statistical power and mitigate any bias that 
may result from missing data [17]. Information on miss-
ing variables can be found in Table S1. When grouping 
Cum-RCs, two methods, namely, K-means clustering 
and tertile grouping, were tested. To investigate the rela-
tionship between Cum-RC and the development of new-
onset CVD, a logistic regression model was employed, 
adjusting for potential confounding factors. The K-means 

clustering algorithm is an iterative technique employed 
to cluster data by utilizing distance as a measure of simi-
larity in order to divide a given dataset into K distinct 
classes. In the clustering process, each class is character-
ized by a clustering center, which is determined by cal-
culating the mean value of all the data points within that 
particular class [18, 19].

The process of K-means clustering can be briefly sum-
marized in the following steps. First, a collection of k data 
points is randomly selected from the dataset to serve as 
the initial clustering centers. Then, all the data points in 
the dataset are traversed and each data point is assigned 
to the category corresponding to the cluster center near-
est to it. Next, the clustering centers for each category are 
recalculated, and a new category is derived by calculating 
the mean value of all the data points within the class. The 
above steps are repeated until all the data points reach 
the minimum sum of the distances to the clustering cen-
ters of the classes to which they belong [20].

In this paper, the clustering effect was evaluated 
through the silhouette coefficient, which dynamically 
determines the range of values of K. The silhouette coef-
ficient was first proposed by Peter J. Rousseeuw in 1986 
based on the comparison of closeness and separation 
and can be used to choose an optimal number of clus-
ters and provide an assessment of clustering effective-
ness [21]. The silhouette coefficients, ranging from − 1 to 

Fig. 1 Flowchart for screening the research subjects
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+ 1, provide a measure of the similarity between sample 
points and their respective clusters, with values closer 
to 1 suggesting a strong fit within their assigned clusters 
and a weaker fit with neighboring clusters [22]. In the 
evaluation process, each profile coefficient corresponds 
to a specific value of K. Therefore, a reasonable range of 
values of K can be determined based on the higher profile 
coefficients. The silhouette coefficient relationship graph 
(Fig. S1) shows that the clustering effect is optimal when 
K is 2.

Figure  2A shows how the clustered population was 
divided. In Fig. 2B, for the Class 1 (n = 2,219) population, 
the RC range increased from 22.04 (12.76, 34.02) mg/dL 
× years in 2012 to 29.73 (22.39, 39.96) mg/dL × years in 
2015 (P < 0.001), with a Cum-RC of 78.82 (57.94, 108.90) 
mg/dL × years; additionally, the RC showed a rapid 
increasing trend. For the Class 2 (n = 3,153) group, the RC 
range increased from 18.56 (10.82, 30.54) mg/dL × years 
in 2012 to 23.94 (18.15, 32.05) mg/dL × years in 2015 
(P < 0.001), with a Cum-RC of 65.06 (47.51, 92.71) mg/
dL × years, and the RC showed a slow increasing trend. 
Moreover, Fig.  2C and D show the distributions of RCs 

in the Class 1 and Class 2 groups, respectively, and reveal 
the differences between the two groups. Notably, these 
data all exhibited a nonnormal distribution.

RCS modeling was used to explore the dose-response 
relationship between the Cum-RC and CVD risk. Sub-
group analyses were performed. In addition, an analysis 
was performed to determine whether there was an inter-
action effect between these risk factors and the Cum-RC 
on the development of CVD and test for trends in expo-
sure levels in different subgroups.

In addition, a weighted quantile sum (WQS) regres-
sion model was utilized to explore the overall associa-
tion between exposure to the three lipids (TC, LDL, and 
HDL) among the RC components and CVD risk and to 
establish the relative contribution of each lipid to CVD 
risk [23]. In the WQS regression, the weight values for 
exposure range from 0 to 1, and the sum of the weights 
is 1 [24]. A higher weight value indicates a greater degree 
of contribution of the component exposure to the over-
all load. WQS regression was used to assess the associa-
tion between combined exposure to the three lipids as a 
whole and CVD risk. The exposure level of each lipid was 

Fig. 2 Analysis of changes in RC via the K-means clustering model. (A) Scatterplot visualizing the distribution of two categories of data based on K-means 
clustering; (B) trend of RC change in two categories of population after clustering; (C) density plot of RC distribution in 2012 for two categories of popula-
tion; (D) density plot of RC distribution in 2015 for two categories of population
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converted into an ordinal variable that was weighted and 
summed in interquartile form to obtain the sum of the 
weighted quartiles of all exposure elements (WQS index). 
The WQS index represents the overall exposure load of 
the three lipids and was combined with the covariates 
above in a regression model reflecting the effect of com-
bined exposure on outcome [25].

The statistical analyses were completed using Stata 16.0 
and R 4.1.1 software.

Results
Baseline characteristics
There were 5,372 people in this study, with a median age 
of 58 years. A total of 45.94% of the participants were 
male, 53.02% had completed elementary school and 
above, and 47.82% were rural dwellers. Based on data 
from 2012 to 2015, the medians (IQRs) for RC were 19.72 
(11.60, 32.09) mg/dL × years and 25.87 (19.69, 35.91) mg/
dL × years, respectively. The median (IQR) for Cum-RC 
was 70.13 (51.55, 100.30) mg/dL × years. Compared to 
those in the Class 1 group, the Class 2 participants were 
younger; had a greater proportion of males, smokers, and 
alcoholics; were more educated; had a lower BMI, sys-
tolic blood pressure (SBP), and diastolic blood pressure 
(DBP); had a lower incidence of hypertension and dys-
lipidemia; and had lower levels of FPG, Hba1c, UA, TC, 
HDL, LDL, and Cum-RC (P < 0.05). In addition, tertiles 
of Cum-RC levels were used to divide participants into 3 
groups (Table 1). Compared with those in the first tertile 
(T1), participants in the third tertile (T3) were younger; 
had a greater proportion of females and nonsmokers; had 
a greater BMI; and had a greater incidence of hyperten-
sion, dyslipidemia, and diabetes (P < 0.001). In addition, 
increased Cum-RC was positively correlated with SBP, 
DBP, FPG, HbA1c, UA, TC, LDL, RC2012, and RC2015 and 
negatively correlated with HDL (P < 0.001).

Associations between Cum-RC scores and new-onset CVD 
incidence
Table  2 shows that after 3 years of follow-up, 669 par-
ticipants (12.45%) developed CVD, 407 (7.58%) had heart 
disease, and 300 (5.58%) had stroke. There was a lower 
risk of CVD in the Class 2 subgroup than in the Class 1 
subgroup, with a lower risk of heart disease; moreover, 
the risk of stroke occurrence did not significantly differ. 
In addition, a comparison of T3 with T1 in the Cum-RC 
cohort revealed a risk of CVD (OR = 1.27, 95% CI = 1.02–
1.58), heart disease (OR = 1.17, 95% CI = 0.90–1.54), and 
stroke (OR = 1.51, 95% CI = 1.09–2.07). Notably, Cum-RC 
was significantly associated with an elevated risk of CVD 
and stroke (P for trend = 0.033 and 0.012, respectively). 
However, the increase in the risk of developing heart dis-
ease was nonsignificant (P for trend = 0.249). Notably, in 
the RCS regression model, a positive linear correlation 

between Cum-RC and CVD risk was observed (P for 
nonlinearity = 0.679) (Fig. 3).

Crude: unadjusted; Model 1: corrected for age, sex, 
education level, marital status and residence; Model 2: 
Model 1 + BMI, smoking status, drinking status, SBP and 
DBP; Model 3: Model 2 + hypertension, dyslipidemia, 
diabetes, lipid-lowering drugs, antihypertensive drugs, 
hypoglycemic drugs, FPG, HbA1c, and UA

Subgroup analysis
In subgroup analyses, an interaction between Cum-RC 
and age as well as hypertension was found (Table  3). 
Among participants who were < 60 years of age, female, 
lived in rural areas, married, had a BMI < 24  kg/m2, did 
not smoke, did not drink alcohol, were not hypertensive, 
had normal lipids, or did not have diabetes, Class 2 was 
associated with a lower risk of CVD (P < 0.05) (Table 3). 
In addition, a subgroup analysis of Cum-RC tertiles was 
performed and did not reveal an interaction between 
Cum-RC and subgroup variables. However, among par-
ticipants who were male, lived in rural areas, smoked, 
drank alcohol, had a BMI < 24  kg/m2 and were free of 
dyslipidemia, the risk of CVD increased with increasing 
Cum-RC (P < 0.05) (Table S2).

Joint lipid exposure analysis based on WQS analysis
An in-depth analysis of TC, LDL, and HDL levels in 
the Cum-RC was performed using the WQS regression 
model. The model assessed the association of cumulative 
TC (Cum-TC), cumulative LDL (Cum-LDL), and cumu-
lative HDL (Cum-HDL) exposures with CVD risk. The 
WQS regression results showed that Cum-TC had the 
highest relative contribution weight (0.652) among the 
three variables, followed by Cum-LDL (Fig. 4). Although 
the effect of the WQS index of mixed lipids of TC, 
LDL, and HDL on CVD incidence was nonsignificant 
(OR = 1.11, 95% CI = 1.00–1.22, P > 0.05), the confidence 
interval did not cross 1, with an overall positive trend 
(Fig. 5).

However, the WQS index of mixed lipids was associ-
ated with heart disease and stroke risk (OR = 1.14, 95% 
CI = 0.99–1.31; OR = 1.05, 95% CI = 0.92–1.21), with con-
fidence intervals spanning 1; moreover, the association 
was not significant. In addition, there was a strong cor-
relation between Cum-TC and the risk of CVD and heart 
disease (P < 0.05) (Fig. 5). Cum-LDL was associated with 
heart disease alone (P < 0.05). In addition, Cum-HDL 
was inversely connected with the risk of CVD and stroke 
(P < 0.05).

Sensitivity analyses
A regression analysis was performed after excluding 
participants with extreme BMI (< 18.5 or > 30  kg/m2) 
and dyslipidemia. The results showed that all outcomes 
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Variables Cum-RC exposure P-value Cum-RC exposure P-
valueTotal Class 1 Class 2 T1

(≤ 57.36)
T2
(57.36–87.52)

T3
(> 87.52)

N 5372 2219 3153 1792 1789 1791
Age, years 58.00 (51.00, 

64.00)
58.00 (53.00, 
64.00)

57.00 (51.00, 
63.00)

< 0.001 58.00 (52.00, 
64.00)

58.00 (52.00, 
65.00)

57.00 (51.00, 
62.00)

< 0.001

Sex, n (%) < 0.001 < 0.001
Male 2468 (45.94) 828 (37.31) 1640 (52.01) 958 (53.46) 808 (45.16) 702 (39.20)

Residence, n (%) 0.380 0.113
Rural 2569 (47.82) 1077 (48.54) 1492 (47.32) 821 (45.81) 872 (48.74) 876 (48.91)
Urban 2803 (52.18) 1142 (51.46) 1661 (52.68) 971 (54.19) 917 (51.26) 915 (51.09)

Education level, 
n (%)

0.002 0.579

No formal 
education

2524 (46.98) 1087 (48.99) 1437 (45.58) 847 (47.27) 846 (47.29) 831 (46.40)

Primary school 1227 (22.84) 519 (23.39) 708 (22.45) 413 (23.05) 412 (23.03) 402 (22.45)
Middle or high 

school
1478 (27.51) 549 (24.74) 929 (29.46) 492 (27.46) 487 (27.22) 499 (27.86)

College or 
above

143 (2.66) 64 (2.88) 79 (2.51) 40 (2.23) 44 (2.46) 59 (3.29)

Marital status, 
n (%)

0.892 0.095

Married 4855 (90.38) 2004 (90.31) 2851 (90.42) 1604 (89.51) 1611 (90.05) 1640 (91.57)
Other 517 (9.62) 215 (9.69) 302 (9.58) 188 (10.49) 178 (9.95) 151 (8.43)

Smoking status, 
n (%)

< 0.001 < 0.001

Yes 2050 (38.16) 700 (31.55) 1350 (42.82) 762 (42.52) 685 (38.29) 603 (33.67)
Drinking status, 
n (%)

0.007 0.176

Yes 1225 (22.80) 465 (20.96) 760 (24.10) 435 (24.28) 400 (22.36) 390 (21.78)
BMI, kg/m2, n (%) < 0.001 < 0.001

18.5–24 2847 (53.00) 1118 (50.38) 1729 (54.84) 1134 (63.28) 993 (55.51) 720 (40.20)
< 18.5 325 (6.05) 116 (5.23) 209 (6.63) 169 (9.43) 106 (5.93) 50 (2.79)
24–28 1590 (29.60) 708 (31.91) 882 (27.97) 393 (21.93) 499 (27.89) 698 (38.97)
> 28 610 (11.36) 277 (12.48) 333 (10.56) 96 (5.36) 191 (10.68) 323 (18.03)

Hypertension, 
n (%)

0.001 < 0.001

Yes 1134 (21.11) 516 (23.25) 618 (19.60) 277 (15.46) 371 (20.74) 486 (27.14)
Dyslipidemia, 
n (%)

0.002 < 0.001

Yes 413 (7.69) 200 (9.01) 213 (6.76) 86 (4.80) 122 (6.82) 205 (11.45)
Diabetes, n (%) 0.633 < 0.001

Yes 255 (4.75) 109 (4.91) 146 (4.63) 56 (3.12) 86 (4.81) 113 (6.31)
Lipid-lowering 
drugs, n (%)

0.282 < 0.001

Yes 228 (4.24) 102 (4.60) 126 (4.00) 44 (2.46) 67 (3.75) 117 (6.53)
Antihypertensive 
drugs, n (%)

< 0.001 < 0.001

Yes 828 (15.41) 389 (17.53) 439 (13.92) 182 (10.16) 280 (15.65) 366 (20.44)
Hypoglycemic 
drugs, n (%)

0.660 < 0.001

Yes 170 (3.16) 73 (3.29) 97 (3.08) 34 (1.90) 60 (3.35) 76 (4.24)
SBP, mmHg 127.30 (115.70, 

141.00)
129.00 (117.00, 
142.30)

126.30 
(114.70, 
140.10)

< 0.001 124.70 (113.30, 
138.60)

128.00 (116.30, 
141.00)

129.90 (117.70, 
143.30)

< 0.001

DBP, mmHg 75.00 (68.06, 
82.67)

75.33 (68.67, 
83.05)

74.37 (67.93, 
82.27)

0.003 73.67 (66.67, 
80.82)

74.88 (68.25, 
82.40)

76.56 (69.67, 
84.67)

< 0.001

Table 1 Baseline characteristics
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Table 2 The association between Cum-RC and CVD incidence status
No. Events (%) Crude P Model 1 P Model 2 P Model 3 P

Cardiovascular disease
Cum-RC

Class 1 315 (14.20) 1 1 1 1
Class 2 354 (11.29) 0.76 (0.65,0.90) 0.001 0.79 (0.67,0.93) 0.004 0.81 (0.68,0.95) 0.011 0.80 (0.68,0.95) 0.011

Cum-RC
≤ 57.36 185 (10.32) 1 1 1 1
57.36–87.52 229 (12.80) 1.28 (1.04,1.57) 0.021 1.26 (1.02,1.55) 0.030 1.20 (0.97,1.47) 0.094 1.18 (0.96,1.45) 0.125
> 87.52 255 (14.24) 1.44 (1.18,1.76) < 0.001 1.45 (1.18,1.78) < 0.001 1.30 (1.05,1.61) 0.015 1.27 (1.02,1.58) 0.032
P for trend < 0.001 < 0.001 0.016 0.033

Heart disease
Cum-RC

Class 1 202 (9.10) 1 1 1 1
Class 2 205 (6.54) 0.76 (0.65,0.90) 0.001 0.80 (0.68,0.95) 0.011 0.73 (0.60,0.90) 0.003 0.75 (0.61,0.92) 0.005

Cum-RC
≤ 57.36 117 (6.53) 1 1 1 1
57.36–87.52 140 (7.83) 1.22 (0.94,1.57) 0.133 1.17 (0.91,1.51) 0.224 1.13 (0.87,1.46) 0.358 1.13 (0.87,1.46) 0.370
> 87.52 150 (8.38) 1.31 (1.02,1.68) 0.036 1.25 (0.97,1.61) 0.085 1.15 (0.88,1.49) 0.307 1.17 (0.90,1.54) 0.245
P for trend 0.037 0.088 0.315 0.249

Stroke
Cum-RC

Class 1 134 (6.04) 1 1 1 1
Class 2 166 (5.30) 0.86 (0.68,1.09) 0.224 0.85 (0.67,1.09) 0.198 0.89 (0.70,1.13) 0.334 0.89 (0.70,1.14) 0.359

Cum-RC
≤ 57.36 75 (4.19) 1 1 1 1
57.36–87.52 101 (5.65) 1.37 (1.01,1.86) 0.044 1.39 (1.02,1.89) 0.036 1.30 (0.95,1.77) 0.098 1.27 (0.93,1.74) 0.132
> 87.52 124 (6.92) 1.70 (1.27,2.29) < 0.001 1.84 (1.37,2.48) < 0.001 1.61 (1.18,2.19) 0.003 1.51 (1.09,2.07) 0.012
P for trend < 0.001 < 0.001 0.003 0.012

Variables Cum-RC exposure P-value Cum-RC exposure P-
valueTotal Class 1 Class 2 T1

(≤ 57.36)
T2
(57.36–87.52)

T3
(> 87.52)

FPG 102.40 (94.50, 
112.50)

103.70 (95.76, 
113.40)

101.30 (93.96, 
111.60)

< 0.001 99.72 (92.88, 
107.60)

101.30 (93.96, 
110.50)

106.70 (98.01, 
120.40)

< 0.001

HbA1c, % 5.10 (4.90, 5.40) 5.20 (4.90, 5.50) 5.10 (4.80, 
5.40)

< 0.001 5.10 (4.80, 5.30) 5.10 (4.90, 5.40) 5.20 (4.90, 5.50) < 0.001

UA, mg/dL 4.23 (3.52, 5.07) 4.30 (3.57, 5.15) 4.18 (3.49, 
5.01)

< 0.001 4.05 (3.42, 4.80) 4.21 (3.49, 5.04) 4.43 (3.69, 5.34) < 0.001

TC2012, mg/dL 190.60 (167.40, 
214.90)

219.60 (204.10, 
240.50)

171.70 
(155.80, 
187.10)

< 0.001 178.60 (158.50, 
202.20)

189.80 (168.20, 
212.20)

202.60 (178.00, 
230.60)

< 0.001

HDL2012, mg/dL 49.48 (40.21, 
59.92)

51.80 (42.91, 
62.24)

47.94 (38.66, 
57.99)

< 0.001 56.44 (48.61, 
67.27)

50.64 (42.91, 
59.92)

40.98 (34.02, 
49.10)

< 0.001

LDL2012, mg/dL 114.00 (93.56, 
136.90)

141.50 (126.40, 
158.50)

98.58 (83.12, 
112.90)

< 0.001 110.60 (92.78, 
130.30)

116.00 (96.26, 
137.60)

116.00 (91.24, 
143.00)

< 0.001

RC2012, mg/dL 19.72 (11.60, 
32.09)

22.04 (12.76, 
34.02)

18.56 (10.82, 
30.54)

< 0.001 10.05 (6.57, 
13.53)

20.49 (15.46, 
25.90)

39.43 (29.00, 
53.74)

< 0.001

RC2015, mg/dL 25.87 (19.69, 
35.91)

29.73 (22.39, 
39.96)

23.94 (18.15, 
32.05)

< 0.001 18.92 (15.44, 
22.39)

26.25 (21.62, 
31.27)

41.31 (32.05, 
53.28)

< 0.001

Cumulative RC, 
mg/dL × years

70.13 (51.55, 
100.30)

78.82 (57.94, 
108.90)

65.06 (47.51, 
92.71)

< 0.001 45.20 (37.67, 
51.55)

70.13 (63.74, 
77.67)

119.40 (100.30, 
152.40)

< 0.001

Table 1 (continued) 
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remained virtually unchanged after excluding these par-
ticipants. A statistically significant (P < 0.05) correlation 
was shown between high Cum-RC and increased CVD 
risk in both the clustered and tertile groups. Similarly, 
Class 2 patients had a significantly lower risk of heart 
disease than Class 1 patients (P < 0.05). The T3 group 
exhibited a significantly higher risk of stroke (P < 0.05) 
compared to the T1 group (Tables S3). However, no 

significant alteration in the risk of heart disease was 
observed (P > 0.05) (Table S4).

Discussion
The present investigation examined the relationship 
between Cum-RC and CVD risk by utilizing two distinct 
statistical analysis models. Cum-RC exhibited an inde-
pendent association with CVD risk among individuals 
aged 45 years and older in the CHARLS database. The 
WQS model demonstrated a mixed effect of combined 
TC, LDL, and HDL exposures on outcomes, and the 
WQS index tended to correlate positively with the risk of 
CVD, with TC contributing the most.

Ideal lipid levels are essential for reducing cardiovas-
cular-related risks. Currently, LDL is the primary target 
for assessing and treating atherosclerotic cardiovascular 

Table 3 Subgroup analysis based on clustering results
Subgroup N Cum-RC, OR (95%CI) P value Pinteraction

Class 
1

Class 2

Age 0.047
< 60 3145 1 0.69 (0.54, 0.87) 0.002
≥ 60 2227 1 1.00 (0.78, 1.28) 0.993

Sex 0.676
Male 2468 1 0.85 (0.66, 1.11) 0.227
Female 2904 1 0.78 (0.63, 0.98) 0.034

Residence 0.108
Rural 2569 1 0.74 (0.58, 0.94) 0.013
Urban 2803 1 0.88 (0.70, 1.12) 0.311

Marital status 0.548
Married 4855 1 0.81 (0.67, 0.96) 0.016
Other 517 1 0.85 (0.48, 1.50) 0.570

Smoke 0.243
Yes 2050 1 0.92 (0.70, 1.22) 0.563
Never 3322 1 0.74 (0.60, 0.91) 0.006

Drink 0.624
Yes 1225 1 0.85 (0.60, 1.21) 0.363
Never 4147 1 0.79 (0.65, 0.96) 0.019

BMI 0.566
< 24 3172 1 0.78 (0.62, 0.98) 0.035
≥ 24 2200 1 0.84 (0.66, 1.08) 0.170

Hypertension 0.002
Yes 1134 1 1.24 (0.91, 1.69) 0.182
Never 4238 1 0.67 (0.55, 0.82) < 0.001

Dyslipidemia 0.255
Yes 413 1 1.13 (0.66, 1.91) 0.663
Never 4959 1 0.79 (0.66, 0.94) 0.009

Diabetes 0.650
Yes 255 1 1.22 (0.59, 2.51) 0.592
Never 5117 1 0.79 (0.67, 0.94) 0.008

In multivariate models, potential confounders other than grouping variables 
were adjusted for, including age, sex, education level, marital status, residence, 
BMI, smoking status, drinking status, SBP, DBP, hypertension, dyslipidemia, 
diabetes, lipid-lowering drugs, antihypertensive drugs, hypoglycemic drugs, 
FPG, HbA1c, and UA

Fig. 4 Estimated weights of the three lipids for CVD. We adjusted for age, 
sex, education level, marital status, residence, BMI, smoking status, drink-
ing status, SBP, DBP, hypertension, dyslipidemia, diabetes, lipid-lowering 
drugs, antihypertensive drugs, hypoglycemic drugs, FPG, HbA1c, and UA

 

Fig. 3 Linear associations between Cum-RC and CVD incidence. We 
adjusted for potential confounders, including age, sex, education level, 
marital status, residence, BMI, smoking status, drinking status, SBP, DBP, hy-
pertension, dyslipidemia, diabetes, lipid-lowering drugs, antihypertensive 
drugs, hypoglycemic drugs, FPG, HbA1c, and UA

 



Page 9 of 12Zhao et al. Lipids in Health and Disease           (2024) 23:19 

disease (ASCVD) risk, whereas non-HDL-C or apolipo-
protein B (Apo B) are considered secondary targets [26, 
27]. Although LDL is a common biomarker used to assess 
the reduction in ASCVD risk, RC has attracted increas-
ing amounts of attention in recent years due to its poten-
tial to trigger endothelial damage and atherosclerosis 
with less modification than LDL [28].

Many recent studies have shown that RC has a substan-
tial impact on CVD risk and prognostic outcomes [13, 
29–31]. The results of this analysis suggested that lower 
Cum-RC was linked to a lower risk of CVD. When con-
sidering LDL, however, there was no such correlation. 
These results are consistent with those of prior research 
[32, 33]. A cohort study of Spanish older adults revealed 
that cardiovascular outcomes were associated with TG 
and RC levels but not with LDL [32]. These results were 
further confirmed by a substantial prospective cohort 
study performed in Canada [33]. Furthermore, a Korean 
cohort study showed that RC had a marginally greater 
impact on CVD incidence than LDL and that high RC in 
combination with LDL posed a greater risk of CVD than 
either indication alone [34]. A recent Chinese longitudi-
nal cohort study also revealed that RC was more inde-
pendently linked with atherosclerosis progression than 
was LDL [35]. All these studies provide evidence that RC 
has a bearing on CVD incidence and suggest that com-
bining RC/RC with LDL may be superior to LDL alone 
as an early assessment tool for CVD incidence. There-
fore, RC is hypothesized to potentially become one of 
the primary targets for lipid-lowering treatments. Recent 
ASCVD prevention guidelines also recommend using 
non-HDL rather than LDL alone [26, 36]. Multiple meta-
analyses [37, 38] have underscored the significance of 

incorporating RC as a potential biomarker in the evalu-
ation and prediction of CVD risk and adverse cardio-
vascular events. Prior studies have indicated a positive 
association between elevated RC and an elevated risk of 
ASCVD in diabetic patients [39].

However, this study revealed no evidence of a link 
between Cum-RC and CVD risk in diabetes patients fol-
lowing stratified analysis. The inconsistency between 
the results of these two studies may be related to factors 
such as differences in definitions of exposures and out-
comes and the national and ethnic heterogeneity of the 
study populations. In addition, adjustment for glucose-
lowering medications may have been an influential fac-
tor. Importantly, in the subgroup analyses of Cum-RC 
data based on tertile groupings, there was no evidence of 
a connection between Cum-RC and CVD risk in either 
the hypertension cohort or the nonhypertensive popu-
lation. A study from the CHARLS cohort showed a sig-
nificant effect of increased RC on CVD incidence in the 
hypertensive population. However, no such association 
was observed among the group without hypertension 
[40]. That study used only a single measurement of RC, 
which may be the main reason for its inconsistency with 
the results of the present study. Finally, in the subgroup 
analysis based on clustered grouped data, in the nonhy-
pertensive population, CVD risk was significantly lower 
in the low-level slow-growth RC group (Class 2) than in 
the high-level fast-growth RC group (Class 1) (P < 0.001). 
The difference in results was strongly associated with the 
grouping method. A likely explanation is that cluster-
ing models can combine multiple variables and group 
datasets at multiple time points and dimensions to bet-
ter understand each subgroup’s characteristics and 

Fig. 5 WQS modeling to analyze the association between combined exposure to three lipids and CVD risk. We adjusted for age, sex, education level, 
marital status, residence, BMI, smoking status, drinking status, SBP, DBP, hypertension, dyslipidemia, diabetes, lipid-lowering drugs, antihypertensive drugs, 
hypoglycemic drugs, FPG, HbA1c, and UA

 



Page 10 of 12Zhao et al. Lipids in Health and Disease           (2024) 23:19 

differences. In contrast, considering only one variable, 
RC, and dividing the intervals according to quartiles did 
not characterize each subgroup.

RC represents the cholesterol composition within TRLs 
[41]. There are several explanations for the mechanism 
by which RC contributes to ASCVD. First, RC can reach 
the arterial intima at a slower rate than LDL [42]. After 
some TG are broken down, cholesterol builds up in the 
intima, leading to plaque formation and the development 
of ASCVD [43]. Second, RC is the major oxidized lipo-
protein in plasma and does not require oxidation in vitro 
but can be as pro-inflammatory and pro-ASCVD as LDL 
[44]. In addition, RC can cause low-grade inflammation 
[45]. The underlying mechanism may be because lipid 
lipases on the surface of RC residues lead to the release 
of free fatty acids, monoacylglycerols, and other mol-
ecules, all of which may contribute to localized damage 
and inflammation [46]. High levels of RC may be associ-
ated with arterial wall inflammation following endothe-
lial injury, and persistent inflammatory stimuli may lead 
to hyperproliferation of vascular smooth muscle cells and 
neointimal hyperplasia [45, 47].

Strengths and limitations
This study has several advantages. First, compared with 
previous RC-CVD association studies in which only 
single measurements were performed, the study used 
cumulative exposures for the analysis, thus increasing 
the reliability of the findings. Second, the WQS joint 
exposure model was created to assess complex human 
exposure patterns and actual exposure levels. The WQS 
model can evaluate the combined impact of several lipid 
components on CVD incidence risk and assign a relative 
importance weight to each lipid. It is more sensitive than 
single lipid models for identifying risk factors.

Several limitations should be acknowledged in this 
study. First, the study used calculated RC levels rather 
than direct measurements due to database limitations. 
Although calculated RC concentrations may introduce a 
degree of bias, it has been shown that calculated RC con-
centrations correlate well with direct measurements [48]. 
Moreover, the European Atherosclerosis Society Con-
sensus Statement advocates for the combined utilization 
of directly measured and calculated RC data in clinical 
practice [46]. Currently, indirect computation methods 
are commonly employed in most studies because of their 
economic convenience and time efficiency [13, 32, 49]. 
Second, because individuals without complete TC, LDL, 
or HDL data were excluded, selection bias may have 
been introduced, whereby missing data are associated 
with specific characteristics that are also associated with 
study outcomes. This could lead to underestimation or 
overestimation of true associations. In addition, there 
may be information bias due to incomplete or inaccurate 

data, which can affect the precision of the estimates and 
potentially distort the observed relationships between 
variables. Third, because only two blood tests were per-
formed, more detailed information on the development 
of RC levels could not be obtained. Fourth, caution 
should be exercised when extrapolating the results of this 
study, as it exclusively involved participants aged 45 years 
and older from the Chinese population.

Conclusion
The study revealed a noteworthy association between 
elevated RC levels and heightened CVD risk among mid-
dle-aged and elderly individuals in the Chinese popula-
tion. Specifically, the Class 1 group - characterized by a 
high level of rapidly increasing RC - exhibited a consid-
erably heightened susceptibility to developing CVD. This 
study posited Cum-RC as a potential predictor of CVD 
risk, based on the observed outcomes. Aggressive RC 
interventions and more frequent cardiovascular monitor-
ing appear to be necessary for high-risk patients.
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