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[2]. Pertinent cytokines and adipokines, such as leptin 
and adiponectin, have the potential to influence altera-
tions in cytokines, including Th1 and Th2 cytokines, as 
well as inflammatory cells. This is believed to be a cru-
cial mechanism by which obesity exacerbates asthma. 
The prevalence of obese asthmatic patients has risen 
markedly in recent years, with a significant proportion 
of these individuals experiencing more severe symptoms 
than those with typical asthma [3]. Unfortunately, the 
systemic inhalation of high-concentration cortisol and 
other medications has proven to be insufficient for effec-
tively controlling obese asthma, indicating that current 
asthma treatment approaches may not be suitable for this 
patient population [4]. As such, exploring the underlying 
connection between obesity and asthma and implement-
ing targeted weight reduction strategies could potentially 
serve as an effective means of treating obese asthma.

The transient receptor potential (TRP) channel, a type 
of channel protein, is extensively distributed throughout 
the central nervous system and the non-nervous system. 
It plays a crucial role in regulating temperature, pres-
sure, and vision, as well as modulating the Ca2+ plasma 
signal. TRP channels are categorized into seven distinct 

Introduction
Asthma, a chronic respiratory ailment, has become a 
pressing global health issue. In 2019, the prevalence of 
asthma among individuals aged 20 and over in China 
reached 4.2%, amounting to 45.7 million affected people. 
Generally, asthma is classified into various phenotypes, 
such as allergic asthma, late-onset asthma, and obesity-
related asthma, allowing for personalized treatment 
approaches to achieve optimal therapeutic outcomes [1]. 
Among these, obesity-related asthma has garnered sig-
nificant attention. Pertinent research indicates that obe-
sity is a crucial factor in asthma, as alterations in adipose 
tissue function in patients with obesity-related asthma 
can trigger a systemic inflammatory state and a surge in 
both anti-inflammatory and pro-inflammatory cytokines 
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Abstract
Globally, obesity and asthma pose significant health challenges, with obesity being a key factor influencing asthma. 
Despite this, effective treatments for obese asthma, a distinct phenotype, remain elusive. Since the discovery of 
transient receptor potential (TRP) channels in 1969, their value as therapeutic targets for various diseases has been 
acknowledged. TRP channels, present in adipose tissue cells, influence fat cell heat production and the secretion of 
adipokines and cytokines, which are closely associated with asthma and obesity. This paper aims to investigate the 
mechanisms by which obesity exacerbates asthma-related inflammation and suggests that targeting TRP channels 
in adipose tissue could potentially suppress obese asthma and offer novel insights into its treatment.
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subfamilies: TRPC (classical), TRPV (vanilloid), TRPM 
(melastatin), TRPN (NOMPC-like), TRPA (ankyrin), 
TRPP (polycystin), and TRPML (mucolipin) [5]. Due 
to their widespread presence in various cells and their 
marked responsiveness to diverse stimuli, TRP chan-
nels have emerged as a focal point in targeted therapy 
research [6].

TRP channels are present in adipose tissue and are 
particularly abundant in immune cells. These channels 
are responsible for controlling fundamental heat produc-
tion processes, as well as the secretion of cytokines and 
inflammatory factors. Consequently, our research is cen-
tred on TRP channels within adipose tissue. Through in-
depth analysis, we discovered that cold exposure and ion 
signalling can modulate adipose tissue heat production 
via TRP channels [7]. The advantage of treating obese 
asthma through the TRP channel lies in starting from 
the inflammatory mechanism of obesity-induced asthma, 
rather than simply treating asthma. Compared to oth-
ers, the TRP channel approach fundamentally improves 
obese asthma and provides new ideas for future drug 
development. Furthermore, by regulating TRP channels 
in immune cells, we may potentially curb obesity and 
alleviate symptoms in obese patients with asthma at their 
source. This approach could bridge the gap in current 
obese asthma treatment strategies and offer an innova-
tive target for the evolution of therapeutic drugs.

Introduction to obese asthma
Obesity and asthma, two pervasive diseases, exist both 
independently and interconnectedly. There is a discern-
ible pattern that asthma is more prevalent within the 
obese population, with a significant percentage of people 
living with asthma also classified as obese. Numerous 
meta-analyses and cross-sectional studies corroborate 
the fact that obesity correlates with an over 50% increase 
in asthma prevalence in children. In addition, the preva-
lence rates among lean adults and obese adults stand 
at 7.1% and 11.1%, respectively, signifying the sever-
ity among obese individuals. Moreover, asthma of this 
nature is more challenging to control [1, 8], engenders 
higher treatment costs, and generally results in subpar 
treatment outcomes [9, 10].

A comprehensive cross-trait genome-wide association 
study involving 457,822 individuals established a sub-
stantial positive genetic correlation between obesity and 
late-onset asthma (defined by the age of onset of asthma) 
in subjects aged 16 years and above. A cross-trait meta-
analysis identified 34 common loci amid three obesity-
related traits and two asthma subtypes, providing robust 
support for the relationship between obesity and asthma 
[11].

In 2000, the severe asthma study (SARP) first employed 
the term “phenotype” for asthma categorization, a critical 

aspect of personalised clinical treatment [12]. Since then, 
“obese asthma” has been recognized as a distinct asthma 
phenotype, sparking several interrelated studies examin-
ing the mechanisms behind obesity-induced asthma and 
effective treatment strategies.

One significant investigation explored the aftermath 
of weight loss surgery in asthmatic patients. They dis-
covered that post-surgery asthma improvements were 
associated with a marked reduction in the relative abun-
dance of fecal matter, laxospirochetes, rosella, and verona 
(FLVR) in the gut flora and the prevalence of Streptococ-
cus pneumoniae, Haemophilus influenzae, and Moraxella 
catarrhalis in the respiratory tract. The governing mech-
anism primarily entailed the induction of neutrophil-
related inflammation and the eradication of allergenic 
effects to alleviate asthma symptoms. Moreover, weight 
loss surgery has demonstrated improvements in adipose 
tissue dysfunction in obese patients [13, 14].

In a prospective study of 14 asthmatic patients follow-
ing bariatric surgery, there was a reduction in the usage 
of inhaled steroids, with the median equivalent dose of 
beclomethasone decreasing from 460  μg at baseline to 
218 μg one year after surgery [15].

As for the genesis of obesity-induced asthma, apart 
from considering factors such as obesity’s impact on lung 
function and mechanics, the alteration of airway diam-
eter, decrements in airflow, and shifts towards a proco-
agulant airway state [16], we should also regard obesity as 
a systemic low-grade inflammatory disease. The systemic 
inflammatory response triggered by obesity may be a sig-
nificant contributor to the development of asthma [17, 
18].

Mechanism of obese asthma
The tight connection between obesity, obese asthma, 
and adipose tissue is well established [19]. Adipose tis-
sues in mammals can be broadly divided into two cat-
egories: white adipose tissue (WAT) and brown adipose 
tissue (BAT) [20]. The primary role of WAT is to store 
surplus energy within the body as triglycerides. Previ-
ously, it was inferred from early studies that BAT was 
predominantly present in rodents and newborns [21], 
with a rare occurrence in adults and seemingly no direct 
correlation with caloric combustion. However, a sequen-
tial 18 F-fluorodeoxyglucose (18 F-FDG) positron emis-
sion tomography and computed tomography (PET-CT) 
study revealed a considerable amount of BAT in adults, 
specifically from the neck to the chest. This finding lends 
credence to the important role BAT plays in energy 
expenditure and fat conversion. Consequently, this sug-
gests that BAT has a significant relationship with obesity 
and holds the potential for obesity treatment [22]. BAT’s 
functionality comprises the dissolution of oxidative phos-
phorus in the mitochondrial oxidative respiratory chain 
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via a mitochondrial protein called uncoupling protein 1 
(UCP1). This process inhibits the synthesis of adenos-
ine triphosphate (ATP) while converting electrochemi-
cal energy into heat [23, 24], thereby serving to release 
energy and generate heat.

In obese patients, adipose tissue is involved in energy 
consumption and fat conversion. As weight increases, 
the adipose tissue itself responds to inflammatory cells 
and stimuli, releasing more adipokines through activated 
white blood cells and other mediators [25]. Due to the 
presence of neutrophil inflammation and the increased 
inflammatory response caused by AT, obese asthma 
patients often develop more severe asthma [26]. Accord-
ing to previous studies, obese subjects with asthma have 
more leptin and less adiponectin than those with asthma. 
In asthma patients, leptin induces inflammation of lung 
fibroblasts by enhancing the production of further pro-
inflammatory chemokines and cytokines. When patients 
develop leptin resistance, these factors seem to be inhib-
ited to some extent [27, 28]. In contrast, adiponectin can 
have anti-inflammatory effects in airway cells by promot-
ing the release of anti-inflammatory cytokine IL-10 and 
inhibiting airway inflammation. Immune cells around 
adipose tissue, especially macrophages, secrete Tumor 
necrosis factor (TNF) and IL-1β. Changes in the number 
of cytokines that reach the lungs through blood circula-
tion can play a pro-inflammatory role, causing airway 
hyperresponsiveness and ultimately leading to airway 
inflammation, leading to asthma. Therefore, how to con-
trol the production of cytokines and whether there are 
targets for adipose tissue and immune cells to regulate 
their production of cytokines may become a noteworthy 
part of controlling the onset of obese asthma [27].

Obese asthma classification
In addressing obese asthma, unveiling the mechanisms 
through which obesity culminates in asthma is criti-
cal. Obese asthma can largely be divided into two phe-
notypes: one is dyspnea resulting from the collapse of 
pulmonary airways and trachea due to obesity, and the 
other mirrors allergic asthma associated with immune 
system disorders induced by obesity. Just as with asthma, 
obesity—which is a chronic inflammatory disease—can 
instigate a state known as “meta-inflammation” through-
out the body [29]. Particularly significant is the role adi-
pose tissue, specifically BAT, plays in relation to asthma 
inflammation [30]. BAT not only produces a multitude 
of cytokines but also influences the production of adipo-
kines. This suggests that inflammation may potentially 
serve as a key nexus between obesity and asthma.

Related immune cells
Adipose tissue houses an abundance of immune cells that 
both influence and interact with its inflammatory state. 

Among these, macrophages play a pivotal role [31]. In the 
ensuing discussion. We will delve into the mechanisms 
by which macrophages partake in the inflammatory pro-
cesses within adipose tissue, as well as their links to obe-
sity and asthma. Furthermore, we will shed light on the 
functions of other immune cells and delineate their inter-
actions with macrophages.

Macrophages Macrophages are bifurcated into M1 and 
M2 subtypes [32], existing across a spectrum and with 
most macrophages occupying an intermediate state [33]. 
In individuals with normal body weight, the resident mac-
rophages in BAT are predominantly of the M2 subtype. 
An accumulation of M2 macrophages aids in reducing 
inflammation in adipose tissue. However, in obese indi-
viduals, BAT is infiltrated by an influx of M1 macrophages 
due to a sustained inflammatory state [34, 35]. M2 macro-
phages secrete the cytokine IL-10, which helps attenuate 
inflammation and maintain the metabolic homeostasis of 
adipose tissue. In contrast, M1 macrophages in the adi-
pose tissue of obese individuals release pro-inflammatory 
cytokines, such as IL-17 and IFN-γ, thereby escalating 
inflammatory responses [36]. Relevant research, con-
ducted by processing the adipose tissue of obese adult 
patients after weight-loss surgery and quantifying M1 and 
M2 macrophages using flow cytometry, found that the 
M1 macrophage content was higher in the adipose tissue 
of obese asthma patients. Moreover, it was observed that 
disease severity in obese asthma patients directly corre-
lated with the percentage of M1 macrophages present in 
adipose tissue, highlighting the inflammatory relation-
ship between macrophages and obese asthma [37]. Given 
the experiment’s limited sample size and the observation 
that obesity has a more pronounced impact on asthma 
in women than in men, we postulate that increasing the 
sample size and controlling for gender disparities may 
yield even more compelling results.

Numerous infiltrating macrophages commonly con-
verge around inflamed BAT, leading BAT to curtail 
thermogenesis and activate mitochondrial uncoupling 
protein 1 (UCP1) [38]. Classically activated M1 macro-
phages release high levels of pro-inflammatory cytokines, 
including TNF-α, MCP-1, IL-6, and IL-1β. Conversely, 
alternatively activated M2 macrophages generate anti-
inflammatory cytokines, such as interleukin 4 (IL-4) [39]. 
Adipose tissue abnormalities in obese patients trigger 
the dysregulated secretion of several substances, includ-
ing IL-6, TNF-α, MCP-1 [40], and an array of adipokines, 
such as leptin and adiponectin (ADPN) [17]. The air-
way inflammation present in most asthmatic patients is 
linked with an increase in Th-2 type cytokines, leading 
to eosinophil accumulation within the airway wall and 
the subsequent overproduction of mucus. This process 
results in severe airway inflammation [41, 42]. Many of 
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these factors are complicit in driving airway inflamma-
tion associated with obesity and asthma.

Other immune cells In addition to macrophages, other 
immune cells participate in the inflammatory process in 
obese asthma. On the one hand, they act alone; on the 
other hand, they interact with macrophages [43]. There 
is also a state called obesity-associated inflammation in 
obese tissue, which causes immune cells in obese tissue to 
aggregate and release multiple pro-inflammatory factors.

One of these immune cells is mast cells (MCs), which 
are also innate immune cells that are widely distributed 
in adipose tissue. They originate from CD34+, CD13+, 
and CD17+ pluripotent hematopoietic stem cells and 
are related to macrophages [44]. MCs are mainly dis-
tributed between adipocytes and near blood vessels. 
Reducing MCs can help inhibit the infiltration of M1 
macrophages and reduce the pro-inflammatory cytokines 
TNF-α and MCP-1 and other substances that can allevi-
ate the inflammatory state of adipose tissue cells [45]. In 
addition, MCs are directly related to adipose tissue heat 
production by promoting the generation of adipose tissue 
cells. The increase in MCs is accompanied by the increase 
in serum proteases, which inhibit the expression of adi-
ponectin and have a negative effect on the heat produc-
tion of adipose tissue [46]. These findings indicate that 
MCs not only interact with macrophages but also partici-
pate in the inflammatory mechanism of obesity alone.

The presence and function of ILC2 in adipose tissue 
are regulated by IL-33. ILC2 secretes IL-5 and IL-13 to 
maintain the normal level of eosinophils in adipose tis-
sue, which is essential for normal heat production [47]. 
In obese mice, a reduced level of IL-33 leads to a lower 
expression of ILC2. IL-5 is a key cytokine for ILC2 and is 
responsible for sustaining the eosinophil and M2 popu-
lations that contribute to adipose tissue thermogenesis 
[48]. It has been suggested that stimulating eosinophils 
and M2 through the ILC2-IL-5 axis may be effective in 
counteracting adipose tissue inflammation, as eosino-
phils can prevent obesity and insulin resistance [49]. This 
demonstrates the importance of ILC2 in adipose tissue.

T cells can produce inflammatory factors, such as 
interferon-γ (IFN-γ), to modulate the inflammation of 
adipose tissue. The most crucial role of various T cells 
is to regulate obesity inflammation by affecting macro-
phages. Inflammatory T cells, such as Th1 and Th17, can 
release IFN-γ and IL-17 to activate pro-inflammatory 
macrophages [50]. On the other hand, anti-inflammatory 
T cells, such as Th2 and Foxp3 + Treg, can induce mac-
rophages to differentiate into anti-inflammatory macro-
phages by secreting IL-4 and IL-13 [51].

A study using mice with a transgenic that encodes 
Cre-rominase under the control of the NK cell-specific 
NKP46 promoter and a transgena that allows diphtheria 

toxin (DT)-mediated depletion of Cre-expressing cells 
found that NK cell parting was associated with reduced 
macrophage infiltration in visceral adipose tissue and 
that NK cell emptying could improve the insulin sensi-
tivity of obese mice [52]. In addition, adipocyte-derived 
ligands for NK cell-activating receptors (NCR1) can stim-
ulate NK cell proliferation and IFN-γ production, which 
improves ATM activation and insulin resistance in obe-
sity [53].

It can be found in various immune cells that the inflam-
matory process of obese asthma is closely relevant to 
adipokines and cytokines. Among various factors, leptin, 
adiponectin, and several cytokines contribute to the 
inflammatory process of obesity and asthma and are 
regulated by or affect the function of immune cells. They 
may be involved in the mechanism of obesity and asthma, 
which is of discussion value.

ADPN and leptin
The inflammatory state induced by obesity affects the 
secretion of adipokines by adipose tissue. Leptin and adi-
ponectin are also involved in airway hyperresponsiveness 
and inflammation. Leptin can aggravate airway hyper-
responsiveness, while adiponectin can alleviate it [43]. 
Therefore, they deserve more attention.

ADPN is a 244-amino acid protein secreted by adipose 
tissue and widely expressed in various cell types, includ-
ing human and mouse osteoblasts, liver cells, muscle 
cells, epithelial cells, and placental tissue. In adipocytes, 
ADPN increases glucose uptake and stimulates fatty 
acid oxidation [54]. Obese patients have reduced ADPN 
secretion from adipose tissue. Adiponectin can induce 
lung macrophages to produce IL-4 and increase the 
expression of TNF-α, IL-6, and IL-12, which play pro-
inflammatory roles. In human monocyte-derived mac-
rophages, transcriptome analysis shows that adiponectin 
promotes the differentiation of M1. The effect of adipo-
nectin on monocyte-macrophage cytokine production 
has been demonstrated in unstimulated or (Lipopolysac-
charide) LPS-stimulated preparations, which play pro-
inflammatory roles [55].

Leptin is a 167-amino acid protein mainly produced 
by adipocytes and macrophages in adipose tissue. It can 
promote triglyceride breakdown, inhibit fatty acid syn-
thase expression, and exert significant pro-inflammatory 
effects. Leptin-deficient mice have reduced allergic air-
way inflammation symptoms, and asthmatic patients 
have serum leptin levels that are generally 50% higher 
than those of non-asthmatic patients [56]. Leptin-treated 
macrophages may accumulate lipid droplets, which may 
facilitate macrophage inflammation. In addition, leptin 
can enhance macrophage activation induced by LPS and 
IL-4, and activated macrophages in adipose tissue can 
release TNF-α and IL-6, which can interfere with insulin 
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signalling in adipocytes, disrupt glucose metabolism, 
impair immune metabolism, and cause systemic low-
grade inflammation in obese patients [57]. Leptin has 
structural similarities with cytokines, such as IL-6 and 
IL-11, which suggests that leptin may have immunomod-
ulatory effects [42]. Leptin can stimulate the secretion 
of pro-inflammatory cytokines, such as TNF-α and IL-6 
[58].

Besides the traditional adipokines, some newly discov-
ered adipokines such as omentin [59], a novel hydrophilic 
adipokine, have an inverse correlation with obesity and a 
positive correlation with ADPN levels. One study found 
that omentin mRNA increased 9.5-fold in airway epithe-
lial cells in asthmatic patients [60], and they hypothesized 
that omentin may be involved in asthma-induced airway 
inflammation, airway hyperresponsiveness, and mucus 
overproduction.

Adipose factors are produced by AT and take part in 
airway inflammation. The secretion of these adipose fac-
tors is related to obesity. If obesity can be suppressed and 
inflammation in adipose tissue can be reduced by acti-
vating some channels in adipose tissue and surrounding 
cells, it is possible to control the secretion of adipose fac-
tors, thereby inhibiting obese asthma.

Th2-type cytokines
Th2-type cytokines are involved in the pathogenesis of 
airway inflammatory diseases such as asthma. The most 
prominent are IL-4, IL-5, IL-6, IL-10, and IL-33 [17, 41, 
61]. IL-4, produced by ILC2 cells and eosinophils [35], 
induces the expression of two anti-inflammatory cyto-
kines by M2, TGF-β, and IL-10 [62]. IL-4 helps maintain 
the stability of M2 macrophage numbers in adipose tis-
sue. Transforming growth factor-β (TGF-β) and IL-10 
preserve the insulin sensitivity of adipocytes and regulate 
the energy expenditure by adipocytes. TGF-β also inhib-
its adipogenesis [63]. The level of IL-5 in the sputum of 
obese asthmatics was significantly higher than that of 
leaner asthmatics, suggesting that the amount of IL-5 
cytokines is associated with obese asthma.

IL-6 has been shown to be linked to obese asthma. One 
study observed a significant relationship between IL-6 
at baseline and the risk of asthma exacerbations requir-
ing systemic corticosteroid therapy. For each quartile 
increase in serum IL-6, the risk of experiencing at least 
one acute exacerbation increased by 24%. Individuals 
with increased IL-6 levels have reduced lung function 
and an increased risk of exacerbations, and IL-6 increases 
with an increasing BMI [64]. It may also be related to a 
new asthma phenotype, which is identified and charac-
terized by IL-6TS-specific epithelial gene markers rather 
than type 2 (T2) inflammation in the lung epithelium 
[65]. Similar to IL-5, obese asthmatics have higher levels 
of IL-6 in the peripheral blood than regular asthmatics. 

In humans, IL-33 can counteract excessive inflamma-
tion in AT by targeting immune cells that express ST2 
receptors, but low serum IL-33 levels often accompany 
a high BMI. The two isoforms of ST2 identified so far 
are the full-length receptor (ST21) and the soluble ST2 
(Sst2). Sst2 acts as a decoy receptor and can block IL-33 
signalling [66]. Related studies have found increased 
obesity and worsened metabolic profiles in mice lacking 
ST2 or IL-33. IL-33 triggers the expansion of a subset 
of Fox3 + ST2 + T cells while attenuating adipose tissue 
inflammation [67]. IL-33 can activate eosinophils and 
maintain the stability of M2 macrophages, which can 
secrete IL-10, a cytokine that helps dampen inflamma-
tion and maintain metabolic homeostasis in adipose tis-
sue. ILC2 cells can produce IL-5, a cytokine necessary for 
eosinophil expansion and survival. IL-33 is a key inducer 
of ILC2, and ILC2 in WAT can promote WAT browning 
and help prevent obesity development. However, its spe-
cific mechanism still requires further research.

It is clear that there is a connection between adipo-
kines and cytokines, and the effect of adipokines varies 
in different macrophages. ADPN induces the expression 
of pro-inflammatory cytokines (IL-6, TNF-α, and IL-12) 
in M1, while in M2, it induces IL-10 and IL-1 receptor 
antagonists [68]. Leptin can support the proliferation and 
survival of ILC2 and Th2 cells, stimulating the produc-
tion of IL-4, IL-5, and IL-13. Its interaction with IL-33 
can also enhance airway inflammation and induce obe-
sity and asthma [69].

Obese asthmatics are of interest mainly because they 
do not respond well to conventional treatments for 
asthma [70, 71] or because these treatments have some 
therapeutic risks. Some studies have detected increased 
biomarkers of glucocorticoid (GC) insensitivity in 
the lungs and peripheral blood of overweight asthma 
patients, making inhaled glucocorticoid therapy ineffec-
tive for treating obese asthma patients. Some therapies 
aimed at weight loss, such as exercise, diet control, and 
other interventions [14, 72], can achieve weight loss [73], 
but they are slow and long lasting. Therefore, more direct 
therapies are required [74]. Bariatric surgery is more 
promising, as it can lower airway inflammatory markers 
and enhance lung function [75] as a potential treatment 
for obese asthma, but it is not suitable for widespread use 
and clinical trials due to the small sample size and lack 
of control groups in relevant trials. Some pharmacologi-
cal treatments are also attracting attention, such as the 
use of antidiabetic drugs: metformin and glucagon-like 
peptide 1 agonists can reduce obesity and inflammation 
[76] and are also regarded as a possible way to treat obese 
asthma, but their effect is not significant. Vitamin D has 
been shown to be related to both obesity and asthma, and 
vitamin D supplementation has a therapeutic effect in 
children with obese asthma [77].



Page 6 of 14Zhu et al. Lipids in Health and Disease           (2024) 23:49 

Some of the potentially effective treatments for obese 
asthma have limitations, and side effects and complica-
tions may limit their use, in addition to the fact that most 
patients with obese asthma are severely ill. The high cost 
is also a real factor to consider. Thus, we need to find a 
more targeted treatment for obese asthma [78]. Through 
our discussion of the inflammatory mechanisms of obe-
sity and asthma, we have found valuable macrophages 
and other related immune cells involved in this process. 
Starting with immune cells, we hope to find suitable tar-
gets in immune cells to control heat production. Among 
various potential targets, TRP channels are chosen to 
further elaborate on intervention in the inflammation 
of obese asthma by highlighting interactions between 
them to illustrate the feasibility of the treatment of obese 
asthma.

TRP and obese asthma
In 1969, a groundbreaking study used methyl methane-
sulfonate (EMS) to induce mutations in fruit flies (Dro-
sophila melanogaster) and screened for new mutants. 
One of the mutants discovered exhibited abnormal 
phototaxis and retinal function, as sustained light stim-
ulation failed to elicit changes in retinal membrane 
potential. This mutant was named TRP [79]. TRP chan-
nels are widely distributed in both the nervous and non-
nervous systems of various organisms and play a crucial 
role in sensory responses. Currently, TRP channels have 
seven subfamilies: TRPC, TRPV, TRPM, TRPN, TRPA, 
TRPP, and TRPML [80]. Some of these subfamilies are 
expressed in adipose tissue. TRP channels are primarily 
involved in mediating cold exposure and the activation of 
dietary compounds, such as capsaicin, tea catechins, and 

ephedrine [81]. They also contribute to energy metabo-
lism and regulation in adipose tissue [82]. Therefore, the 
TRP channel can achieve the purpose of reducing the 
physical pressure of the airway and alleviating the inflam-
matory state of obese asthma to assist in the treatment of 
obese asthma. TRP is also closely related to adipokines 
and cytokines that correlate with obese asthma. Some 
TRP channels are involved in adipokines and cytokines 
secretion process and mediate the inflammation of obese 
asthma. In view of the correlation between TRP channels 
and obese asthma, TRP is likely to become an effective 
target for the treatment of obese asthma.

Various TRP channels and obese asthma
According to existing studies, a significant number of 
TRP channels have been found to be associated with 
obese asthma. Some of these channels play a role in gen-
erating heat in adipose tissue, while others are involved 
in airway inflammation, such as asthma. For instance, 
TRPV2 is highly shown off in BAT, and when TRPV2 is 
knocked out, the display of heat genes in BAT decreases 
[83]. Additionally, certain air pollutants, such as dust and 
nitrogen compounds, can activate TRPA1 and TRPV1, 
promoting and worsening existing asthma [84]. Due to 
the high expression of certain TRP channels, particu-
larly in immune cells like macrophages, and the findings 
from previous research, as well as their clear or poten-
tial involvement in the inflammatory process of obese 
asthma, we have specifically chosen to discuss TRPV4, 
TRPM8, and TRPC1. These channels are primarily asso-
ciated with obese asthma through their role in inflamma-
tion, and they are also linked to the production of fat and 

Fig. 1 The inflammatory mechanisms of asthma related to TRP channels. This figure mainly describes the influence of fat cells and their surrounding 
immune cells on the inflammatory state of asthma when the TRP channel is activated, and this inflammatory state builds a bridge between obesity and 
asthma
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inflammatory factors (Fig. 1). In the future, they may play 
a vital role in the therapy of obese asthma.

TRPV4
TRPV4, a member of the TRPV family, is a channel that 
can be activated by pressure, temperature, shear, and 
mechanical stimuli. It plays a crucial role in adipogene-
sis and various mechanisms associated with adipose tis-
sue function, as it is highly expressed in adipose tissue. 
TRPV4 is expressed in various immune cells and actively 
participates in inflammatory processes, which aids in 
regulating adipose tissue heat production. This indicates 
its involvement in maintaining the physiological balance 
of AT [85]. TRPV4 is also involved in asthma. Studies 
have shown that TRPV4 can mediate the differentiation 
of lung fibroblasts and contribute to airway remodelling 
by activating a novel oxidase [86]. We will discuss the 
role of TRPV4 in the inflammatory process, especially in 
macrophages, to demonstrate the importance of TRPV4 
in the inflammatory process of obese asthma and the 
feasibility of targeting TRPV4 in the treatment of obese 
asthma.

TRPV4 is widely distributed in the immune cells sur-
rounding adipose tissue, with a prominent presence in 
macrophages. Its main role is to regulate the number and 
status of immune cells, thereby influencing the secre-
tion of various cytokines. Specifically, TRPV4 mediates 
phagocytosis stimulated by bacterial lipopolysaccharide 
(LPS) and downregulates pro-inflammatory cytokines in 
macrophages [87]. In synovial cells, hypotonic stimula-
tion activates TRPV4 channels, leading to the production 
of reactive oxygen species (ROS). As a key intracellu-
lar mediator for activating pro-inflammatory signalling 
pathways, ROS promotes the polarization of M1 macro-
phages. In a rat model of osteoarthritis induced by radial 
medial meniscus transection, intraarticular administra-
tion of HC067047, a selective TRPV4 inhibitor, decreased 
the M1 polarization of synovial macrophages and 
resulted in reduced synovial inflammation, cartilage deg-
radation, and osteophyte formation. In addition, block-
ing TRPV4 through the ROS/NLRP3 signalling pathway 
reduces M1 macrophage polarization [88]. TRPV4 
also negatively regulates PPARγ in adipocytes, affect-
ing the expression of mitochondrial uncoupling protein 
1 (UCP1) and cellular respiration. PPARγ is a vital tran-
scription element in M2 macrophages and is involved 
in fatty acid uptake and oxidation [89]. Furthermore, a 
study utilizing immunofluorescence and digital calcium 
imaging technology analysed the interaction between the 
calcium-sensitive receptor CaSR and the TRPV4 channel, 
revealing their ability to promote Ca2+-dependent M1 
macrophage polarization through the PLA2/CYP450 and 
PLC/PKC pathways [90]. Overall, TRPV4 is crucial in 

macrophage polarization and the secretion of cytokines 
associated with inflammation.

Asthma is primarily characterized as an inflamma-
tory disease affecting the airways. TRPV4 is expressed in 
goblet cells and ciliated cells within the respiratory tract 
and plays a crucial role in airway inflammation, includ-
ing asthma. In fibroblasts, TRPV4 functions as a calcium 
channel, mediating the formation and activation of fibro-
blasts. This channel also assists the endothelium in pro-
tecting the lungs from inflammation and infection, while 
enhancing lung barrier function [91]. Research has dem-
onstrated the ability of TRPV4 to mediate the differen-
tiation of lung fibroblasts and induce airway remodelling 
through the activation of novel oxidases [86]. Further-
more, studies involving mice grouping have revealed 
that TRPV4 integrates TGFβ and ROS signalling via 
NOX4. The interaction between TRPV4 and NOX4 can 
be targeted to mitigate lung remodelling associated with 
asthma [42]. However, a study investigating the repeated 
sensitization of wild-type (WT) and TPRV4 knockout 
(KO) mice with chicken ovalbumin (OVA) and repeated 
aerosol exposure to 1% OVA found no meaningful differ-
ence in the development of allergic asthma between the 
two arrays. It is significant to note that this study solely 
relies on eosinophil levels as a measure of asthma sever-
ity, which may introduce bias. Nevertheless, the overall 
consensus supports the universal role and significance of 
TRPV4 in inflammatory diseases, including asthma.

In addition to macrophages, TRPV4 is also expressed 
in adipocytes and other immune cells. The activation of 
TRPV4 has an impact on the secretion of adipokines in 
adipose tissue. Specifically, the activation of TRPV4 leads 
to an increase in leptin production, while the knockdown 
of TRPV4 inhibits leptin secretion. Interestingly, the 
effect of TRPV4 on lipocalin is opposite to that of leptin. 
Changes in leptin and ADPN levels have been found 
to be associated with allergic airway responses and to 
serve as key substances linking obesity and asthma [92]. 
These findings highlight the potential of TRPV4 chan-
nels in the treatment of obese asthma. Perhaps activat-
ing the TRPV4 channel on adipocytes or immune cells 
can reduce the secretion of leptin and adiponectin, pre-
vent the content of adipocytokines in the surrounding 
blood, inhibit the occurrence of airway hyperrespon-
siveness, and ultimately achieve the goal of control-
ling asthma. Furthermore, one study discovered that 
TRPV4-deficient adipocytes exhibit higher ADPN pro-
duction, while TRPV4-deficient 3T3-L1 adipocytes show 
reduced levels of leptin. In fact, the protein composition 
of adiponectin and leptin is altered by more than 50% in 
TRPV4-deficient cells [93]. The flow of Ca2+ is relevant 
to T cell proliferation, differentiation, and cytokine secre-
tion, and TRP channels play a decisive role as ion chan-
nels in this process. In T cells, TRPV4 and TRPV1 can 
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form heterodimeric channels that work synergistically 
to control the influx and efflux of Ca2+. The increase in 
heterodimeric channels is associated with T cell prolif-
eration and the production of IFN-γ and IL-2, suggesting 
that TRPV4 takes part in the immune response of T cells.

TRPV4 is closely associated with obesity and asthma, 
and to target TRPV4 for the treatment of obese asthma, 
the key is to find effective activators. Current stud-
ies have identified several activation pathways or sub-
stances: low osmolality and 4α-forbol-decanoate can 
modulate TRPV4 channels in white adipocytes, result-
ing in increased intracellular Ca2+ concentrations [94], 
and altering body weight in obese asthmatics by affecting 
energy storage in WAT will help patients improve asthma 
symptoms (Figs. 2, 3).

TRPM8
In 2002, the TRPM8 receptor was successfully cloned 
from trigeminal sensory neurons by scientists, and it was 
subsequently named the menthol receptor [95]. TRPM8 
is expressed not only in adipocytes but also in immune 
cells, thereby participating in the regulation of cytokine 
secretion and contributing to the inflammatory process.

The activity of TRPM8 is essential for the normal dif-
ferentiation of monocytes in macrophages. Comparative 
gene expression analysis in samples of CD14 + monocytes 
returned for their macrophage differences, 3109 genes 
(26.6% of the expressed genes), were significantly down-
regulated, while 3403 genes (29.1% of the express genes) 
were significantly increased. It has been observed that 
the antagonism of TRPM8 has led to an impairment in 
the capacity for differentiation in macrophages [96].

Furthermore, the expression of TRPM8 in macro-
phages in mice has been found to determine pro- or 
anti-inflammatory effects mediated by TNF-α and IL-10 
[97]. In mouse macrophages, the histomorphous expres-
sion of TRPM8 activates an anti-inflammatory cytokine 
profile and enhances phagocytosis. Conversely, the dele-
tion of the TRPM8 gene or its pharmacological blockade 
induces the opposite effect.

The role of TRPM8 in asthma has been studied and 
confirmed. Researchers have established a mouse model 
of allergic asthma by exposing mice to a combination of 
formaldehyde at a concentration of 0.8 mg/m3 and a low 
temperature of 16 °C. It has been observed that simulta-
neous exposure to formaldehyde and low temperatures 
exacerbates allergic asthma. However, when the ion 
channels of TRPM8 and TRPA1 are blocked, inflamma-
tion levels are significantly reduced. These findings indi-
cate that co-exposure to formaldehyde and hypothermia 
can worsen allergic asthma, and both TRPM8 and TRPA1 
are implicated in this process [98]. In some studies, the 
expression of TRPM8 mRNA in BEAS 2B was examined 
using real-time quantitative PCR, immunofluorescence 

staining, and western blotting. It was discovered that the 
level of TRPM8 protein in asthma patients treated with 
bronchodilators was higher than in those without treat-
ment [99].

Furthermore, a study conducted on mice fed a high-
fat diet and treated with menthol demonstrated that the 
coadministration of oral menthol (at doses of 50 and 
100  mg/kg) significantly prevented weight gain induced 
by the high-fat diet. Notably, menthol is known to be the 
most potent activator of TRPM8. During this process, 
changes in leptin and ADPN levels, which are associated 
with airway inflammation, were observed. Leptin levels 
decreased, while ADPN levels increased with increasing 
menthol dosage [100]. Activating TRPM8 on adipose tis-
sue cells can control the secretion of leptin and ADPN, 
reduce the levels of adipocytokines that promote airway 
inflammation, and help suppress asthma. Activating 
TRPM8 on macrophages can secrete TNF- α and cyto-
kines such as IL-10, which in turn promote macrophage 
phagocytosis and help alleviate airway hyperrespon-
siveness. TRPM8 is primarily activated by temperature, 
menthol, analogues, voltage, and changes in extracellular 
osmolarity [101]. It can be sensed as a harmless low-tem-
perature stimulus within the range of 18–25  °C. Hence, 
all of these agonists may have potential therapeutic impli-
cations for obese asthma. However, research is necessary 
to determine the specific role of TRPM8 in other cell 
types (Figs. 2, 3).

TRPC1
Similar to TRPV4 and TRPM8, TRPC1 is highly 
expressed in adipose tissue cells and immune cells. As a 
member of the TRP family, TRPC1 functions as a non-
selective cation channel that is regulated by the concen-
tration of Ca2+.

The generation of the M1 phenotype is strictly depen-
dent on the STAT1 activated by TRPC1 /NF- κ. The 
whole-genome analysis of the B pathway also showed that 
the majority of M1-related genes in cells obtained from 
TRPC1 were reduced, and the majority of M2-related 
genes were significantly increased. Interestingly, the 
lack of TRPC1 gene expression effectively prevented the 
development of the M1 functional phenotype but had 
no impact on the M2 phenotype [102]. TRPC1-mediated 
Ca2+ influx occurs during IFN-γ activation or bacterial 
infection, leading to the polarization of macrophages 
towards the M1 phenotype. Remarkably, the deletion of 
TRPC1 completely inhibits the activation of M1 cells, 
suggesting that targeting TRPC1 could be a promising 
approach for the treatment of inflammatory diseases. 
The activation of the TRPC1 channel on macrophages 
is beneficial for regulating the function of TRPC1 chan-
nel and adipocytes around adipose tissue, promoting the 
secretion of inflammatory factors by macrophages, which 
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enter the lungs and cause airway hyperresponsiveness. 
TRPC1 may act indirectly as an agonist, leading to obese 
asthma. Therefore, in obese asthma patients, the activity 
of the TRPC1 channel will determine the development of 
the disease.

TRPC1 has also been implicated in the inflamma-
tion associated with asthma. The expression of TRPC1 
in epithelial cells was assessed using real-time quantita-
tive PCR and immunohistochemical methods. TRPC1 
contributes to abnormal Ca2+ signalling in response to 
receptor stimulation and mechanical stimuli, which in 
turn leads to airway remodelling. These findings provide 
a theoretical basis for the association among TRPC1, 
obesity, and asthma [103].

Furthermore, TRPC1 is expressed in various immune 
cells. In mice deficient in TRPC1, there was a significant 
reduction in allergen-induced lung leukocyte infiltration, 
accompanied by a diminished T helper type 2 (Th2) cell 
response [104]. Studies have demonstrated that TRPC1, 
which serves as a crucial store-operated calcium entry 
channel in AT, plays an important role in revealing the 
mechanisms underlying obesity and obese asthma. It 
affects the differentiation of adipose tissue cells and con-
tributes to fat deposition. Notably, TRPC-/- mice of all 
age groups exhibited significantly reduced serum leptin 
and ADPN levels, and they exhibited weight gain as they 
aged [105] (Figs. 2, 3).

Other TRP channels
In addition to the three TRP channels mentioned above, 
there are other TRP channels that, although their role in 
the inflammatory process of asthma and obesity has not 
been clearly researched, hold research value and warrant 
further exploration.

TRPV2 is a temperature-sensitive receptor that is acti-
vated when the temperature exceeds 52℃. Currently, it is 
primarily expressed in adipose tissue cells and is involved 
in adipose tissue thermogenesis. Studies on TRPV2 
knockout mice have revealed abnormal expression of 
various adipose tissue thermogenesis. This is because 
the TRPV2-mediated influx of Ca2+ is involved in the 
induction of heat-producing genes following adrenergic 
receptor activation [106]. Therefore, compared to WT 
mice, brown adipocytes isolated from TRPV2 knock-
out (TRPV2KO) mice showed reduced expression of the 
heat-producing genes Ucp1 and Pgc1α. TRPV2 knock-
out mice exhibited impaired adipose tissue function. 
Other studies have also demonstrated that TRPV2KO 
mice exhibit cold intolerance, increased adipocyte size, 
and fat accumulation, providing evidence that TRPV2 is 
functionally expressed in BAT [107]. The application of 
certain TRPV activators in reducing obesity is crucial. 
Recent research has shown that cannabidiol can activate 
mitochondrial autophagy [108], and enteropathogenic 
Escherichia coli (EPEC) can induce Ca2+ influx [109].

The TRPA channel is an Ir non-selective Ca2+ chan-
nel. In mammals, the only member of the TRPA family 

Fig. 2 TRP channels on adipose tissue cells participate in the mechanism of obese asthma
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is TRPA1. TRPA1 is widely expressed in both nerve and 
non-nerve cells [110]. The most well-known agonist for 
TRPA1 is cinnamaldehyde, which is derived from cin-
namon. Recent research has identified new agonists for 
TRPA1, including subtilisal, anisaldehyde, and tiglic alde-
hyde [111]. In relation to adipose tissue, which is closely 
linked to obesity-induced asthma, TRPA1 has also been 
found to be involved in adipose tissue thermogenesis. 
Cinnamaldehyde has been shown to induce wat brown-
ing and activate BAT in mice fed a high-fat diet, leading 
to increased glucose utilization and reduced fat accu-
mulation [112]. Studies have also discovered that allicin 
garlic juice (ARGJ), a novel dietary agonist, can prevent 
metabolic complications caused by a high-fat diet in mice 
and restore the balance of intestinal hormone levels after 
meals [113].

In addition to the TRP channels that have been impli-
cated in the inflammatory process of obesity-induced 
asthma, there are other TRP channels with research sig-
nificance, such as TRPM7. Additionally, the absence of 
TRPM4 affects macrophage infiltration and increases 
the levels of monocytes [114]. These channels are likely 
to become important targets for the future treatment of 
obesity-induced asthma, and further research and explo-
ration are warranted.

It is not difficult to find that if we want to treat obese 
asthma through the association between obesity and 
asthma inflammation, TRP channels on immune cells and 
adipocytes will play a crucial role. Among the numer-
ous TRP channels, we have chosen representative ones, 
among which TRPV4 is particularly prominent because 
it is highly expressed in macrophages and participates 
in IFN-γ [115]. We hope that future research can focus 
on exploring effective activators or inhibitors of TRPV4, 
which are harmless to the human body and can be modi-
fied as new targeted drugs for treating obese asthma. In 
addition, we listed other TRP channels, such as TRPV2 
[116], which have not been fully studied to prove a clear 
association with obesity-induced asthma. However, other 
studies have found that they are crucial in the onset 
mechanisms of obesity and asthma. We define them as 
potential TRP channels, and further research is needed 
in the future to discover whether they have potential as 
targets.

Numerous TRP channels play a role in adipose tissue 
and immune cells, specifically in controlling the secretion 
of leptin, adiponectin, and various inflammatory factors 
by activating or inhibiting these TRP channels. These 
factors can enter the airways and cause airway inflam-
mation such as asthma. If suitable activators are found to 
control TRP channels, the secretion of pro-inflammatory 

Fig. 3 A TRP channels on M1 macrophages participate in the mechanism of obese asthma; B TRP channels on M2 macrophages participate in the 
mechanism of obese asthma
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cytokines, their levels in the airway, and the risk of air-
way inflammation can be reduced, thereby preventing the 
occurrence of obesity-induced asthma. Treating obese 
asthma through TRP channels may become effective.

Achievements and lacks
Compared with other studies, this review not only 
explains the pathogenesis of obese asthma, but also 
emphasizes for the first time the role of TRP channels in 
the treatment of obese asthma, with a focus on inflam-
mation, which has a certain breakthrough. The research 
focuses on several TRP channels with research potential, 
especially TRPM8, TRPC1, and TRPV4, while also tak-
ing into account the TRP channels mentioned in general 
research. However, compared with some other studies 
related to TRP channels, there are still some lacks, such 
as a lack of introduction and discussion of niche TRP 
channels. Secondly, compared with similar articles, there 
is a lack of specialized experiments to evaluate the role 
of TRP channels. Finally, the manuscript emphasizes the 
role of macrophages, and compared with other immune 
related studies, there is insufficient description of other 
immune cells.

Conclusion
This article systematically explores the link between 
obesity and asthma, focusing specifically on the inflam-
matory mechanism. It emphasizes the potential break-
through in the treatment of obese asthma by targeting 
TRP channels associated with inflammation. Given the 
complexity and uniqueness of obese asthma, we have 
identified three TRP channels – TRPV1, TRPM8, and 
TRPC1 – and examined their role in immune cells, par-
ticularly macrophages. Consequently, it is possible that 
targeting TRP channels can effectively address obese 
asthma. Furthermore, additional TRP channels with 
therapeutic potential will be identified through exten-
sive research. This highlights the need for future studies 
to investigate how to regulate TRP channels to control 
inflammation in obese asthma, identify effective activa-
tors with minimal side effects, and explore other mem-
bers of the TRP family as potential targets.
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